HEXA-X Architectural enablers for 6G

Initial 6G Architectural Components and Enablers

Mårten Ericson
hexa-x.eu
2022-02-04
Goals

- Full AI integration and network programmability
- New flexible and adaptable network design
- Streamline and redesign the architecture
Outline

• Trends and Gaps
 • 6G Architecture direction
 • Intelligent networks
 • Flexible networks
 • Efficient networks
 • Summary
Trends and gaps

Cloud/SBA/Softwarization
New digital communications – e.g. AI and Sensing
Al for Orchestration
Sustainability and regulations
Network of networks
Programmability
Outline

• Gaps
• 6G Architecture direction
 • Intelligent networks
 • Flexible networks
 • Efficient networks
• Summary
6G Architecture direction

Architecture principles

Increased network intelligence
1: Exposure of capabilities to E2E applications
2: Designed for automation

Increased network flexibility
3: Flexibility
4: Scalability
5: Resilience and availability

Increased network efficiency
6: Exposed interfaces are service based
7: Separation of concerns of network functions
8: Network simplification in comparison to previous generations

Architectural enablers

Programmability

Network automation, intent-based management

AI-as-a-Service

Flexible topologies: D2D, mesh, NTN

Integration of sub-networks and non-public networks with public networks

Efficient RAN/CN signaling

Function refactoring

Programmable nodes and devices

Data driven architecture, analytics, network automation

Network of networks integration

Cloud native RAN and CN, dynamic function placement

Energy efficient, Streamline wherever possible
Outline

• Trends
• Gaps
• 6G Architecture direction
• Intelligent networks
 • Flexible networks
 • Efficient networks
• Summary
Intelligent Networks overview of enablers

Cloud RAN and Core Network

- Application
 - TCP/IP
 - AlaaS/AI/FL
 - Programmability
 - Analytics
 - RAN layers

Management

- Network automation
- Dynamic function placement

Core network functions

App Server

- TCP/IP
- Data driven architecture: enable seamless transfer of analytics across planes and domains is required.

- New AI entities to enable AlaaS e.g., discovery, selection, operation monitoring of the AI agents instantiated at the network nodes and devices.
Network and UE Programmability

- **Benefits:** TTM, flexibility, adaptability to new environments
- **Network programmability:** Model the average packet processing latency on different P4 devices and make placement decisions accordingly
- **Programmable UEs:** Can be used for tailored industry sensors/IoT devices connected to a dedicated network
Outline

• Trends
• Gaps
• 6G Architecture direction
• Intelligent networks
• Flexible networks
• Efficient networks
• Summary
Flexible Networks overview of enablers

RAN layers

Application

TCP/IP

Management

Ad-hoc NW control

6G Multi-connectivity

Node discovery

L1/2 mobility

RAN layers

Core network functions

Cloud RAN and Core Network

Campus/private networks

Flexible D2D mesh/centralized

NTN Aerials HAPs

Network of networks
Network of networks

- **Background/Motivation**
 - WP5 has an objective to find architectural solutions that support full global coverage.
 - Develop a campus network including aerial LANs/Satellites.

- **Solution**
 - Develop an NTN architecture capable of efficient of inter-satellite-link hops.

More hops and Inter-Satellite Links (ISL) are needed to achieve Global Coverage.

With LEO@600 km constellation and GSs on the continent it is impossible to reach all point in the ocean with no ISL.
Flexible Topologies: D2D, Mesh Networking

- **Background**: Mesh networks as one solution for e.g., verticals requiring lower latency, better coverage/reliability etc.

- **Solution**
 - Selection of best connectivity options
 - Leverages on networking technologies like D2D, mesh networks
 - Disaggregated devices: close cooperation with edge
 - Discovery and selection of best possible and "trusted" nodes depending on connect-compute capabilities
Outline

• Trends
• Gaps
• 6G Architecture direction
• Intelligent networks
• Flexible networks
• Efficient networks
• Summary
Efficient Networks overview of enablers

- Application
- TCP/IP
- RAN layers

Management
- SBA
- Function refactoring
- Cloud native signaling
- CaaS signaling

Core network functions

Cloud RAN and Core Network

App Server

Uu

NG
Efficient cloud RAN/CN signaling - Separation of concern

Background
Streamline architecture for more efficient signaling.

Problem: Current signaling in CN is hierarchical and occurs in sequence. This takes time and may limit adding additional NFs.

Solution: Future: signaling can be carried out in parallel for better scalability and flexibility - functions need to be more separated.
Architectural support of Compute-as-a-Service (CaaS)

Background/problem

- Devices or nodes may need to delegate resource-intensive processing tasks to more powerful compute nodes.
- The compute nodes can offer the services to other nodes and devices.
- Selection of compute nodes may be based on:
 - dependability (reliability, availability)
 - network energy efficiency etc.
Outline

• Trends
• Gaps
• 6G Architecture direction
• Intelligent networks
• Flexible networks
• Efficient networks
• Summary
Summary

Initial 6G AI architecture concept (data driven architecture)

- AIaaS is based on a set of interconnected AI agents
 - Seamless transfer of analytics across planes and domains is required
 - New architecture entities for supporting AIaaS aim to enable the discovery, selection, operation monitoring of the AI agents
 - Initial concept protocols for AI/federated learning

Network of networks (flexible networks)

- Full integration of NTN (Satellites and High-Altitude Platforms)
- D2D and mesh networks of device to enable devices to communicate directly in an infrastructure-less

Separation of concerns for a cloud native RAN and Core network (efficient networks)

- Virtualization enables flexible deployment
 - For example, we may reduce latency by placing functions close to the UE
 - Separation of concerns, i.e. make network function more independent to simplify signaling
(Major) Next steps

- Framework for:
 - AI/AIaaS (and analytics) including FL and continuum orchestration
 - UE and network programmability
 - Streamlining the functions and signaling for a cloud native network
 - Network of networks, e.g., D2D mesh networks, NTN, campus networks

- KPIs to investigate
 - How to improve network convergence time and AI communication overhead
 - How to increase the reliability and flexibility for network of networks