

Hexa-X | WP2 | D2.3 Radio models and enabling techniques towards ultra-high data rate links and capacity in 6G

31.03.2023

Scope and outline

Scenarios and technical requirements

Sub-THz (100-300 GHz) communication scenarios requirements

	Mid-range wireless access	Short-range wireless access	Very short-range wireless access		
Example use cases	Digital twins for manufacturing, fixed wireless access, Wireless fronthaul	Digital twins for manufacturing, fully- merged cyber-physical worlds	Fully-merged cyber- physical worlds, holographic communication		
Targeted data rate	100 Gbps	10 Gbps	100 Gbps		
Typical link range	200 m	10-100 m	10 m		
E2E latency	0.1 – 100 ms	0.1 – 100 ms	< 20 ms		
Mobility	Stationary (0 m/s)	Mid-speed vehicular (<15 m/s)	Walking speed (<3 m/s)		
Radio channel	Outdoor	Indoor/outdoor	Indoor/outdoor		
Device classes	AP	AP, mobile device	AP, mobile device		
Radio design type	Symmetric	Asymmetric	Asymmetric		
Duplex mode	TDD	TDD	TDD		
Carrier frequency	140 GHz, 200 GHz, 300 GHz	140 GHz, 200 GHz, 300 GHz	140 GHz, 200 GHz, 300 GHz		
Positioning / sensing accuracy	0.1-1 m	0.01 m	<0.01 m		
Positioning / sensing latency (depends on mobility)	10 – 100 ms	100 ms	1-100 ms		
Delay/distance resolution	0.5 m	0.1 m	0.1 m		
Angle resolution	10 degrees	2-10 degrees	2 degrees		

Generic radio architecture (Radio design aims at defining concrete parameters)

Deployment scenarios of different radio hardware options

Channel model: Material permittivity and conductivity estimation from 2 to 260 GHz ITUF mode ITUF= ITU model fitted · Model ITU by measurement Meas1 Meas2 Material sample Meas3 Gain (dB) Frequency Permittivity for some materials T function for converter Antenna 6.5 concrete (2cm) Mortar B 5.5 LaminatedG -100 Relative permittivity 250 Plexiglass 50 100 150 200 Vinyl Frequency (GHz) Ceramic BA13 R function for concrete Chipboard 3.5 Gain (dB) Material holder for 2.5 50cm * 50cm samples ITUF Model ITU Mode 30 50 230 75 200 140 170

- <u>Context</u>: ITU-R P2040 model defines for frequencies up to 100 GHz constant permittivity ε_r and frequency-dependent conductivity σ with $\sigma = cf^d$
- **Objectives:** Validation of ITU model above 100 GHz and model parameter estimation (ε_r , c and d) for various materials
- <u>Measurement:</u> VNA-based measurement on 9 frequency bands (2-30 GHz, 30-50 GHz, 50-75 GHz, 75-110 GHz, 110-140 GHz, 140-170 GHz, 170-200 GHz, 200-230 GHz, 230-260 GHz) and various building materials (concrete, glass, wood, etc.)
- <u>Processing:</u> Reflection (R) and transmission (T) functions processing based on raw measurement time-gating and normalization by free space measurement. Permittivity and conductivity estimated from R and T functions.

Conclusions

50

100

150

Frequency (GHz)

200

• The permittivity is independent of the frequency even at frequency above 100 GHz, and the measurements agree with ITU values for available materials

250

260

Frequency band (GHz)

- Differences between model and measurement are observed for T and R functions due to internal or surface scattering. The ITU model should be improved by integrating an option considering rough surfaces
- The ITU conductivity parameters for some materials such as concrete or plasterboard need to be improved for a better accuracy at frequencies above 100 GHz

Channel model: Stored channel model at 140 GHz

1. The channel model is based on measurements in four sites

	Entrance Hall	Suburban	Residential	City Centre
Number of LOS Links	5	5	5	5
Number of NLOS Links	12	32	13	19
Link Distance Range (m)	3-66	2-172	20-175	10-178

2. Double-directional multipath data are available for the four sites

3. Time-varying MIMO channels are reproduced based on the multipath data

$$\mathbf{H}_{q}(t,f) = \sum_{l=1}^{L_{q}} \mathbf{g}_{\mathrm{rx}}(\Omega_{q,l}^{\mathrm{rx}}) \sqrt{P_{q,l}} e^{j(\varphi_{q,l}+2\pi\nu_{q,l}t)} e^{-j2\pi f\tau_{q,l}} \mathbf{g}_{\mathrm{tx}}(\Omega_{q,l}^{\mathrm{tx}})^{T} \in \mathbb{C}^{M \times N}$$

Channel model codes are available at https://doi.org/10.5281/zenodo.7640352

4. Exemplary plot of reproduced channel

Radio architecture and models: RF transceiver architecture

Multi-array RF transceiver architecture

ADC requirement & performance analysis for 100 Gbps

R_u	data rate
R_c	code rate
М	modulation order

OFDM , $R_u = 100$ Gbps, $R_c = 5/6$						
	RF BW factor	BW GHz	fs GHz	SNDR ADC		
16-QAM	0.33	33	60	44.6		
64-QAM	0.22	22	40	48.4		
256-QAM	0.17	16.5	30	55.7		

Radio architecture and models: hardware models

Phase noise

- Multiplier-based LO architecture
- Frequency scalable model parametrization
- System view on radio link phase noise
- BW / f0 analysis: flat phase noise limits bandwidth

$$S(f_o) = \left(\frac{f_c}{f_{pll}}\right)^2 \left(10^{\frac{N_{ref}}{10}} \frac{\prod_{n=1}^N \left(1 + \left(\frac{f_o}{f_{z,n}}\right)^{\alpha_{z,n}}\right)}{\prod_{m=1}^M \left(1 + \left(\frac{f_o}{f_{p,m}}\right)^{\alpha_{p,m}}\right)} + 10^{\frac{N_{th,pll}}{10}}\right)$$

Power amplifiers

- Technology & centre frequency dependent modelling of saturated power
- Memoryless & memory-dependent nonlinearity
- Parametrized models using measurements at 300 GHz

Radio architecture and models: D-MIMO radio architecture

Hexa-X

Architectural options for D-MIMO

- 1. <u>Transport media</u>: The backhaul/fronthaul can either be wired or wireless.
- 2. <u>Signalling</u>: Digitally encoded or analogue signal modulated onto a carrier.
- 3. <u>Processing</u>: Can either be performed analogue/digital or centralized/distributed.
- 4. <u>Transmission</u>: Coherent or non-coherent
 - At sub-6GHz, D-MIMO is mainly driven by the need for high-spectral efficiency.
 - At very high frequencies, it is driven by the need to produce reliable communication links.
 - Allows serving antenna to be closer to a UE providing a more reliable link.

D-MIMO with wireless fronthaul operating at high bands while access links at low bands.

Distributed MIMO with key design options

Signal processing techniques: HW-aware waveform and baseband transceiver design

Signal processing techniques: Beam management techniques

• This finite state machine represents all procedures involved in the establishment and maintenance of beams for communication

- Scaling current 5G solutions is not possible as the number of beams that need to be tested is too larger. Scaling the current approach to the frequency range of 100 to 300 GHz does lead to initial beam alignment requiring more than 4.5 s
- Side information like positioning information, stored beam alignment results, or channel observations at another frequency need to be utilized to reduce the number of beams to be tested

Signal processing techniques: D-MIMO schemes

Radio link and system performance analysis: Impact of deployment scenarios on power consumption

• Area throughput and power consumption comparison (Tx and Rx RF frontend, exemplary simple scenario)

0.9 0.8 4BS,4UEpA 4BS.8UEpA 4BS,16UEpA 0.2 2BS,4UEpA 2BS,8UEpA 0.1 2BS16UEpA 0 15 20 0 5 10 25 30 throughput in Gbit/s

• BS with 1, 2 or 4 subpanels, analogue Gob

Total power consumption of 2-BS scenario is higher than of 4-BS Higher ADC resolution: power consumption increases with number of RF chains

Deployment area: 2 BS 10 m height 4 BS 5 m height pointing from the ceiling

UE throughput CDF for 4, 8 and 16 simultaneously served UEs within deployment area => 4 BS achieve higher throughput BS: base station CDF: Cumulative Density Function

UE: User Equipment GoB: Grid of Beams

Radio link and system performance analysis: Radio channel properties influencing link and system performance

Pathloss and large-scale parameters at 142 GHz were derived from channel sounding at three outdoor and one indoor sites.

Scenario		AoD	oD [deg] ZoD [deg]		AoA [deg]		ZoA [deg]		Delay Spread [ns]		
		μ	σ	μ	σ	μ	σ	μ	σ	μ	σ
Indoor	LOS	25	9	6	5	14	8	3	2	14.6	4.4
	NLOS	38	13	8	5	22	11	4	2	26.3	11.8
Suburban	LOS	10	7	2	1	9	10	1	1	25.7	24.2
	NLOS	9	11	3	3	5	4	1	2	15.1	14.8
Residential	LOS	13	9	2	2	11	10	1	1	24.9	19.4
	NLOS	20	18	3	3	6	6	1	2	26.9	37.9
City Center	LOS	18	9	4	6	13	4	2	1	21.3	9
	NLOS	24	17	4	3	14	9	2	2	25.4	19.9
Outdoor	LOS	12	9	2	3	10	9	1	1	24.7	20.6
	NLOS	21	18	3	3	9	8	2	2	25.6	31.0

Ζ

U research and innovation programme under grant agreement No 101015956.