
 

 

 
 

 

 

 

 

Call: H2020-ICT-2020-2 

Project reference: 101015956 

 

Project Name: 

A flagship for B5G/6G vision and intelligent fabric of technology enablers connecting human, 
physical, and digital worlds 

Hexa-X 

 

 

 

 

 

 

Deliverable D3.3 
Final models and measurements for 

localisation and sensing 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Date of delivery: 01/05/2023 Version: 1.4 

Start date of project: 01/01/2021 Duration: 30 months 

    

    

Document properties: 

Document Number: D3.3  

Document Title: Final models and measurements for localisation and sensing 

Editor(s): Henk Wymeersch 

Authors: Henk Wymeersch (CHA), Athanasios Stavridis (EAB), Kim 
Schindhelm (SAG), Hui Chen (CHA), Hao Guo (CHA), Musa 
Furkan Keskin (CHA), Simon Lindberg (QRT), José Miguel 
Mateos-Ramos (CHA), Mohammad Hossein Moghaddam 
(QRT), Mohammad Ali Nazari (CHA), Indika Perera (OUL), 
Alejandro Ramirez (SAG), Rafaela Schroeder (OUL), Tommy 
Svensson (CHA), Andreas Wolfgang (QRT), Vijaya 
Yajnanarayana (EAB).  

Contractual Date of Delivery: 01/05/2023 

Dissemination level: PU1/ 

Status: Final 

Version: 1.4 

File Name: Hexa-X D3.3_v1.4 

 

Revision History 

Revision Date Issued by Description 

0.1 12.02.2023 Hexa-X WP3 Initial draft 

1.0 12.03.2023 Hexa-X WP3 First complete draft 

1.2 19.03.2023 Hexa-X WP3 Draft for external review 

1.3 02.04.2023 Hexa-X WP3 Draft for GA review 

1.4 28.04.2023 Hexa-X WP3 Final version for EC and Hexa-X site 

 

  

 

 
1 CO = Confidential, only members of the consortium (including the Commission Services) 

  PU = Public 



 

 

Abstract 
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designs, and algorithms and evaluation of location-based services from Hexa-X work package 3, “6D 
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X regarding the interaction of communication, localisation, and sensing.  

 

Keywords 

6G localisation and sensing, methods, signals, services, demonstrations. 

 
Disclaimer 

The information and views set out in this deliverable are those of the author(s) and do not necessarily 
reflect views of the whole Hexa-X Consortium, nor the official opinion of the European Union. 
Neither the European Union institutions and bodies nor any person acting on their behalf may be held 
responsible for the use which may be made of the information contained therein. 

 

  

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 101015956.  



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 4 / 108 

 

Executive Summary 

This report is the third and final deliverable of the Hexa-X project Work Package 3 (WP3): “6D High-
Resolution Localisation and Sensing”. This deliverable focuses on the final (in terms of the Hexa-X 
project) models and measurements, performance evaluation of new signal designs, including results 
from measurements from the over-the-air (OTA) demonstration, and algorithms and evaluation of 
location-based services.   

This report starts by relating the activities of WP3 with respect to the rest of the Hexa-X project. Then, 
terminologies introduced in previous deliverables are recapped and refined to specify the terms:  
localisation, positioning, and sensing, as well as joint vs. integrated sensing and communication. To aid 
the reader in navigating the deliverable, a brief recap of the previous deliverables (D3.1 “Localisation 
and sensing use cases and gap analysis” and D3.2 “Initial models and measurements for localisation 
and sensing”) is provided.  

This deliverable covers the role of localisation and sensing in the 6G ecosystem considering three 
complementary aspects: the emerging services layer (including the processes and needed exposure), the 
implications regarding the key performance indicators (KPIs), and the implications regarding the key 
value indicators (KVIs). The basic sensing processes and functional view are presented within the 6G 
future ecosystem, comprising the sensing function layer, the sensing data processing layer, and the 
emerging application and service layer, as well as aspects related to management and orchestration, and 
sensor fusion. In terms of meeting the KPIs, this report considers the underlying requirements in terms 
of radio hardware and synchronization, as well as spectrum, resource optimization and infrastructure 
optimization. Finally, the relation of accurate localisation and sensing with the main KVIs is revealed, 
including inclusiveness and sustainability, but with a strong focus on trustworthiness, where aspects 
related to security, dependability, safety, and privacy are discussed. 

The deliverable then addresses the final models and algorithms from WP3 in Hexa-X. Both channel 
models and hardware models are detailed for use in the algorithm development. Localisation and 
sensing algorithms have been developed for various scenarios, including 6D localisation (estimating 
both the 3D position and 3D orientation of a user, and optimising deployment and array sizes), as well 
as monostatic and bistatic sensing, integrated sensing and communication, and, finally, location-aided 
communications. Both model-based and AI-based methods have been developed and evaluated. While 
centimetre-level accuracies can be attained in these simulation-based studies, it was found that hardware 
impairments and calibration issues can limit the performance.  

To better understand the impact of hardware impairments, dedicated studies on the quantitative 
performance degradation of each impairment are reported. These studies consider both the channel 
parameter estimation problem (i.e., detecting paths and the corresponding angles, delays, Dopplers), as 
well as the localisation and radar sensing problems. The studies show that array calibration errors (e.g., 
coupling, radiation pattern, displacement) have a larger effect on localisation and sensing than 
communications, and careful calibration and compensation of hardware impairments are necessary to 
attain very high accuracies. OTA results of waveforms developed in Hexa-X (in the form of spatial 
precoders) show that standard communication waveforms may be sub-optimal when used for sensing 
or localisation reference/probing signals. OTA experiments at 69 GHz and 400 MHz bandwidth in a 
controlled indoor line-of-sight environment demonstrate angle-of-departure (AoD) estimation 
accuracies on the order of 0.01-0.2 degrees. With a bi-static sensing setup operating at 60 GHz and 
bandwidth of 800 MHz, a moving person could be tracked with a precision of 0.1-0.3 m depending on 
the position relative to the radios. Several improvements of the measurements are proposed, which are 
expected to increase the precision further.  

The report ends with the main conclusions from Hexa-X WP3.  It was found that 6G radio design should 
be holistic, in the sense that communication, localisation, and sensing must be integrated from the onset, 
to optimize overall performance. Sharing of resources between the three functions as well as the security 
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and privacy implications deserve further study. In terms of performance, this deliverable confirmed that 
the envisioned technical enablers towards 6G hold great promise for accurate localisation and sensing, 
though calibration and hardware aspects may limit the final performance.  
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List of Acronyms and Abbreviations 

Term Description 

3D Three dimensional 

3GPP 3rd generation partnership project 

ACF Auto-correlation function 

ADC Analog-to-digital converter 

ADE Antenna displacement error 

AI Artificial intelligence 

AGE Array gain error 

AGV Autonomous guided vehicle 

AoA Angle-of-arrival 

AoD Angle-of-departure 

AP 

API 

Access point 

Application programming interface 

AR Augmented reality 

AWGN Additive white Gaussian noise 

B5G Beyond 5G 

BLE Bluetooth Low Energy 

BS Base station 

CCPA California Consumer Privacy Act 

CCDF Complementary cumulative distribution function 

CFAR Constant false alarm rate 

CFO Carrier frequency offset 

CNN Convolution neural network 

CRB Cramér-Rao bound 

CSI Channel state information 

CSIT Channel state information at the transmitter side 

DFTS-OFDM Discrete Fourier Transform Spread-OFDM 

DAC Digital-to-analogue converter 

DD Doppler-delay 

ED/LC Early detect late commit 

ESPRIT estimation of signal parameters via rotational 
invariance techniques 

FIM Fisher information matrix 

FFT Fast Fourier transform 

FMCW Frequency-modulated continuous wave 
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FRO Free-running oscillator 

GDOP Geometric dilution of precision 

GDPR General Data Protection Regulation 

GNSS Global navigation satellite systems 

HOM High order modulation 

HWI Hardware impairment 

IAB Integrated access and backhaul 

IBO Input back-off 

ICI Intercarrier interference 

ISAA Iterated small angle approximation 

IOO Indoor open office 

IoV Internet-of-vehicles 

IQI In-phase and quadrature imbalance 

ISAC Integrated sensing and communication 

JCAS Joint communication and sensing 

KPI Key performance indicator 

KVI Key value indicator 

LB Lower bound 

LEO Low-earth orbit 

LO Local oscillator 

LOS Line-of-sight 

LS Least square 

LSRPA large-scale based RIS pre-assignment 

MAP Maximum a-posteriori 

M&O Management and orchestration 

MC Mutual coupling 

MCRB Misspecified Cramér-Rao bound 

MCS Modulation and coding scheme 

MF Matched filter 

MIMO Multiple input multiple output 

MLE Maximum likelihood estimation 

MMSE Minimum mean squared error 

MR Mixed reality 

NLOS Non-line-of-sight 

NR New radio 

NTN Non-terrestrial network 

OFDM Orthogonal frequency-division multiplexing 
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OEB Orientation error bound 

OTA Over-the-air 

PAN Power amplifier nonlinearity 

PAPR Peak-to-average-power ratio 

PEB Position error bound 

PL Protection level 

PLL Phase-locked loop 

PN Phase noise 

PrA Predictor antenna 

PRS Positioning reference signal 

QAM Quadrature amplitude modulation 

QoS Quality of service 

QPSK Quadrature phase shift keying 

RA Receive antenna 

RAIM Receiver autonomous integrity monitoring 

RAN Radio access network 

RCS Radar Cross Section 

RE Resource element 

RFC Radio frequency chain 

RIS Reconfigurable intelligent surface 

RMSE Root mean-squared-error 

RRU Remote radio unit 

RS Reference signal 

RTK Real-time kinematic 

Rx Receiver  

SA Sub-array 

SAA Small angle approximation 

SAR Synthetic aperture radar 

SINR Signal-to-interference-and-noise-ratio 

SNR signal-to-noise-ratio 

SRS Sounding reference signal 

STF Space-time-frequency 

SV Saleh-Valenzuela 

TIR Target integrity risk 

TDoA Time-difference-of-arrival 

TF Time-frequency 

ToA Time-of-arrival 
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Tx Transmitter 

UAV Unmanned aerial vehicle 

UE User equipment 

ULA Uniform linear array 

Uma Urban macro 

UMi Urban micro 

UWB Ultra-wideband 

V2X Vehicle-to-anything 

VR Virtual reality 

WP Work package 

XR Extended reality 

ZF Zero-forcing 
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1 Introduction 
Hexa-X is one of the 5G-PPP projects under the EU Horizon 2020 framework. It is a flagship project 
that develops a Beyond 5G (B5G)/6G vision and an intelligent fabric of technology enablers connecting 
human, physical and digital worlds. 

This document is the third deliverable of Work Package 3 (WP3) - “6D high-resolution localisation and 
sensing”. The work in WP3 focuses on the exploration of technological advances in communication 
systems (both within and outside Hexa-X) for the purpose of accurate localisation and sensing, as well 
as the use of location and sensing information to support existing and new services. The research is 
broken down into three tasks (T3.1, T3.2, and T3.2) focusing on the following complementary aspects: 

• T3.1: Definition of use cases and requirements, complemented with a gap analysis.  
• T3.2: Development of methods, signals, and protocols for localisation and mapping.  
• T3.3: Establishment of location and mapping-enhanced service operation. 

The relation of WP3 within Hexa-X, its tasks, and main interfaces are shown in Figure 1-1.  

 
Figure 1-1 WP3 and its tasks in relation to Hexa-X. 

This deliverable builds on [HEX22-D32], which provided initial findings regarding methods, models, 
and measurements for localisation, sensing, and enhanced services that benefit from location and 
sensing information. The deliverable also capitalises on the work in Hexa-X WP2 “Novel radio access 
technologies towards 6G”, by utilising recent developments in terms of models and technologies for 
radio communication. More specifically, this deliverable provides the final models and measurements, 
performance evaluation of new signal designs, and algorithms and evaluation of location-based services 
from Hexa-X WP3, “6D high resolution localisation and sensing”. Finally, the deliverable provides 
final recommendations from Hexa-X regarding the interaction of communication, localisation, and 
sensing.  

1.1 Hexa-X objectives on radio performance towards 6G 
The work in WP3 related to the project-level objective “Radio performance towards 6G”, which is 
shared with WP2. This section given an overview of the work in Hexa-X towards this objective.  

1.1.1 Hexa-X outputs towards radio performance towards 6G 
The outputs towards the objective are reported in the three WP3 deliverables: 

[HEX21-D31] Hexa-X, “Deliverable D3.1: Localisation and sensing use cases and gap analysis,” 
Dec. 2021. 

T3.2 6D localization T3.2 Sensing
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sensing KPIs Enablers Challenges
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communication
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[HEX22-D32] Hexa-X, “Deliverable D3.2: Initial models and measurements for localisation and 
sensing,” Oct. 2022. 

[HEX23-D33] Hexa-X, “Deliverable D3.3: Final models and measurements for localisation and 
sensing,” May 2023. (this document). 

1.1.2 Hexa-X measurable results towards radio performance towards 6G 
The following measurable results for the objective are completed in the WP3 deliverables.  

To deliver models and radio-based solutions to support high-precision localisation, high-fidelity 
digital representations of the physical world, improved communications, and new services. 

Different models and algorithms have been developed for accurate localisation and sensing, including 
both model-driven methods and methods based on artificial intelligence. Based on geometric models of 
the mmWave (30-100 GHz) and sub-THz (0.1-1 THz) channels, locations of incidence points in the 
environment as well as large surfaces can be estimated, providing a map of the environment. These 
methods have been reported in [Section 4, HEX21-D31], [Section 3, HEX22-D32], and this document 
(Section 4.1 and Section 4.2). Methods to improve the communication quality by harnessing location 
information have been devised to avoid blockages and to improve energy efficiency. New services have 
also been developed, based on sensing information, e.g., to determine the propagation environment. 
These methods and associated models have been reported in [Section 4, HEX22-D32] and in this 
document (Section 4.2.7).  

Novel models and algorithms for localisation and sensing, tailored to B5G signals and use cases.  

Several novel methods for localisation and sensing, building on agreed waveforms, have been devised 
and evaluated in terms of the agreed key performance indicators (KPIs). These methods aim for 
extremely high accuracy, low latency, and high resolution, tailored to the use cases from [HEX21-D31]. 
The methods and their evaluation have been reported in [Section 4, HEX21-D31], and [Section 3, 
HEX22-D32]. The final models and methods can be found in this document, Section 4.1 and Section 
4.2.  

Demonstration of improved energy efficiency and safety/security by harnessing and predicting 
precise locations of users and objects.  

Improvements in energy efficiency based on channel knowledge maps have been studied in [Section 
4.2.2, HEX22-D32]. The results indicate that higher location accuracy of the users leads to increased 
energy efficiency, due to reduced training overheads. In parallel, [HEX22-D32] also reports gains in 
achievable rate for a fixed energy when using location knowledge about objects in the environments, in 
particular blockages, in [Section 4.2.1, HEX22-D32] and Section 4.2.7 in this document. Energy 
efficiency is also treated in this document in Section 3.3.2, building on resource optimization from 
Section 3.2.3 and infrastructure optimization from Section 3.2.4. Enhancements of security use cases 
have been listed in [Section 4.1.1, HEX22-D32]. A more complete view of security and location 
information is provided in this document in Section 3.3.1. 

Enabling convergence of communication and sensing by realising performance similar to that of 
dedicated radar and LiDaR sensors. 

The performance of dedicated radar and LiDaR sensing has been established in [Section 3.2.2, HEX21-
D31]. Sensing with OFDM waveforms at mmWave with 800 MHz has been demonstrated in this report 
(Section 5.2.2), leading to accuracies ranging from 0.1 to 0.3 m, which is similar to the radar resolution 
reported in [Table 3-28, HEX21-D31]. In terms of positioning, angle estimation accuracy between 0.01 
and 0.2 degrees has been reported in Section 5.2.1, which is similar to lidar angle resolution, reported 
in [Table 3-29, HEX21-D31]. The requirements in terms of bandwidth and array size in order to realise 
resolution similar to radar and LiDaR are detailed in Section 3.2.1.  
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1.1.3 Hexa-X quantified results towards radio performance towards 6G 
The following quantified results for the objective are completed in the WP3 deliverables.  

(<1 cm) positioning precision 

The precision of 1 cm has been established in simulation studies, reported in [Section 4, HEX21-D31] 
and [Section 3, HEX22-D32] and in Section 4.2. More realistic studies that account for hardware 
impairments and calibration are reported in Section 5.1.2. Finally, demonstration of mmWave 
positioning and sensing has been reported in Section 5.2. The demonstrated 2D positioning accuracy of 
a passive object was around 0.1-0.3 meter (see Section 5.2.2), which is similar to the size of the object, 
so that further improvements are not possible when treating the object as a point. For positioning of a 
connected device, angle-of-departure (AoD) estimation performance was in the order of 0.01-0.2 
degrees, which translates to a 2D positioning error of a device 10 meters away of approximately 0.002 
m to 0.03 m. Further improvements are possible using new beams (Section 5.2.1), by using more 
bandwidth or more antennas, and by applying more sophisticated signal processing methods.   

1.2 Structure of the document 
This deliverable is structured as follows. In the current section, a brief overview of terminology related 
to integrated sensing and communication is provided. Section 2 contains a short summary of the 
previous deliverables in WP3. Section 3 describes how localisation and sensing are envisioned to be 
integrated into the 6G ecosystem, and considers aspects related to architecture and resource allocation, 
as well as KPIs and key value indicators (KVIs). Then, Section 4 details the models and algorithms 
developed within Hexa-X WP3. The section starts with a review of relevant channel and hardware 
models, followed by contributions related to localisation, sensing, and the use of location information 
for improving communication. In Section 5.2, the gap between theory and practice is bridged, first 
through an analysis of the impact of hardware impairments on localisation and sensing, and then by the 
reporting of the results of over-the-air (OTA) demonstrations of localisation and sensing. Finally, 
Section 6 provides the final recommendation from Hexa-X WP3 regarding the integration of 
localisation and sensing towards 6G.  

1.3 Terminology 
The purpose of this section is to explicitly state the definitions for positioning, localisation, and sensing, 
building on the initial descriptions from [HEX21-D31, Section 2.2], as well as to relate these definitions 
to the various concepts and terminologies in the technical literature.  

1.3.1 Definitions of positioning, localisation, and sensing 
The following definitions are considered in this deliverable, though it should be noted that other 
disciplines (e.g., robotics or global navigation satellite systems (GNSS) navigation) use slightly 
different definitions. All terms are tacitly assumed to be related to radio signals (e.g., “positioning” 
should be understood as “radio positioning”), with the understanding that the terms may have other 
meanings in other contexts.  

Positioning refers to the estimation of the geometric state of a connected device (a user equipment 
(UE)) based on radio signals from/to one or more reference points (typically base stations (BSs) or 
access points (APs)). The geometric state includes the position (either in 3D or in a lower dimension), 
and possibly the orientation (either in 3D or in a lower dimension). Positioning requires transmission, 
reception and processing of radio signals and knowledge of the position and orientation of the reference 
point. In positioning, the clock bias of the UE with respect to the BSs is an unknown that must be 
estimated.  
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Example of positioning: by estimating the time-of-arrival (ToA) from at least 4 synchronised BSs, a UE 
can determine its 3D position (i.e., location), by computing the intersection of 3 hyperbola, induced by 
differential ToA measurements.  

Localisation is in this document considered equivalent to positioning, but in general may also comprise 
“device-free localisation”, i.e., determining the location of passive objects.   

Sensing refers to the detection of events or changes in an environment, based on radio signals. Hence, 
it is much broader than positioning. To provide structure to this broad definition, it is useful to classify 
sensing based on (i) the architecture; or on (ii) the function. From an architectural perspective, there are 
four common sensing modes [Han86, KCO19]: 

• Monostatic sensing: A transmitter and receiver are located on the same device and share a 
common clock and knowledge about the transmitted signal.  

• Bistatic sensing: A transmitter and receiver are located on separate devices. They may or may 
not share a common clock and full knowledge of the transmitted signal. Hence, positioning of 
a UE relies on bistatic sensing to/from multiple BSs. 

• Multistatic sensing: A system comprising at least 2 transmitters (and 1 receiver) and/or at least 
2 receivers (and 1 transmitter) separated in space, without a common clock.  

• Passive sensing: The transmitted signal is provided by an external system (e.g., radio broadcast 
tower), while there is a sensing receiver, which has limited knowledge regarding the transmitted 
signal (e.g., only carrier frequency and bandwidth).  

From a functional perspective, there are two common modes, which may be combined with any of the 
architectural modes: 

• Radar-like sensing: the radio signal is processed to extract distances, angles, or Doppler shifts, 
to detect the presence and state (position, velocity) of objects/targets and track them over time. 
Radar-like sensing thus starts with detection/channel parameter estimation, followed by data 
association and by tracking. When objects are static, the process is called mapping, whereas 
when objects are moving, the process is called tracking.  

• Non-radar-like sensing: any other type of sensing, including pollution monitoring, weather 
monitoring, as well detection and tracking based directly on the received waveform or features 
extracted from the received waveform. These features can be applied to machine learning for 
classification or regression.  

Note that positioning can be based on radar-like sensing (by extracting the line-of-sight (LOS) distances, 
angles, or Dopplers under bistatic sensing) or on non-radar-like sensing (e.g., fingerprinting).  

Example: a vehicular radar emits and receives a wideband waveform, from which it estimates distances 
and velocities to targets. This is a form of radar-like monostatic sensing, whereby the state of the targets 
is defined in the coordinate system of the radar.  

From these architectures and functions, other types of sensing can be constructed. Among those is 
synthetic aperture radar (SAR), which has been used in remote sensing applications for several decades 
[Sou99]. Compared with standard monostatic radar, SAR can offer higher resolution in the angular 
domain (azimuthal precision), and, in that sense, it is well-suited for high-precision environment 
mapping. By utilizing the motion path of the host platform, SAR can simulate a large aperture (larger 
than a classic radar can provide) and provides high cross-range resolution. By exploiting this capability, 
it is possible to make high-resolution 2D or 3D images of the surrounding. There are also some methods 
that use SAR for moving targets, but here the focus is more on scanning the environment, which is 
supposed to be static in one course of measurements by SAR. One application is to equip moving 
devices like cars and unmanned aerial vehicles (UAVs) with sensors for SAR. Then, the high-resolution 
environment mapping of SAR can be used for localisation and sensing applications (or in general for 
collective perception). There are several post-processing algorithms for SAR, including spatial 
frequency-domain interpolation, range stacking, time-domain correlation, and back projection. 

A visual comparison of the different sensing types is provided in Figure 1-2.  
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Figure 1-2 Different types of sensing. In the examples, the vehicle is considered as a passive object. 

1.3.2 Integrated sensing, localisation, and communication  
The tight integration of localisation and sensing within a 6G communication system [LCM+22], 
[ZLM+21], [ZRW+22], [ONA+22] is natural progression of the much weaker integration of localisation 
within the current 5G communication system [DSM+21].  

In 5G, the integration of localisation with communication relies on (i) a common set of devices for 
localisation and communication (i.e., the BSs and UEs used for communication are reused for 
localisation); (ii) a common waveform for localisation and communication (i.e., a multicarrier 
orthogonal frequency-division multiplexing (OFDM) waveform); (iii) separate time-frequency 
resources for localisation and communication, by the use of dedicated pilot signals for accurate 
positioning (i.e., positioning reference signal (PRS) in downlink and sounding reference signal (SRS) 
in uplink) [DSM+21]. Nevertheless, there have also been studies on re-using unknown data symbols 
for positioning [AH13], which can be seen as a joint communication and positioning approach.   

In 6G, where sensing, in a broader sense (not only limited to localisation), will be integrated with 
communication, there are more opportunities for using the same time-frequency resources. These 
opportunities are mainly driven by the potential introduction of monostatic sensing in 6G, where the 
transmitter co-located receiver share a common clock as well as common knowledge of the transmitted 
data. This turns the received data-bearing signal into a pilot signal from the receiver’s perspective, also 
called opportunistic sensing [GLV+18], [GLV20], so that no dedicated pilot resources are needed for 
sensing [ZLM+21], [KWK21] (though stringent sensing requirements might necessitate additional 
dedicated sensing signals in certain scenarios). In this case, the same device, the same waveform and 
the same resources are used for both communicating to a remote (communication) receiver and 
performing sensing at the co-located sensing receiver. This concept can be applied also to a bistatic case 
(as shown in [AH13]), provided that the receiver knows the transmitter location, can recover the signal 
clock (e.g., from the LOS signal path) and the unknown transmitted data, reminiscent of classical 
decision-directed receivers [VMJ+22]. 

The terms joint communication and sensing (JCAS) and integrated sensing and communication (ISAC), 
which are considered equivalent in this document, cover not only this limited case, but all possibilities 
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of using the communication system for supporting sensing functionalities. This includes bistatic sensing 
and, thus, also localisation, and the use of sensing/localisation data for improving communication. 

 
Figure 1-3 Different perspectives on integration of localisation, sensing, and communication. 

These different perspectives are visualised in Figure 1-3 and encompass the following combinations: 

• Separate devices, separate waveform: In this least-integrated variant of ISAC/JCAS, there are 
dedicated 6G sensing stations emitting pilot waveforms, which may in general be different from 
the communication waveform, to be more energy efficient and hardware friendly (e.g., less 
sensitive to hardware impairments, such as frequency-modulated continuous wave (FMCW)). 
The same spectrum may be used by the sensing devices and the communication devices. 
However, this leads to potential high interference between communication and sensing 
waveforms, unless some form of scheduling is applied.  

• Separate devices, same waveform: In this variant, the waveform is shared and the same 
spectrum is used, but still dedicated sensing devices are considered [SWS+18]. The use of the 
same waveform has benefits in terms of cost scaling and possibly also in terms of interference 
reduction by scheduling transmissions.  

• Same devices, separate waveform, separate resources: In this case, the devices are shared 
between communication and sensing functions, but the sensing takes place over dedicated time-
frequency resources and uses a dedicated pilot waveform [AKG+21]. This variant has benefits 
in terms of sensitivity to hardware impairments, e.g., for monostatic sensing where a constant 
envelope signal can be used during sensing periods. 

• Same devices, separate waveform, same resources: This variant is unlikely to be considered, 
as the superimposed communication and sensing waveforms require either sophisticated signal 
processing or lead to degradation of both communication and sensing quality.  

• Same devices, same waveform, separate resources: This variant is mostly similar to current 5G 
positioning, where a dedicated pilot signal is used for positioning, but within the OFDM 
waveform [WWM+22]. This allows optimization of the sensing pilot in time, frequency, and 
space, as well as adaptation to different requirements and time-varying conditions [BLH+21], 
[BK19].  This variant is a probable candidate for 6G ISAC.  

• Same devices, same waveform, same resources: The same waveform is used at the same time 
for both communication and sensing [SW11], [ZLM+21], [LCM+22]. Though this variant is 
attractive because “sensing comes for free”, meaning that no radio resources need to be 
dedicated for sensing, there are several considerations. First, there are opportunities for 
optimizing the transmitted signal (in time-frequency by power and bit allocation [KKW21] and 
in space by precoding [LZM+18]), which lead to possibly conflicting designs if communication 
or sensing performance metrics are optimized. Second, since the transmitted data and user 
channels are random, so will be the sensing performance, which can be referred to as 
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deterministic vs. random trade-off in the ISAC/JCAS nomenclature [LZC+22]. This means that 
for some use cases that require regular and guaranteed sensing quality, this variant is not 
suitable, without complementing by dedicated sensing pilots.   
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2 Summary of previous deliverables 
In this section, the previous two deliverables are briefly summarized, for the reader to understand their 
relation to the current deliverable and its background.  

2.1 D3.1 — Localisation and sensing use cases and gap analysis  
In D3.1, “Localisation and sensing use cases and gap analysis” [HEX21-D31], the focus was on the 
introduction of performance indicators, the elaboration of use cases (based on [HEX20-D11] and 
[HEX21-D12]), and a gap analysis with respect to current sensors (e.g., radar and lidar) and 5G 
positioning (according to the 3rd generation partnership project (3GPP) Release 16). In addition, 
preliminary findings on localisation and sensing, as well as location- and sensing-enhanced services 
were reported.  

2.1.1 Performance indicators, use cases, and gap analysis 
In [HEX21-D31] a list of 19 performance indicators was defined.  Among them, several are considered 
as most relevant for the use-case and gap analysis. For localisation, these are accuracy, latency, 
availability, and scalability. For sensing, these are accuracy, range/distance resolution, velocity and 
angle, unambiguous range, latency, and availability.  

Four sensing use cases and 17 localisation use cases were defined, based on [HEX20-D11] and 
[HEX21-D12], and the performance requirements were specified, in terms of the listed performance 
indicators. A baseline evaluation was conducted, based on 3GPP Release 16 for localisation, and based 
on radar and lidar for sensing, in terms of the specified performance indicators. Combining the use case 
requirements and the baseline evaluation, the main result of D3.1 was the gap analysis, which is 
summarised in Figure 2-1 (localisation) and Figure 2-2 (sensing) [BYK+22]. The gap analysis for 
localisation indicates that while 5G can support some of the use cases under some conditions, it cannot 
meet the demanding requirements of most of the considered use cases. In terms of sensing, it was 
observed that the conventional sensors are not able to meet all the requirements. 6G, as the next 
generation of mobile communication networks, potentially exploiting a wide bandwidth and large 
antenna arrays, among other enablers, must be able to support and meet the sensing requirements of the 
identified use cases.  

 
Figure 2-1 Gap analysis for localisation, inspired by [BYK+22]. Accuracy, latency, mobility, and 
availability are shown. The 5G capabilities are show in terms of latency (horizontal line) and accuracy 
(vertical lines) for indoor open office (IOO), urban micro (UMi), and urban macro (UMa) deployments. 
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Figure 2-2 Gap analysis for sensing, inspired by [BYK+22]. 6G is envisioned to outperform legacy 
(standard) radar in all performance indicators.  

2.1.2 Preliminary results on models and methods for localisation and 
sensing 
D3.1 presented several initial results on localisation (including orientation estimation), comparing 5G 
with a possible 6G system, as well as radar-type bistatic sensing, and simultaneous localisation and 
mapping (including those based on graphical models and on Bayesian filtering). Non-radar type sensing 
of landscapes and materials was also reported. Combined, these results indicate the potential for 6G and 
ISAC/JCAS and show that 6G can outperform 5G in several of the performance indicators. The impact 
of hardware impairments was identified as one of the main unknowns requiring further analysis.  

An ISAC/JCAS study in D3.1 showed that radio resource optimization for communication and for 
sensing are not identical, leading to an inherent trade-off. The importance of sensor fusion was 
highlighted, where 6G should provide the appropriate exposure framework to allow fusion with other 
on-board sensors. In addition, several approaches for reducing interference (in case dedicated sensing 
waveforms were used) were proposed and placed in a 6G context. These are especially important under 
uncoordinated transmissions, e.g., for side link or in unlicensed spectrum.   

2.1.3 Preliminary view on location and sensing-enhanced operation 
D3.1 also provided a preliminary view on localisation and sensing, as those can enhance existing 
services (including communication) and allow for new services and applications in the Hexa-X use-
case families. In the former category (enhancing communication), location and mapping information is 
envisioned to reduce signalling overheads at lower layers, to provide blockage prediction, and to enable 
formation of local networks, and edge computing. In the latter category (new services), security and 
safety aspects were highlighted, where location information can help avoid safety risks. The availability 
of location and sensing information provides both opportunities and challenges in terms of security, 
which should be designed into the 6G system from the outset. Finally, initial implications on the 6G 
network were studied in terms of signal numerology and interference coordination.  

2.2 D3.2 — Initial models and measurements for localisation 
and sensing  
D3.2 presented preliminary findings on spatial signal design, detection and channel estimation, 
localisation/sensing methods, and experimental activities. Regarding the experimental setups developed 
within Hexa-X, a platform has been developed for integrated communication, localisation, and sensing. 
Moreover, the view of how the localisation and sensing information can be used for enabling 
applications, supporting communications, and enhancing security was introduced. 
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2.2.1  Methods, signals, and protocols for localisation and mapping 
The first step in a radio-based localisation and sensing system is the design of the transmitted waveform. 
D3.2 reported findings on spatial signal design for a mmWave multiple-input-multiple-output (MIMO) 
downlink localisation setup. This study shows that a balanced combination of directional and so-called 
derivative beams (which have a sharp curvature around the desired angle to improve angle estimation 
performance; see Figure 2-3-(b)) improves the localisation accuracy. Since channel estimation and 
detection are essential before localisation and sensing, preliminary studies on this topic were provided 
in D3.2. Several methods for localisation and sensing in a 6G context were described in D3.2. These 
methods were categorized into model-based methods and AI-based methods. Regarding the model-
based methods, a study on the impact of hardware impairments (HWIs) shows that dedicated pilot signal 
design, HWIs estimation, and mitigation algorithms are essential for accurate localisation in 6G. Also, 
D3.2 reported initial findings on AI-based methods for integrated sensing and communication under 
model mismatch. In addition, the first demonstration of the platform for integrated communication, 
localisation, and sensing was provided. Selected scenarios and results are visualised in Figure 2-3.  

 
Figure 2-3 Example scenarios and results on methods, signals, and protocols for localisation and mapping 
from [HEX22-D32].  

2.2.2 Enhanced location and sensing services 
D3.2 described an initial view of how localisation and sensing can enhance several use cases, such as 
security, non-radar-type sensing, weather monitoring, and factory optimization. Example scenarios are 
shown in Figure 2-4. Concerning communication aspects, D3.2 reported that location information can 
be exploited to avoid blockages and improve spectral efficiency. The implications and requirements for 
localisation/sensing in a 6G context were introduced, including hardware requirements, spectrum 
considerations, and time-sharing resource allocation. Finally, D3.2 provided the requirements for the 
new context-aware services and the first view on the localisation-and-sensing ecosystem.   

(a) 6D localisation setup [Section 
3.3.1.1, HEX22-D32]

(b) Spatial signal design example 
[Section 3.1, HEX22-D32]

(c) Localisation aided by a 
reconfigurable intelligent surface 
[Section 3.2.1, HEX22-D32]

(d) Impact of hardware 
impairments on localization 
[Section 3.3.1.3, HEX22-D32]
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Figure 2-4 Example scenarios and results on enhanced location and sensing services [HEX22-D32].  

  

(a) Landscape sensing [Section 
4.1.2.1, HEX22-D32]

(b) Weather monitoring [Section 
4.1.2.3, HEX22-D32]

(c) Blockage prediction [Section 
4.2.1, HEX22-D32]

(d) Localisation and sensing as part of the 
architecture [Section 4.3.3, HEX22-D32]
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3 Localisation and sensing in the 6G ecosystem 
This section describes the role of localisation and sensing within the 6G ecosystem and considers three 
complementary aspects: the emerging services layer (including the processes and needed exposure), the 
implications regarding the KPIs, and the implications regarding the KVIs. See also [HEX22-D13] for 
an architectural perspective.  

3.1 Emerging service layer and 6G localisation and sensing   
The localisation accuracy of UEs is enhanced with each new generation of mobile networks and is 
becoming an established feature of mobile networks. Moreover, sensing aspects, such as localisation 
and feature extraction of passive objects (i.e., not equipped with UEs), is gaining a significant 
momentum as an additional promising feature [DBB+21]. 

With these enhancements and evolving capabilities, new applications and services are emerging. As 
described in [HEX22-D32], a new ecosystem of services, applications, and features will arise, making 
use of artificial-intelligence capabilities and serving various digital twins (e.g., factory digital twin by 
tracking process flows or network digital twin by offering insights of UE locations). This new 
ecosystem can only emerge if the interaction between several providers taking care of platforms (e.g., 
cloud platform, service platform), infrastructures, services, applications, and device vendors is easy and 
beneficial for each stakeholder. Hexa-X collects findings, implications and requirements and present 
them in the following sections.  

3.1.1  Basic process and functional view 
The ecosystem consists of three main functional layers that take care of different tasks. Figure 3-1 
depicts the three functional layers: Sensing Functions and Services which must run in parts on the 
network infrastructure, Sensing Data Processing Functions and Services and the Emerging Applications 
and Service that consume the processing results. In this context the term function refers to a specific 
task whereas services may bundle multiple tasks. Usually, it is the services that offer interfaces for 
access from other layers. One example for a function on the Data Processing Layer is the geometric 
approximation of an intersection of two hyperbolas, whereas a service could be to offer the final position 
of a UE (which is calculated using hyperbola intersection function and additional functions such as 
Kalman filter to perform tracking).  

One option to categorise Sensing Data Processing algorithms are Geometric and Data-driven 
approaches. For data-driven approaches often artificial intelligence (AI) functionalities are required. 
Application programming interfaces (APIs) allow for easy and standardized access to services and 
functions within each layer, from functions and services in the other layers, but also from management-
and-orchestration functions and services (which is shown in Section 3.1.2) and from external 
components. For example, raw sensing data should be accessible, as well as pre-trained neural-network 
models or sensing results. Control mechanisms ensure secure information exchange for external and 
internal service usage, based on defined access rights. 
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Figure 3-1 Basic overview of the Sensing Process and the Emerging Applications and Services which add 
value to sensing results. The infrastructure, services, functions, and applications should be accessible via 
well-defined APIs. (This view is not supposed to specify a hardware/software deployment view.  

Sensing Functions and Services Layer 

The sensing layer comprises all required infrastructure to perform sensing (this can be dedicated sensing 
hardware, firmware, software, or the shared network used for communication), and all means to 
configure the infrastructure in accordance with the requirements. The sensing layer can receive 
commands to start and stop the sensing process, usually managed, and controlled by management-and-
orchestration functions and services. Depending on the underlying infrastructure and requirements, the 
required sensing data can be generated by reusing signals sent for communication purposes, or a 
dedicated sensing process can be started. ISAC/JCAS is explained in more detail in Section 1.3.2 and 
has implications on management and orchestration (M&O) components (see Section 3.1.2).  

Results of the sensing process can be angle information (arrival, departure), channel states, Doppler 
information, or timestamps of signal arrival or departure etc. The generation of signals is prone to 
attacks, which may alter information in a way leading to wrong results [SRR+22]. This topic is 
discussed in more depth in Section 3.3.1. 

Sensing is not restricted to only 6G-generated information. Many scenarios arise when considering 
sensing as an ecosystem. One example is sensing information generated by smartphones that are 
equipped with other sensors (e.g., Bluetooth Low Energy (BLE) information used for localisation, air 
pressure sensors to detect floor level). The results may be transferred and used by 6G services and 
applications.  Another example is additional external localisation systems, for example based on GPS, 
Wi-Fi, or ultra-wideband (UWB). If multiple sources of sensing information are available at the same 
location, sensor fusion is an interesting task. Sensor fusion can be performed at different stages / layers 
depending on the availability of data. Further details and implications are presented in Section 3.1.3. 

Sensing Data Processing Functions and Services Layer 

Once sensing data is available, this data can be processed to calculate the required information. A main 
goal of services in this layer is to detect objects in the environment and changes of those objects over 
time either via classic UE localisation or radar-like sensing. Together with added domain knowledge, 
this information can be interpreted for example as a specific movement pattern of an observed object 
or conclusions can be drawn which kind of landscape is being sensed or what kind of gestures are being 
made.   

Functions usually take care of tasks which often can be used for multiple services, whereas services 
bundle various functions to reach a more complex goal. Different concepts for localisation and sensing 
can be applied [ZDD19]: 
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• Geometric/model-based: This class of approaches makes use of geometric relations and 
physical models to calculate the desired quantities (e.g., the position of a UE). Standard existing 
approaches are circular or hyperbolic multi-lateration and angulation [HEX21-D31, Section 
2.2]. Based on the classic example of a service for localisation of a UE, functions needed are 
calculating hyperbolas, approximating the intersection of multiple hyperbolas using filter 
mechanisms (such as Kalman filter). 

• Data-driven/AI-based: This class of approaches relies on features (either hand-crafted or 
learned) to perform regression or classification [LXW+19]. The regression output variable can 
comprise the position of a UE or a sensed object (see Sections 4.2.3 and 4.2.4), while 
classification can refer, e.g.,  to detect and distinguish between certain human activity patterns 
(e.g., walking slowly, running) or a type of landscape [HEX22-D32, Section 4.1.2].  As before, 
the classic service example could be localisation of a UE, but the used functions differ from the 
previous geometric approach, as for AI approaches the position is estimated based on trained 
models which are used to interfere positions during operations. 

Hexa-X studies both classes of approaches, and the results as well as the models are presented in Section 
4. Depending on the approaches used, additional data may be required. Especially geometric approaches 
require, for example, information about the base stations’ location and (antenna) orientation. For uplink 
time-based lateration algorithms, base stations need synchronized clocks in the magnitude of 
picoseconds to enable cm-level accuracy (recall that 1 ns refers to ~30 cm in deviations according to 
the speed of light). In addition, also waveform-related parameters must be known or configurable to 
reach certain KPI levels (see Section 3.2). AI-based approaches, on the other hand, generally require an 
abundance of labelled training data, which may be obtained from experiments or synthetically generated 
based on a model. Comparisons of geometric/model-driven and data-driven/AI-based approaches can 
be found in Section 4.2.3 and Section 4.2.4.  

Emerging Applications and Services 

A classic example of an application within the emerging application and services layer is the 
optimisation towards a specific goal based on location-based services. Location-based services make 
use of the current absolute or relative location of targets by evaluating geometric conditions. 
Independently whether this information is received by UE localisation or by radar-like sensing without 
UEs, some typical services are: 

• Searching/finding UEs in real time or historical tracking of certain objects. 
• Geo-fencing for determining whether a UE or an object is within a certain (mobile or static) 

predefined area.  
• Collision avoidance between two mobile targets or one mobile target and a static area. 
• Routing and navigation of targets through the environment. An important scenario is the 

optimisation of the network.  

Context and Domain Information Services deliver additional (non-sensing-based) information of the 
surroundings, such as process or domain information, to optimise certain scenarios or processes.  
Planned routes, schedules, and trajectories of autonomous guided vehicles (AGVs) could be additional 
information to optimise factory processing [HEX22-D32, HEX22-D72]. Services in this layer can be 
network-external services or used for internal optimisation. Two examples are shown in the following 
two figures. An internal location-based service could optimise the resource-allocation service by 
integrating knowledge such as the current UE position and additional context information such as its 
planned trajectory (see Figure 3-2).  
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Figure 3-2 Example for optimisation of communication and network functionalities based on localisation 
of UEs. In this example, the underlying infrastructure is used both for sensing and communication purposes 
(see ISAC/JCAS). Parameter changing of sensing may have implications on communication and vice versa. 

Another example for location-based services is the optimisation of factory processes by taking into 
account real-time asset tracking and additional asset information, such as process flow and schedules, 
to monitor throughput and for fast intervention if errors occur (see Figure 3-3). 

 
Figure 3-3 Example for optimisation of factory processes based on combination of asset tracking, context, 
and domain information. 

3.1.2 ISAC/JCAS influences on management and orchestration 
Sensing and localisation can be integrated into the communication network in various manners, as it is 
discussed in Section 1.3.2, and, in particular, Figure 1-3. Sensing (and localisation) can be performed 
stand-alone if applications and users do not need the network for communication purposes. In that case, 
the infrastructure and all signals could be used for sensing (and localisation) purposes. As this will 
probably rarely be the case and communication will be required by most applications, the concept of 
ISAC (or equivalently, JCAS) holds key requirements regarding M&O. M&O distinguish between 
objects / resources that are being managed / orchestrated and objects that perform management / 
orchestration [HEX22-D62] on all layers (infrastructure, network, and service layer). Since in many 
cases communication and sensing are done on the same infrastructure (hardware and network 
perspective) the M&O plays a very important role. M&O should take care of receiving the requirements 
coming from services and applications (both from the network external as well as from the network 
internal functions, services, and applications). M&O needs to determine whether the requirements of 
the applications and services towards ISAC/JCAS can be fulfilled by the network. 
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• M&O needs to consider many aspects, like available infrastructure, available methods for sensing 
and localisation and the application and service requirements (both for communication and 
sensing). 

• M&O may need knowledge of sensing processes (in case multiple localisation mechanisms are 
available) to decide which one fits best. 

• M&O needs then mechanisms for calculating the trade-off between sensing and communication. 
These mechanisms are described in Section 3.2.3.  

• M&O needs standardised ways to communicate towards services and applications whether 
requirements are achievable or if losses (either on the communication or sensing side) must be 
accepted (e.g., lower communication bandwidth or lower update rate for localisation results). 

Requirements may change over time, and M&O should be able to perform adjustments and 
recommendations in a very flexible way. 

 
Figure 3-4 M&O in context of ISAC/JCAS. Sensing and communication are built on top of some 
infrastructure and must be carefully managed (coordinated and configured according to service and 
applications requirements).  

3.1.3 Sensor fusion influences on management and orchestration 
The purpose of sensor fusion is to combine data from multiple sources, to produce a more accurate 
measurement than with a single sensor. There are a few mainstream approaches to sensor fusion 
[Hol11]: 

1. Loose coupling, in which two independent systems are combined at a higher layer, like the 
position coordinates of a device or the orientation direction. As an example, position calculated 
by GPS and WLAN can be combined for an improved position. The raw GPS signals are not 
an input to the sensor fusion algorithm, only the calculated 3D position and the estimated 
horizontal and vertical error. These error indications can be used to weight the position 
incoming from the WLAN system properly as to create an improvement overall. Loose 
coupling is often used when access to the lower layer signals/data is not possible, as is the case 
of a GPS on a smartphone, for which a typical software application only has access to the 
calculated position. 

2. Tight coupling, in which sensor data measuring the same or similar aspects of a physical 
representation are combined to improve the accuracy overall. This will require some 
synchronisation between low-level data sources to be able to go beyond the inherent limits a 
single sensor. Typical data sources are time stamps. For instance, distance or time 
measurements done in the lower layers through 5G and UWB can be combined to estimate a 
better position, which is closer to the real position than what a single technology could be able 
to obtain. As a second example, measuring signal strength from WLAN infrastructure and 
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additional Bluetooth infrastructure can be used as a motion detector for people not carrying a 
wireless device, which would be more accurate than when using only one technology. 

3. Ultra-tight coupling, which consists of combining very low-level data, which could be I-Q 
samples, to achieve the highest accuracy possible. An example is the use if 5G and 6G were 
deployed in the same area and were used as a radar. The phase data from both source can be 
fused together to achieve maximum resolution, but that requires very accurate synchronization 
of both signals. Access to such a low-level source of data can be a challenging task, as typical 
commercial-off-the-shelf hardware, as a closed chip does not provide an interface for it. 
Fortunately, this is changing with new 5G and future 6G deployments using open architecture 
models. 

3.2 KPIs and implications 
The KPIs for localisation and sensing include location accuracy, orientation accuracy, update rate, 
availability, but also maximum link range (unambiguous range), angular resolution, and velocity/range 
resolution [HEX21-D31]. Meeting these KPIs imposes requirements on the used signal (including the 
bandwidth), as well as on the transmitter and receiver array aperture. These are treated in detail in 
Section 3.2.1. The bandwidth requirement is closely related to the available spectrum. Requirements on 
the spectrum are discussed in Section 3.2.2. Optimization of the system for localisation and sensing 
from a resource and infrastructure perspective is treated in Sections 3.2.3 and 3.2.4, respectively.  

3.2.1 Array apertures and bandwidths 
In this section, three exemplifying use cases with varying and challenging requirements are considered, 
based on the related scenarios defined in [HEX23-D23]. These use cases cover both positioning and 
sensing: 

A. An extended-reality positioning use case, with very high accuracy requirements (1 cm in 
position and 1 degree in orientation), low mobility (1 m/s), short range (up to 10 m), and clutter 
objects within short range (10 cm). 

B. A bistatic digital twin use case, with high accuracy requirements (10 cm), low mobility (1 m/s), 
long range (100 m), and clutter objects within short range (10 cm). 

C. A monostatic sensor infrastructure web scenario, with high accuracy requirements (20 cm), 
medium mobility (10 m/s), medium range (50 m), and clutter objects within medium range (1 
m). 

Table 3-1 Order-of-magnitude array and bandwidth requirements. Bandwidth and array sizes are specified 
in case resolution is only provided in that parameter (e.g., only bandwidth for delay resolution or only array 
size for angle resolution). Hence, these values can be reduced when resolution is provided by both domains 
jointly.  

Parameter / Use case A Extended reality 
positioning 

B Bistatic digital twin use C Monostatic sensor 
infrastructure web 

Bandwidth  3 GHz 3 GHz 300 MHz 

Synchronization 
requirements 

3 ps 30 ps 70 ps 

Maximum end-to-end-
latency 

1 ms 10 ms 2 ms 

UE antenna array size 2 cm x 2 cm N/A N/A 

UE beam resolution  1 degree N/A N/A 

Sensor antenna array size 20 cm x 20 cm 214 cm x 214 cm 10 cm x 10 cm 
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With this subset of KPIs, an initial set of parameters can be defined. The results are listed in Table 3-1. 
All systems consider a 140 GHz carrier frequency.  

Bandwidth requirement 

The bandwidth is determined by the required resolution. When the object/UE of interest is separated a 
certain distance 𝛿 from other objects, the bandwidth needed to separate these objects is proportional to 
𝑐/𝛿, where c is the speed of light. For example, use case C in Table 3-1 is the least demanding in terms 
of bandwidth, as it has the least stringent accuracy requirement.  

Synchronization requirement 

Whenever time-based measurements are used, there are requirements for the synchronization between 
devices involved in the measurements. As an approximation for these requirements, consider that a 
small fraction (e.g., 10%) of the localisation accuracy budget can be devoted to synchronization errors. 
This means that the synchronization requirements can be approximated by 10% of the localisation 
accuracy over the speed of light. All use cases require sub-ns synchronization, and the most demanding 
requirement is in use case A.  

Latency requirement 

Due to mobility, the UE/object displacement within the end-to-end latency should also be only a fraction 
of the localisation accuracy (e.g., 10%). Hence, for nearly static UEs/objects, the tolerable end-to-end 
latency can be large, while still meeting the localisation accuracy. The corresponding end-to-end latency 
that can be tolerated limits the transmit waveform (and thus the integrated signal-to-noise ratio (SNR)), 
as well as the processing times. It is important to point out that reducing latency by shorter symbols 
comes at a risk of reducing the maximum range. Hence, subcarrier spacing, bandwidth, and transmission 
duration should be carefully designed to meet the localisation and sensing KPIs. Similarly, reducing 
latency by sending fewer symbols affects the Doppler resolution and integrated SNR.  

UE antenna array size 

The UE array size is mainly relevant to use case A and is largely determined by the requirements for 
orientation accuracy, via the angle of arrival (AoA) estimation. When the AoA (and thus also the 
orientation) is estimated from simple beam direction measurements, the directions of arrival can only 
be estimated within a fraction, say 0 < 𝜌 < 1 of the beamwidth (which itself is inversely proportional 
to the array aperture). Table 3-1 reports the array sizes for 𝜌 = 0.1. The corresponding beam resolution 
is then found from the required array size.  

Sensor antenna array size  

If bandwidth is scarce, the sensor array (which corresponds to a BS or a UE, depending on the 
application) can be used to provide the necessary position resolution, which imposes different angle 
resolutions at different distances. If the position resolution is d and the maximum range is R, then the 
angle resolution requirement is Θ = !

"
 . To meet such a requirement, the sensor array size should be 

𝐷 = 𝜆/Θ = 𝜆𝑅/𝛿  [Rao17], where l is the wavelength.  

3.2.2 Spectrum 
Among the most important requirements for accurate localisation and sensing is the availability of 
sufficient spectrum [WPA+22, TSB16] to provide sufficient delay (distance) resolution, and 
complementation angle resolution using large arrays. Depending on the use case and corresponding 
accuracy and latency requirements, bandwidth requirements vary from less than 400 MHz to 10 GHz 
[WPA+22, Table I]. Irrespective of the use case, there are several important considerations related to 
the spectrum:  

• Spectrum contiguity: To avoid grating lobes in the delay ambiguity function, the allocated 
spectrum band is preferably contiguous, without any gaps.  
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• Spectrum phase coherence: If the allocated spectrum comprises several sub-bands (contiguous 
or not), it is critical that these bands are phase coherent. This, in turn, places demand on the 
transmitter and receiver hardware and oscillators.  

• Spectrum availability: Certain applications require certain update periods for the sensing and 
localisation process. This means that sufficient spectrum should be pre-allocated to these 
allocations with guaranteed bandwidth and time.  

• Adjacent channel interference: In lower frequency bands, the spectrum requirements on 
adjacent channel leakage are very stringent. In the upper mm-wave range and beyond, more 
channel leakage is expected, which needs to be considered when designing sensing 
applications.  

3.2.2.1 Spectrum contiguity 
The need for spectrum contiguity is demonstrated in Figure 3-5, which shows the range (distance) 
ambiguity function for an OFDM system with 400 MHz bandwidth and 3300 subcarriers. The 
ambiguity function indicates how well different paths or objects can be separated by the localisation or 
sensing application. With spectrum contiguity (shown in black) there is a peak at the correct distance, 
though with sidelobes that can be suppressed by suitable frequency-domain windowing. Without 
contiguous spectrum (in this example 100 out of 3300 subcarriers are used), additional peaks in the 
ambiguity function appear. If the used spectrum is periodic, the peaks occur periodically, in this case 
every 75.8 meters. If the used spectrum is non-periodic (in the example in Figure 3-5, 100 random 
subcarriers are used, shown in red), there are no periodic peaks, but rather strong sidelobes. These 
additional peaks do not correspond to any physical path/object and thus lead to severe ambiguities or 
ghost objects. From the example, some amount of spectrum non-contiguity can be tolerated but requires 
a careful design or dedicated signal processing.  

 
Figure 3-5 Impact of spectrum non-contiguity on 
the range ambiguity function. The periodic 
spectrum leads to additional peaks around 76 and 
-76 m.  

 
Figure 3-6 Impact of spectrum non-coherence on 
the range ambiguity function. 

 

3.2.2.2 Spectrum phase coherence 
The need for spectrum phase coherence is illustrated in Figure 3-6, which shows the range ambiguity 
function for a system with 400 MHz bandwidth and 3300 subcarriers. When there is full phase 
coherence, the ambiguity function is narrow, with a width of the main lobe of around 1.5 meters, 
indicating that different paths/objects that are separated at least 1.5 meter apart can be resolved. When 
the band is split up into 17 bands of around 24 MHz each and these bands do not preserve phase 
coherence, the red ambiguity function results. The main lobe has a width of around 25 meters, leading 
to a severe degradation in range resolution. In contrast to contiguity, phase coherence cannot be 
compromised.  
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3.2.2.3 Spectrum availability 
The final spectrum aspect is related to availability. Referring to [HEX21-D31, Table 3-35], update rates 
vary from 10 kHz to fractions of a Hz. Use cases that combine (i) high update rates (e.g., augmented 
reality placing virtual objects in the real world) or a safety-critical nature (e.g., localisation of semi-
autonomous ground vehicles) with (ii) large bandwidth requirements, demand proactively allocated 
time and spectrum resources, which may generate a penalty in data rate. The different demands in the 
time-frequency grid are visualised in Figure 3-7.   

 
Figure 3-7 Localisation and sensing use cases have a variety of demands in terms of time and spectrum 
resources. The green boxes represent the resources allocated to support the localisation or sensing 
requirements. Use cases with high localisation accuracy requirement demand large bandwidth, while use 
cases with stringent latency requirements demand high update rate.  

Applications with extreme requirements on localisation and sensing accuracy, such as those in the 
context of robotics or virtual reality, may have such extreme spectrum demands that the communication 
service is jeopardised. To mitigate this, the joint communication and sensing paradigm from Section 
1.3.2 can be applied, so that the same spectrum at the same time can be used for both communication 
and sensing/localisation services. The allocation of spectrum resources is further explored in Section 
3.2.3, where resource allocation is covered. 

3.2.2.4 Adjacent channel leakage 
At upper mm-wave and beyond, the RF hardware components used to generate the transmit signal are 
less ideal and tend to inflict more hardware impairments than at lower frequencies. For wireless 
communications this is typically handled by introducing larger guard bands between channels, or, 
alternatively, a performance degradation is accepted in the presence of interference. Sensing and 
localisation can more easily cope with degraded signal-to-interference-and-noise-ratio (SINR), since 
the effect of adjacent interference and noise can be mitigated by using longer integration times at the 
cost of increased latency. This assumes that the environment is changing slowly relative to the required 
integration time and that noise and interference are zero-mean.  

Different parts of a frequency band, available for communication and sensing, are affected differently 
by adjacent channel interference. The band edges are normally subject to more interference than the 
centre of the band. Thus, since sensing is less sensitive to interference than communication, it could be 
possible to allocate channels on the band edge for sensing and use the centre of the band for 
communication.   
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3.2.3  Resource allocation 
Given the allocated spectrum, time-frequency resources should be allocated to optimize the real-time 
performance of both localisation and sensing and enhance communication functionalities. In this 
section, these two facets are discussed. In this section, the whole analysis is focused on ISAC/JCAS, 
however, similar principles apply to the field of positioning. 

3.2.3.1 Radio interface  
ISAC/JCAS refers to the integration of sensing capabilities in communication networks. The success 
of this process, especially in terms of cost, heavily relies on the efficient and smooth reuse of the 
available and future communication spectrum and infrastructure. Towards this direction, it is important 
to harmonise as much as possible of the radio interface for radar sensing and communication. Thus, 
special care should be given to the underlying waveform used for communication and sensing, which 
determines the radio access to a large extent. As 4G and 5G adopted the OFDM and discrete Fourier 
transform spread-OFDM (DFTS-OFDM) waveform for their radio access network (RAN) operation 
and most likely 6G will also use these waveforms for most its allocated spectrum, complexity and cost 
reasons strongly motivate the use of OFDM-based sensing. Therefore, the focus of this subsection is on 
the potential radio interface, procedures, and scheduling algorithms used by a future 6G network that 
uses OFDM as the communication and sensing waveform. 

A well-known advantage of OFDM is that it can form a two-dimensional grid of decoupled time and 
frequency resource elements (REs). This characteristic of OFDM can be used for implementing a wide 
range of flexible ISAC/JCAS systems. Focusing on the important elements of the underlying waveform 
of OFDM, two broad groups of ISAC/JCAS systems can be identified based on the way that radio 
resources are used. The first group includes systems where sensing and communication occupy different 
REs of the OFDM time-frequency (TF) grid. The other group of systems includes setups where there is 
no distinction between the REs used for sensing and communication. Even though there are several 
aspects that differentiate these two groups, they can both be implemented using the same OFDM 
circuitry, which results in a harmonised radio interface. 

3.2.3.2 Procedures 
A typical example of OFDM-based ISAC/JCAS of the first group, where sensing and communication 
takes place in disjoint REs, is given in Figure 3-8. In this figure, communication data and a train of 
pulses are allocated at the same time-frequency grid but in different REs. In Figure 3-8, 𝑊  is the 
bandwidth allocated for radar sensing, 𝑇#$%& is the OFDM symbol period, and 𝑇'() is the repetition 
interval of pulse in a train of pulses. In such a system, the REs used for communication can be filled 
with constellation points of a given modulation and coding scheme (MCS). In contrast, the REs used 
for sensing can be filled with dedicate reference signals (RSs) for sensing or already existing 
communication RSs, for example RSs for channel state information (CSI) estimation. As discussed in 
[HEX21-D12] and based on a radar link budget analysis, the utilized bandwidth 𝑊, 𝑇'(), and 𝑇#$%&, 
determine the performance of a radar measurement in terms of ranging and radial velocity. Furthermore, 
the subcarrier spacing for a given bandwidth allocation determine the pulse repetition interval which 
determine the unambiguous (maximum) range. Also, in OFDM-based ISAC/JCAS, which uses only 
cyclic prefix and not a guard interval, the maximum range is also limited by the duration of the cyclic 
prefix, which needs to be longer than the maximum time of flight of a pulse. Finally, the time duration 
of the pulse repetition interval, combined with the cyclic prefix duration plus any delay due to 
processing, multiplied by the number of pulses in a train of pulses, determine a lower bound on the 
latency of a sensing procedure. 
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Figure 3-8 An example of resource allocation in an OFDM-based ISAC/JCAS system. 

Clearly, in OFDM-based ISAC/JCAS, when sensing and communication are undertaken using disjoint 
REs, its performance is limited by the exact allocation of the REs used for sensing. One way to 
overcome this limitation, without reducing the volume REs used for communication, is to undertake 
sensing and communication using the same REs. In terms of complexity, the simplest approach to 
achieve this is to use the information-carrying modulated constellation points. This means that the 
sensing receiver should be aware of the transmitted data. This requirement can be satisfied intrinsically 
in monostatic sensing where the transmitting and receiving points are co-located. Such an example is 
given in Figure 3-9.a where BS senses a target. An example of bistatic sensing where the receiver is 
aware of the transmitted data is given in Figure 3-9.c where a transmitting remote radio unit (RRU) and 
a receiving RRU are connected to central processing unit. Obviously, the previous scenario can scale 
in multi-static sensing, as long as the existing RRUs are connected to a central processing unit. 

 
Figure 3-9 Monostatic (a., b., and c.) and bistatic (c.) radar sensing using the information carrying 
modulated data. 

An alternative approach to undertake sensing using the transmitted modulated data is based on the 
recovery of the transmitted signal in the intended JCAS receiver via the appropriate demodulation 
process. In this case, it is possible to form bistatic sensing between the communication transmitter and 
receiver. Such an example is given in Figure 3-9.b, where bistatic sensing can be performed both in the 
uplink and downlink.  

In a point-to-point communication link, the objective is generally to maximize the transfer of data from 
the transmitter to the receiver in the shortest time possible. This means that, for a given SNR, the 
modulation order should be as high as possible. In contrast, this is not necessary the case for sensing. A 
transmitted signal generated using a high order modulation (HOM) has no flat spectrum and thus no 
perfect periodic auto-correlation function (ACF). In addition, the frequency-domain matched filtering 
(MF) of the received signals generated with HOM constellations results in high side lobes. This can be 
seen clearly in Figure 3-10, where the ACF of a signal generated using quadrature phase shift keying 
(QPSK) is compared against the ACF of a signal generated using 64-quadrature amplitude modulation 
(QAM). One possible solution is to avoid using HOM, resulting in lower spectral efficiency. 
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Figure 3-10 Autocorrelation function of a OFDM transmitted signal using QPSK and 64-QAM (300 
subcarriers, 512 FFT size). 

The previous conclusion motivates the search of alternative receivers than the classical MF for radar 
processing. Even though MF maximizes the receiver SNR, an alternative receiver might have a better 
behaviour in terms of side lobes. In this section, the behaviour of the well-known zero forcing (ZF) and 
minimum mean square error (MMSE) receiver are explored. Given that the received signal, in the 
frequency domain, is expressed as, 𝐲 = 𝐡⊙ 𝐱 +𝐰, where, 𝐡 ∈ ℂ*!" , is a vector that contains the 
frequency-domain channel taps; 𝐱 is the transmitted signal in the frequency domain; 𝐰 is the additive 
noise; ⊙ stands for the Hadamard product; and, 𝑁+, is the number of sub-carriers. Also, the frequency 
domain, the noise free: i) MF is expressed as, 𝐡T = 𝐱∗⊙𝐲; ii) ZF reception is given as, 𝐡T = 𝐱./⊙𝐲; 
while iii) MMSE reception is written as, 𝐡T = 𝐱∗(𝐱∗𝐱 + 𝜎0𝐈) ⊙ 𝐲, where 𝜎0 is the regularization factor. 
Focusing on the idealistic case of noise-free reception, Figure 3-11 presents the time domain output of 
MF, ZF and MMSE reception when the linear processing is undertaken in the frequency domain. This 
is done for the case of a transmitted signal generated using QPSK and a transmitted signal generated 
using 64-QAM. As shown in Figure 3-11.a, with MF reception high side lobes are created when 64-
QAM is used. However, the observation of Figure 3-11.b and Figure 3-11.c shows that when ZF or 
MMSE reception is used, there is no difference between the use of QPSK and 64-QAM. From this, it 
can be concluded that ZF and MMSE reception have a better behaviour, in terms of side lobes, when 
compared to MF reception.  

 
Figure 3-11 The output of MF, ZF, and MMSE reception (processing) for the idealistic case of noise-free 
signal reception. The red curves show 64-QAM, while the blue curves show QPSK.  
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a) 64QAM, MF, SNR = -5dB d) 64QAM, MF, SNR = -5dB 

b) QPSK, ZF, SNR = -5dB e) 64QAM, ZF, SNR = -5dB 

c) QPSK, MMSE, SNR = -5dB f) 64QAM, MMSE, SNR = -5dB 

Figure 3-12 The effect of the use of HOM, in relative high SNR, in the Doppler-Delay grid in the receiver 
when MF, ZF, and MMSE reception is used. 
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a) QPSK, MF, SNR = -20dB c) 64QAM, MF, SNR = -20dB 

 
b) QPSK, ZF, SNR = -20dB 

 
d) 64QAM, ZF, SNR = -20dB 

 
c) 6QPSK, MMSE, SNR = -20dB 

 
e) 64QAM, MMSE, SNR = -20dB 

Figure 3-13 The effect of the use HOM, in relative low SNR, in the Doppler-Delay grid in the receiver when 
MF, ZF, and MMSE reception is used. 

For drawing a complete conclusion, the performance of the previous receivers should be characterised 
under the presence of noise. For this reason, Figure 3-12 presents the Doppler-delay (DD) grid 
expressed in terms of range and velocity when the transmitted signal is again generated using QPSK 
and 64-QAM. The operating SNR is -5 dB, which, for the sake of this comparison, could be considered 
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as a relatively high SNR. Note that the SNR is defined per symbol (i.e., RE) meaning that QPSK and 
64-QAM have different 𝐸1/𝑁2 , where 𝐸1  is the energy per bit and 𝑁2  is the noise power spectral 
density. As can be seen in Figure 3-12.a, Figure 3-12.c, and Figure 3-12.e, when QPSK is used MF, ZF, 
and MMSE reception have the same effect as the DD grid. However, comparing the influence of MF 
when 64-QAM is used, some ripples start to form in the place where there is no target, because of the 
side lobes of MF. In contrast, for the case of ZF and MMSE reception, these ripples cannot be observed. 
This means that, in high SNR, ZF and MMSE have good behaviour in terms of side lobes. 

The performance of MF, ZF, and MMSE reception is illustrated in Figure 3-13, for an SNR equal to -
20 dB (low SNR). As shown in Figure 3-13.b, for the case of MF, for 64-QAM, there are strong ripples 
due to the strong sidelobes of MF reception. In contrast, as shown in Figure 3-13.d, for the ZF reception 
of 64-QAM, there are strong ripples. However, these ripples are not due to the strong side lobes but due 
to the noise amplification of ZF reception. Figure 3-13.f shows that for MMSE reception the use of 64-
QAM does not create a bad behaviour in the DD grid. 

Finally, from the previous analysis, the following conclusions can be drawn. First, HOM can have large 
side lobes with a MF receiver at high SNR. Second, HOM does not create side lobes with a ZF receiver, 
however, at low SNR there is noise amplification. Finally, the MMSE receiver performs similarly to 
ZF at high SNR, and similarly to MF at low SNR. MMSE seems to be the preferred receiver over all 
SNR range. 

3.2.3.3 Scheduling in the space-time-frequency grid 
Additionally, the complete localisation of a target in the three-dimensional space requires angular 
information in addition to the range and Doppler obtained usually from the DD grid. A simple approach 
to obtain the angular information of a target is via the appropriate beam-sweeping search. The 
beamwidth of the used beams determines the angular resolution. More specifically, a narrow beam 
created from a large antenna array corresponds to a better resolution at the cost of a longer beam-
sweeping process. This motivates the consideration of the extension of the TF grid to include the space 
dimension. In this case, the resulting space-time-frequency (STF) grid, of size 𝑁3 × 𝑁4 × 𝑁56, becomes 
the main element where scheduling takes place. Here, 𝑁3 , 𝑁4, and 𝑁56 is the number of beams of given 
beamwidth, number of OFDM symbols, and number of subcarriers, respectively, used for a sensing 
procedure.  

 
Figure 3-14 Principles of hierarchical radar sensing for scheduling in the STF grid. 

Irrespective of whether sensing is taking place using dedicated RSs or the actual information-carrying 
signals, for a given sensing evaluation metric, the objective is to reduce overhead, i.e., to minimise the 
number of occupied points used for sensing in the STF grid. A simple and efficient approach to achieve 
this is the introduction of a detection and a tracking mode. In particular, the detection mode can be used 
for detecting targets using low overhead. The detection mode could be constantly on, or it could be 
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periodically activated. In contrast, the tracking mode should be only activated when a target is detected. 
Upon the activation of the active mode, the required resources in the dimension of interest of the STF 
grid are occupied and used for sensing.  

Figure 3-14 presents the transition from the detection mode to the tracking mode for cases where more 
resources are needed in the time, frequency, and space dimension. In radar sensing, when a higher 
unambiguous velocity is needed, more resources need to be allocated in the time domain. In contrast, 
when higher range resolution is needed, more elements in the frequency domain need to be allocated. 
Finally, when higher angular resolution is needed, the value of 𝑁3  needs to be increased with the 
concurrent use of beams with narrower beamwidth. The previous framework is very flexible apart from 
the separate utilisation and scheduling of the space, time, and frequency resources, it allows the joint 
utilization and scheduling of two or three dimensions of the STF grid. This is possible with a dedicated 
scheduling algorithm.  

3.2.3.4 Proactive resource allocation 
An equally important aspect of resource allocation relates to the use of localisation and mapping 
information to optimize communication performance. Thanks to highly accurate mapping and 
localisation information, including (planned) trajectories of mobile/nomadic users, advanced resource 
allocation methods can be designed to achieve better system performance. Here, the resource could 
come from, time, frequency, as well as spatial domain. 

For flexible resource planning, how to utilize sensing/localisation information, or its prediction, to fulfil 
the communication needs, in combination with trajectory, resource and spectrum planning through 
system simulations, is investigated in [HEX22-D72].  

As one example, to solve the problem of avoiding dynamic blockage as well as channel aging, one can 
utilize context-information-assisted communications, as shown in Figure 3-15. With advanced sensors 
and localisation techniques, the BS could potentially predict the position of not only the UE, but also 
the blockers, and this information could be useful for dynamic blockage avoidance. Moreover, channel 
quality variations could be mitigated by using the recently proposed concept of predictor antenna (PrA) 
[GMD+21]. A PrA system refers to a setup with two groups of antennas deployed on the top of a vehicle, 
where the front antennas (called PrAs) sense and report back the CSI to the BS. Then, the receive 
antennas (RAs) followed behind the PrAs could use the CSI from PrAs when they reach the same 
positions at the PrAs. In this way, both prediction of blockage and the quality improvement of CSI lead 
to better system performance. Using recently proposed reconfigurable intelligent surfaces (RIS) instead 
of BS handovers could further increase the flexibility in spatial resource allocation and reduce the 
operation cost. 

 
Figure 3-15 Better resource allocation with localisation and sensing assistance [GMA+22]. 
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3.2.4  Infrastructure optimization 
Limitless connectivity is one of the major goals in the next-generation wireless network, where the 
communication services will cover all the users in the urban and rural areas [MLH21]. However, 
coverage for localisation and sensing services is more challenging to be satisfied compared with 
communication. In the asynchronous scenarios without geometrical constraints, at least four BSs are 
needed for TDoA-based localisation, and at least two BSs with LOS paths are needed for angle-based 
localisation. In sensing scenarios, since tandem channels (e.g., transmitter (Tx) to the object and object 
to the receiver (Rx)) are involved, the received signal power is the bottleneck limiting the coverage. As 
a result, the infrastructure designed for communication may not be sufficient for localisation and sensing 
services.  

A direct but costly solution is to increase the number of deployed BSs. However, it is impractical due 
to the coordination and deployment cost, and sometimes unnecessary as the service request usually has 
peak hours (e.g., commuting period on workdays) and off-peak hours. Several alternative solutions are 
promising (see also Figure 3-16):  

1. The deployment of low-cost anchors [CKA+23a]. For localisation and sensing purposes, BSs 
with full communication capabilities may not be needed, and low-cost anchors that can transmit 
and receive (and probably with processing capability) are sufficient. These anchors could be 
roadside units tailored for localisation and sensing, or passive reconfigurable surfaces. Sidelink 
communications are needed to coordinate the services between the anchors and target devices 
such that the resource at the BS can be saved.  

2. The integration of terrestrial and non-terrestrial networks (NTN) [HST19]. The advantages of 
adopting NTN for localisation and sensing lie in two aspects. On the one hand, a BS with a 
higher altitude provides better coverage (e.g., less blocked by the buildings in the urban area) 
and 3D localisation performance, especially on the height. On the other hand, the geometry 
constraints are less stringent. For example, a UAV carrying a BS can travel in three dimensions 
and is able to organize the network flexibly and adaptively. The role of non-terrestrial networks 

 
Figure 3-16 Infrastructure optimization includes both the terrestrial network and the non-terrestrial 
network. 

NTNs are expected to play an essential role in localisation and sensing for 6G. NTN refers to space-
borne and aerial communication networks, such as satellites or UAVs. The integration of NTN in 6G 
communication systems provides several advantages, including increased coverage, positioning 
accuracy, and synchronization [KG21]. One of the main advantages of NTN in localisation and sensing 
is the ability to provide coverage in areas where terrestrial networks are not available or are difficult to 
access, such as remote or disaster-struck areas [PFS+22]. This is particularly important for applications 
such as search and rescue, disaster management, and precision agriculture. Additionally, NTN can 
provide a complementary coverage layer to terrestrial networks, helping to increase accuracy and reduce 
errors in localisation and sensing applications. 
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One of the key technologies that is enabling NTN to play a larger role in positioning and sensing is the 
use of low-Earth orbit (LEO) satellites. LEO satellites can provide a higher update rate and increased 
availability compared to traditional geostationary satellites. Several LEO systems are currently 
available such as e.g., Iridium, OneWeb, and Starlink (for broadband connectivity), Hiber, Myriota (for 
Internet of Things applications), and Iceye, HawkEye (for Earth observation and synthetic aperture 
radar applications [PFS+22]. In addition, LEO satellites also have the potential to provide precise 
localisation and sensing which is still not yet to be harnessed. Another important aspect of NTN in 
localisation and sensing is the use of UAVs as communication platforms. UAVs can be used to provide 
temporary coverage in emergency situations, or to provide coverage in hard-to-reach areas such as 
mountainous regions. Additionally, they can be used to provide additional sensing capabilities in areas 
with high traffic demands, such as stadiums or concert venues. UAVs can provide high-resolution 
imagery, environmental sensing, and other location-based services. 

The integration of NTN for 6G requires careful consideration of various factors, which are also present 
in GNSS. One of the most critical factors is the synchronisation of the NTN with the terrestrial network. 
This is important to ensure that the positioning information provided by the NTN is accurate and 
consistent with the terrestrial network. Additionally, the Doppler effects and path loss caused by the 
movement of the satellites and the atmosphere must be considered [PFS+22].  

3.2.4.1 Deployment optimization 
All the mentioned solutions require dedicated infrastructure optimization to fully exploit the network 
potential for providing localisation and sensing services that satisfy stringent and diverse requirements, 
such as accuracy, latency, and processing speed. To meet these requirements, optimisation problems 
need to be formulated, which, in general, consists of an objective function and a set of constraints. The 
objectives include the system KPIs such as communication and localisation coverage, and the variables 
include BS positions, beamforming matrix, and more details can be found in [CSB+22]. Potential 
optimization problems for the mentioned three solutions can be summarized as follows: 

• Anchor layout optimization: If the number of anchors (e.g., BSs or RISs) and service area are 
determined, the positions of anchors can be optimized based on the localisation coverage (e.g., 
percentage of area with Cramér-Rao bound (CRB) performance satisfying the requirements 
using a predefined codebook). Prior information of the target UEs (e.g., geometrical distribution 
of UEs) and environmental information (e.g., the geometry of the detection area and position 
of the blockage) can also be used to optimize the layouts and achieve the best localisation 
performance. For the BSs with antenna arrays or directional antennas, the orientation should 
also be optimized.  

• UAV trajectory optimization. When the anchor positions can be controlled (e.g., UAV BSs), 
objective functions can be formulated as maximizing the determinant of the Fisher information 
matrix (FIM) over a finite time horizon, as the inverse of FIM prescribes a lower bound of the 
estimation error covariance of an unbiased filter [Tay79]. Performance measure of observability 
based on geometric conditions can also be utilized as a cost function, and a closed-form solution 
considering physical constraints is derived in [HST19].  

• Adaptive network configuration. When requesting localisation and sensing services, multiple 
entities are envolved. However, not all the UE devices are able to process the measured data, 
and the BS might be crowded with data transmission and processing requests. For this reason, 
adaptively changing network configuration and providing computing, storage, and 
communication functionalities at the network edge helps not only in reducing the end-to-end 
delay, but also can alleviate the burdens on cloud servers and backhaul links [ASE+19]. In 
addition, UE devices with powerful computational capability could also be utilized in certain 
scenarios to guarantee the overall localisation and sensing performance of the system. 

In summary, infrastructure optimization can provide the coverage and delay requirements for 
localisation and sensing. In addition, mobile BSs and the function configuration of different devices can 
provide extra flexibility in serving different scenarios (e.g., rush hours). Localisation and sensing 
information are both important for offline and online infrastructure optimization. For example, user 
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location distribution and map information are useful in the offline BSs / anchor deployment phase. 
While for online infrastructure optimization (e.g., deployment of mobile BSs), location estimation and 
dynamic prediction of all the available UEs are critical to minimize the defined optimal objective 
function. In general, infrastructure optimization is highly non-convex, and it is thus hard to obtain 
globally optimal solutions. Heuristic algorithms and learning-based methods could be alternative time-
saving options to get satisfactory suboptimal results.  

3.3 KVIs and implications 
Key value indicators [HEX20-D11, HEX21-D12] for localisation and sensing regarding 
trustworthiness, inclusiveness, and sustainability complement the KPIs from Section 3.2. The KVIs are 
discussed and analysed in the following sections.  

3.3.1 Trustworthiness 
Trustworthiness for localisation and sensing plays an important role especially when the measurements 
are applied in critical use cases and scenarios. The trustworthiness for localisation and sensing 
measurements must be higher for use cases such as secure track and trace, secure location-based access 
control, or security gates [HEX22-D32] or within factory environments when collision avoidance 
between humans and machinery must be guaranteed for human safety. Other, less critical use cases, 
such as monitoring material flow or sensing weather conditions should also be trustworthy, but with 
less stringent requirements. Systems that aim for trustworthiness need to consider many aspects, for 
localisation and sensing we focus on Security, Safety, and Privacy. 

3.3.1.1 Security 
The term security can be considered in two different ways in the domain of localisation and sensing 
(see Figure 3-17): (i) localisation and sensing information used for security applications and (ii) 
securing the localisation and sensing process itself. Both dimensions are further elaborated below.  

 
Figure 3-17 Overview of the two interpretations of the term security in the localisation and sensing domain. 

Usage of localisation and sensing information to enable new emerging 6G (security) services and 
applications. 

[HEX22-D32] lists several scenarios where localisation and sensing information can be used to enable 
new security use cases. One example is remote home monitoring for security by receiving alarms when 
movement or activity is detected when nobody is supposed to be at home. Another example is location-
based access control. Geographic information / geo-locations are used to decide whether a person gets 
access granted to, for example, specific data or a specific IT system.  Geo locations can be used directly 
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as decision parameters (if a certain person is at a certain position, then a specific action is triggered) on 
the application layer, or the geo-location could be included in a more sophisticated way in an end-to-
end established cryptographic algorithm and protocol between the information provider and the 
information consumer. The latter geo-encryption is a special research area where systems and 
algorithms are designed to protect against location bypassing or, in parts, also against location spoofing 
[SD03]. These algorithms are independent of the localisation system source (GPS, Bluetooth, or a 5G 
localisation system). Next-generation mobile networks can deliver information, such as location, 
velocity, or orientation that could be used in such algorithms, but also, situational context gathered via 
sensing could be helpful in the future (current surrounding/environment sensed by the mobile network, 
such as urban environment, human-crowded area, etc.). 

Securing the process of localisation and sensing 

Depending on the security level demanded by certain use cases, applications and scenarios, 
requirements can be deduced for each security attribute. From the localisation and sensing perspective, 
security mechanisms on all layers are equally important as for communication that protect the system 
must against intentional harm or unauthorized access. An interesting aspect is how the system can 
support localisation and sensing data integrity. Cyber security for the communication system focuses 
on sending data from application to application in a secured/encrypted way. But in the case of 
localisation and sensing, meaningful data is generated out of measurements on signals travelling over 
the air. Such measurements can be an angle of arrival of a signal, or the time of arrival (at UE or base 
stations side), etc.  

 
Figure 3-18 Difference between sensing and communication process (application to application for 
communication and infrastructure to application for sensing) and the security challenge for data integrity 
when sensing data is generated in the infrastructure layer. 

Figure 3-18 shows that on an abstract level, communication over a network is bidirectional from 
application to application, but measurements for sensing and localisation are generated by the 
infrastructure of the network and have their origin on that layer. With SDR (software defined radio) 
mechanisms combined with open-source code becoming more common and cheaper, the risk of attacks 
becomes more likely. Depending on the measurements used, attack modes and mitigation features may 
differ. [SRR+22] focuses on ranging methods in OFDM systems. Here, certain attack modes can result 
in wrong distances between two communication units: distance enlargement via overshadowing 
symbols or carrier frequency offset attacks and distance reduction due to early detect late commit 
(ED/LC) effect. In ED/LC scenarios attackers for example reduce the distance measured by pre-
emptively injecting signals that triggers an early signal detection at the receiver side. With no security 
features on PHY layer, the receiver has no means to detect such a falsification, which will lead 
consequently to a wrong position. The authors of [SRR+22] propose a solution called V-range which 
uses shortened OFDM symbols which the receiver uses for the integrity check of ToA estimates. This 
approach can work in the sub-6 GHz and mm-wave bands intended for 5G. For further work, it should 
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be systematically and thoroughly researched what attack modes and possible mitigation mechanisms 
exist per measurement type.   

3.3.1.2 Safety 
Safety may seem similar to the term security but there are distinct differences. While security refers to 
the protection of systems (and data) from intentional harm or unauthorised access (with focusing on 
preventing cybercrime attacks), safety refers to the protection of humans, equipment, or the 
environment from accidental or unintended harm through systems. Both aspects are important to 
consider and in practice they often may influence each other. As an easy example, consider a fire door: 
For safety it would be best if this door is always unlocked to let people escape easily in case of an 
emergency. For security reasons the door should always be locked to prevent unauthorized access to 
the building.  

For safety, localisation and sensing can be used as supportive system to lower the chances for harming 
the environment, equipment, or humans. In the field of safety though, many requirements are reflected 
in standards and regulations monitored by different authorities. The difference for localisation and 
sensing being just a supportive system or a system which safety relies on will be explained in the 
following two paragraphs. 

Localisation and sensing information can be used to support “safety use cases” 

Safety applications exist in various domains. And usually, safety related applications aim for the goal 
of humans and the environment being protected from danger, risk, or injury. Depending on the 
application requirements, it may be necessary that system components or even the whole localisation 
and sensing system must be developed according to safety regulations to guarantee functional safety, 
explained in detail in the next section. An example where functional safety development and 
implementation is not necessarily required is managing streams of people. In addition to existing 
measures to prevent harm from mass panic (like fences or the maximum amount of people allowed in 
a certain area), knowing the position and movement patterns of people can help to predict aggregation 
and crowd building. Thus, allowing early prevention measures. 

In factory environments, collision avoidance between humans and autonomous guided vehicles (AGVs) 
is currently achieved by attaching certified laser sensors that guarantee obstacle detection in the AGV’s 
trajectories that when triggered lead to an automated stop of the AGV (to prevent harming people). If 
replacement of such sensors is desired by using a localisation system for AGVs and humans in order to 
prevent collisions, the localisation system needs to guarantee a similar failure free working mode as the 
certified sensors which will be explained in more detail in the next paragraph. 

Where standard / non failsafe localisation can help in the collision avoidance scenario is to plan routes 
of AGVs according to humans’ positions. If AGVs can avoid the routes with high human traffic the 
chances that the certified sensors detect human obstacle decrease.  

Failsafe localisation and sensing system 

In the factory / electronic devices and systems domain of, safety mostly refers to functional safety which 
comprises a set of regulations and standards that need to be followed while designing and building a 
failsafe system. Performing the localisation and sensing process must ensure that humans are not 
harmed, and regulatory aspects are followed (e.g., to not exceed allowed transmit power).  Depending 
on the scenario and environment where it will be deployed, the safety integrity level required and the 
regulatory requirements for each country differ. Functional safety standards for electronic devices are 
for example ISO 13849 or IEC EN 61508. Standard safety aspects like for example electric and radiation 
safety which apply anyways for the mobile communication network must be also ensured for example 
for dedicated signals only used for localisation and sensing purposes.  

However, a very challenging task that is special for localisation and sensing is the guarantee of the 
position and sensing integrity itself. Data integrity is important, both for security and safety. Security 
ensures data integrity against attack modes; safety needs to ensure data integrity by implementing 
certain safety measures to avoid wrong behaviour leading to falsified position and sensing data. 
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Position information, as an example, can be falsified by intentional attacks but also due to 
malfunctioning of the system or simply by physical effects like non-line-of-sight conditions. Integrity 
assurance mechanisms and receiver autonomous integrity monitoring (RAIM) already exist in global 
navigation systems (GNSSs) to strengthen the trustworthiness of the calculated position information for 
those applications [RHC+19].  

Quantifying positioning integrity requires formulating an upper bound on the instantaneous positioning 
error, known as the protection level (PL), for each position coordinate individually or for two/three 
coordinates together, to ensure the desired level of confidence. Specifically, PLs determine a geometric 
region with a predefined shape, and they are computed in such a way that the probability of the true 
user position being outside of this geometric region is lower than the target integrity risk (TIR) - a very 
small number given by the underlying application.  

To illustrate this, consider in Figure 3-19, the blue circle surrounding the estimated position in 
smartphone navigation, which changes its radius according to the real-time PL computed for the desired 
99.99% confidence level in the position estimate. It is crucial that the computed PLs are sufficiently 
tight to maximize their utility across various applications. 

 

 
Figure 3-19 Example of integrity under non-line-of-sight conditions (red link). The size of the protection 
level depends on the target integrity risk and surrounds the estimated position. 

3.3.1.3 Privacy 
With sophisticated and accurate localisation and sensing, the topic of privacy becomes both more 
important and more challenging. There are two aspects of privacy that are considered: privacy of 
persons/users and privacy of assets.  

User privacy 

With localisation of UEs already available in current mobile networks, the conditions for protection of 
this data does not differ much. The protection level needs to follow country-specific regulations e.g., 
the General Data Protection Regulation (GDPR) regulation in the EU and the California Consumer 
Privacy Act (CCPA). Obviously, although localisation is an existing feature of current mobile networks, 
from a user perspective the conditions change drastically as localisation becomes much more accurate 
and hence more sensitive and more worth protecting [CBK+22]. Especially if there are still open issues 
regarding how data integrity can be ensured and attack scenarios handled, localisation data must be 
protected from misuse. The main new challenge comes with the sensing feature. With the new sensing 
feature, persons can be localised in a radar-like manner and, therefore, be tracked even without carrying 
any device. The identity of a sensed person is not easily determinable, but with additional context 
information (like movement patterns or social engineering), conceivable.  

Asset privacy 
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Tracking of objects may not be traditionally in focus of privacy concerns, but if for example objects 
within factories are being located or sensed, this asset information is worth protecting. Asset or material 
flow may inherently contain process and/or automation information that shall not be revealed to 
unauthorised systems or persons. 

3.3.2 Sustainability 
The second KVI under consideration is sustainability. As with security, there are two facets to 
sustainability: (i) using localisation and sensing information to make services (including 
communication) more sustainable (e.g., more energy efficient compared to their conventional 
counterparts) and (ii) making localisation and sensing itself sustainable, using minimal resources.  

Sustainability supported by localisation and sensing 

This was discussed, in part in Section 3.2.3.4 (which dealt with proactive resource allocation in order 
to reduce overheads), and is further elaborated in Section 4.2.7, where the reduction in transmit power 
is considered. In addition to more sustainable operation of communication, the ability to sense and 
localise has broader sustainability implications, such as the ability to monitor pollution and weather 
[HEX22-D32], as well as the more general potential for earth monitoring [HEX21-D31]. More 
examples, where localisation and sensing have a high impact on sustainability are in the use case of 
massive twinning. Digital twins, independent of the domain (e.g., twins for manufacturing, twins for 
sustainable food production, or twins in context of immersive smart cities) include tracking or knowing 
the position of assets or humans often to optimise processes and to save material, waste, or energy per 
produced item. The same holds true for autonomous supply chains. To ensure worldwide tracking 
capabilities also NTN localisation comes into play.  

Sustainable localisation and sensing 

This has been discussed in detail in Section 3.2.3 and Section 3.2.4, which covered resource and 
infrastructure optimization. While the optimization generally considers the KPIs, there is an implicit 
consideration in terms of sustainability, as the allocated resources should be as small as possible, while 
still meeting the KPIs. By flexible and adaptive resource allocation, conservative designs can be 
avoided, and energy consumption reduced in comparison to not optimised network deployments. 
Deployment and operating cost can also be accounted for in the resource optimization processes, e.g., 
based on reduced-energy devices such as reconfigurable intelligent surfaces (RISs). More generally, the 
localisation and sensing design should consider the sustainability impacts including the power 
consumption and material life cycle assessment. 

3.3.3 Inclusiveness  
The goal of next generation mobile network is to ensure that 6G is available for all people across the 
world. To achieve that, it needs to be affordable and scalable, with coverage everywhere. So, one aspect 
of localisation and sensing about inclusiveness is to enable localisation and sensing for all those areas 
as well and ensure easy configuration and deployment. For localisation and sensing that comes with a 
re-use of communication signals, this might be easily achievable. 

Another scenario where localisation and sensing play a more particular role in inclusiveness is on a 
much smaller scale. For example [WGP+18], with sensing], it might be possible in the future to 
recognize gestures of people who are not able to interact with systems (e.g., UEs) in a traditional way 
(by voice or typing on the keyboard/touchscreen). This could ensure another possibility of human-
machine interaction. These novel HMIs are also discussed in [HEX22-D72]. In addition to such 
intelligent interaction, there is also intelligent monitoring, such as elderly monitoring, chronic patient 
monitoring, and infant care, which can all benefit from sensing information.  
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4 Final models and algorithms 
Section 3 drew the big picture of the localisation and sensing ecosystem which comprises of the three 
functional layers: Sensing layer, Sensing data processing layer and the Emerging services and 
application layer. This chapter focuses on the technical work and results for selected aspects of each 
layer. For development localisation and sensing algorithms and to generate synthetic data, accurate 
models of the channel and hardware components are crucial. These are detailed in Section 4.1. The 
localisation and sensing algorithms themselves are described in Section 4.2, covering 6D localisation, 
monostatic sensing, bistatic sensing, ISAC (monostatic and bistatic), deployment optimization, and 
location-aided communication. This complex interplay between many services can be considered as 
one example of the new emerging services within the localisation and sensing ecosystem.  

4.1 Channel and hardware models 
Two types of models are important for localisation and sensing: first, the model of the propagation 
channel, which includes the information about the transmitters, receivers, and objects around. Second, 
the models of the hardware and their impairments.  

4.1.1 Channel models 
Channel models play a critical role in various aspects of communication system design from transmit 
waveform design to receiver algorithms. Accurate channel models are also needed for system and link 
simulations to evaluate KPIs. The channel models for sensing depend on the type of sensing system 
employed. For mono static sensing, both transmitter and receiver are co-located, and receiver uses the 
backscattered signals from the target for sensing. Assuming a LOS link to the target, the amount of the 
backscattered signal energy received depends among others, on the geometry of the exposed surface of 
the object to the transmitter and its reflectivity, which is commonly expressed using radar cross section 
(RCS). The received signal power from such a radar channel is defined by the radar equation [Sko80] 

 𝒑𝒓 =
𝒑𝒕𝑮𝝈𝑨𝒌𝒂
(𝟒𝝅)𝟐𝑹𝟒

,  

Where 𝑝4 is the transmitted power, 𝑝' is the received power,	𝑅  is the distance between the transmitter 
and receiver, 𝐺, 𝐴, 𝑘B	denotes antenna gain, size, and efficiency respectively. Multistatic sensing, where 
transmitter(s) and receiver(s) are spatially distributed offers several benefits including better sensing 
coverage using widely deployed communication infrastructure.  To provide extensive coverage, typical 
6G systems will be deployed in low, mid, and high frequency bands. Apart from supporting traditional 
deployment scenarios like urban, semi-urban, and rural scenarios, the 6G deployments will also include 
newer scenarios arising from air-to-ground, industry, healthcare, etc. Channel models should be general 
and flexible in addressing the different bands and deployment scenarios for wider adaptability.  

For low and mid band frequencies (<10 GHz), the 3GPP models defined in [36.901] provide a low-
complexity parametric channel model.  These models are extended to consider the elevation angles of 
the array to support 3D channel modelling in [36.873]. In addition, the channel models for the band 
between 0.5 and 100 GHz are provided in [38.901]. The 6G channels need to support high frequency 
bands (up to 300 GHz) with very wide bandwidths (several hundreds of MHz). They also need to 
support a wide range of deployment scenarios. In many of these scenarios, the distance between the 
transmitter and the receiver does not exceed the Rayleigh distance, resulting in the need for near-field 
channel models.  There exist many measurement campaigns and modelling techniques for the higher 
frequency bands above 10 GHz. These include mmMagic [Magic22], NIST channel model [Nist22], 
QuaDRiGa [JRT+19], NYU WIRELESS [RSM+13], [MRS+15], [RMS+15]. A summary of the large-
scale channel parameters such as path-loss, shadow fading, blockage, penetration losses, etc. in high 
bands is briefly described below. 

The line-of-sight (LOS) pathloss typically follows the Friis formula, and the pathloss exponent changes 
very little with the increase in frequency. However, with non-line-of-sight (NLOS), the pathloss 
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exponent is higher than in LOS. The ray tracing measurements have indicated that the shadow fading 
losses at high frequency are larger (more than 10 dB in mmWave bands) compared to the low and mid 
frequency bands.  Measurements also indicate that the delay and angular spread of the channel reduces 
with the increase in the frequency bands.  

The variation of absorption or penetration loss with frequency, depends on the material; for example, 
for materials such as glass, the penetration loss does not vary significantly with frequency. However, 
for other materials such as concrete or brick, the penetration loss increases significantly with frequency 
[HJT+16,GSY+22]. Blockage can occur between the transmitter and receiver due to high penetration 
loss to many obstacles in the environment. As discussed in [HJT+16], there are two different types of 
blockages, dynamic blockage which occurs due to the movement of the objects in the environment and 
geometric blockage which occurs due to stationary static objects in the visual line between the 
transmitter and receiver. Figure 4-1 shows the dynamic blockage due to the random walk by a human 
at 2 m/s in an airport environment with UE and BS at a height of 1.3 m and 3.5 m, respectively, at 140 
GHz [HEX23-D23]. Little or less dynamic regions in Figure 4-1 indicate the constant signal power at 
the receiver due to the stationary environment.  

 
Figure 4-1 Example of dynamic blockage in an airport environment for human random walk. 

The multi-path profile, which defines the small-scale fading information, is critical for sensing and 
localisation as it carries information about the targets and clutters in the environment. The small-scale 
modelling of these channels for low and mid bands using stochastic parametric channel models are 
available in [36.901].  The high frequency band operation with ultra-wide bandwidth is favoured in 6G 
for sensing and localisation as they provide very high resolutions in time and frequency. The usage of 
large dimension MIMO antennas provides very high angular resolution which increases the spatial 
resolution in sensing and localisation problems. However, the multipath channels at these frequencies 
are sparse due to the increased absorption at high bands, due to which receivers will observe reflections 
only from a few highly reflecting objects in the environment. Due to the large bandwidth of the signal, 
multiple regions of the same object could get resolved creating a cluster of multipaths per reflecting 
object. This is further illustrated in Figure 4-2.  

 
Figure 4-2 High frequency 6G channels are sparse, comprising cluster of reflections from few scatterers. 
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Deterministic channel models based on raytracing are commonly employed for modelling 6G channels 
at high frequency bands. However, these channel models are typically site-specific and do not 
generalize well towards other environments. Another approach to modelling these sparse 6G channels 
is to employ a stochastic geometric channel model like Saleh-Valenzuela (SV) channel and its variants 
[SV87] [LAH+19]. In these models, the multipaths typically arrive in the form of a cluster of rays, the 
power and inter-arrival times of the cluster/rays are drawn from parameterized distributions, which can 
be controlled to create various scattering environments. 

Without loss of generality, OFDM transmission is considered as it is the de-facto modulation scheme 
employed in cellular communication. For an OFDM frame with 𝑁  subcarriers and 𝐾  symbols, the 
channel between the transmitter and receiver for a subcarrier, 𝑛 ∈ {0,… ,𝑁 − 1} and symbol, 𝑘	 ∈
{0,… , 𝐾 − 1} can be written as  

𝑯C,E = ∑ αF𝒂'G(θF)𝒂4GH (ϕF)𝑒.I0JCK'L(M
FN/ 𝑒.I0JEH)O(, 

where 𝐿 is the number of propagation clusters, αF  is the complex channel gain, 𝒂'G  and 𝒂4G  are the 
receive and transmit array responses,  θ and ϕ	denotes the AoA and AoD, τ and ν denote the delay and 
Doppler associated with the propagation path respectively [WS22]. While the communication receiver 
is interested in demodulating the transmitted symbols from the channel impaired signal, the sensing 
receiver needs to estimate the geometric information from the channels such as angles, delays and 
Doppler. Several measurement campaigns were conducted in Hexa-X to understand the channel effects 
at 6G high frequency bands. These studies can provide an understanding of various aspects of the 
channel at higher mmWave bands such as path loss, delay spread, angular spread, etc. These 
measurements, which are available to the public, can enable engineers to choose appropriate parameters 
for the above-discussed channel model [PHC+21]. For more details related to the channel modelling 
activities in Hexa-X, the reader is referred to [HEX23-D23]. 

Several extensions to the channel model discussed above could include aspects such as beam-squint 
and near-field propagation. As 6G moves towards wideband signals at high frequency bands, the array 
responses tend to become frequency-dependent, creating a beam-squint effect, where beams have 
different directions depending on the frequency. Extending current spatial channel models to consider 
the effect of beam-squint is an interestingly important area of research. Complementing the beam-squint 
effect is the near-field effect. The far-field assumption can be employed in channel modelling when the 
distance between a transmitter and receiver is sufficiently large. However, to overcome the severe path-
gain losses at high frequencies, large antenna arrays are key, as they provide large aperture gains. As 
the size of the antenna array  𝐷 increases, the near-field region, i.e., the region around the transmit and 
receive antennas with distances 𝑑  less than 2𝐷0/λ, could become prominent, and wave-front curvature 
should be considered. Hence the current far-field models should be extended towards a hybrid model 
considering both near- and far-field effect, especially in cell-free MIMO scenarios.  

In all the above discussions ideal hardware in the transmitter and receiver are assumed. However, as the 
operating frequency increases, the transceivers become less than ideal due to the hardware 
imperfections. These aspects need to be taken care of, and modelling the systems is discussed in the 
next section. 

4.1.2 Hardware models 
In this section, the channel model is extended to consider the hardware impairments (HWIs), such as 
phase noise (PN), carrier frequency offset (CFO), mutual coupling (MC), power amplifier nonlinearity 
(PAN), array gain error (AGE), antenna displacement error (ADE) and in-phase quadrature imbalance 
(IQI) [Sch08].  

4.1.2.1 Benchmark model without hardware impairments 
For convenience, a pure LOS channel under a stationary scenario is considered, with a BS transmitting 
in downlink to a UE. The HWI-free channel matrix for the kth subcarrier can be expressed as 

𝐇E = 𝛼𝑑E(𝜏)𝒂P(𝝋P)𝒂QR(𝝋Q)  , 
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Where 𝛼 is the complex channel gain to be identical for different subcarriers, 𝑑!(𝜏) = 𝑒−𝑗2𝜋𝑘Δ𝑓𝜏 (ΔZ is 
the subcarrier spacing) as a function of the path delay 𝜏, while 𝒂P(𝝋P) and 𝒂Q(𝝋Q) are the BS and UE 
steering vectors as a function of the AoA and AoD. By concatenating all the received symbols into a 
column, the received symbol block is obtained as 𝐲 = [𝒚/, … , 𝒚[, … , 𝒚\], where 𝒚[ can be expressed 
as 

𝐲[ = 𝛼z𝒘[R𝒂P(𝝋P)𝒂QR(𝝋Q)𝐯𝒈}𝐝(𝜏) ⊙ 𝐱[ + 𝒏[ , 

In which 𝐝(𝜏) = [d/(𝜏), … , d^(𝜏)]R , 𝐱[  and 𝒏[  are the signal and noise vectors for the 𝑔 -th 
transmission, respectively. In addition, 𝐯𝒈 and 𝒘𝒈  denote the precoder and combiner, respectively.  

4.1.2.2 Hardware impairments and their models 
The effects of MC, PAN, AGE, ADE, PN, CFO, and IQI, as shown in Figure 4-3 [CKA+23b], can now 
detailed. Note that the impairments such as PN, CFO, MC, AGE, ADE, and IQI exist both at the 
transmitter and the receiver, while the PAN appears only at the transmitter. The HWIs are usually 
compensated offline during calibration or online with dedicated signals and routines, depending on 
whether the impairment is static or time-variant. Both offline and online methods will have residual 
errors, which can be modelled as random perturbations around the nominal values. The impact of these 
residual errors after calibration is discussed. For online methods, these random realizations correspond 
to different times for a specific device, while for offline methods, these random realizations should be 
interpreted as corresponding to an ensemble of devices. The imperfections of analogue-to-digital 
converter (ADC), digital-to-analogue converter (DAC), low-noise amplifier and mixer are not 
considered. 

 
Figure 4-3 Block diagram of the hardware impairments considered at transmitter and receiver (highlighted 
in shaded regions). When the localisation algorithm does not have ideal knowledge of the generative model, 
it operates under model mismatch. 

Phase noise and carrier frequency offset 

Non-ideal local oscillators (LOs) in the up-conversion and down-conversion processes add PN to the 
carrier wave phase. The variance of the phase noise process increases linearly with time and at a rate 
depending on the quality of the oscillator. In addition, when the down-converting receiver LO does not 
perfectly synchronize with the received signal’s carrier [MT21], CFO occurs. In general, both PN and 
CFO are estimated and compensated by the receiver [HAE20], so only the residual PN and residual 
CFO at the receiver are considered. An example of one realization of PN and CFO is shown in Figure 
4-4.  Note that the residual CFO 𝜖 is fixed, while the PN and residual PN are different for all the 
subcarriers symbols. 

4.1.2 Channel model with HWI (Hui)
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Figure 4-4 Visualization of phase errors caused by (a) PN without compensation, noise STD 𝝈𝐓𝐏𝐍 = 𝟎. 𝟏𝟕𝟒𝟓 
(𝟏𝟎𝐨); (b) Residual PN, noise STD 𝝈𝐏𝐍 = 𝟎. 𝟎𝟒𝟑𝟔 (𝟐. 𝟓𝐨); (c) Residual PN and CFO, 𝝈𝐏𝐍 = 𝟎. 𝟎𝟒𝟑𝟔, 𝝐 =
𝟎. 𝟎𝟓. 

Mutual coupling 

MC refers to the electromagnetic interaction between the antenna elements in an array [YDX+09]. For 
a UPA, the MC model as in [YL08] is adopted by assuming the antenna is only affected by the coupling 
of the surrounding elements, as shown in Figure 4-5. Note that MC affects both the transmitter and the 
receiver array. 

 
Figure 4-5 Illustration of mutual coupling for a uniform planar array. Each antenna is affected by the MC 
of the surrounding 8 antennas, and this influence descends with the distance between the adjacent antennas 
(e.g., 	|𝒄𝐱𝐲| < |𝒄𝐱|, |𝒄𝐱𝐲| < |𝒄𝐲|). 

Power amplifier nonlinearity 

For the PA nonlinearity, a Q-th order memoryless polynomial nonlinear model from [CKA23] is 
considered, where both the effects of digital predistortion and power amplifier are modelled, and non-
oversampled signals are used as input to PA for tractable localisation performance analysis. Note that 
the PA affects the time domain signals and each antenna at the Tx has a separate PA, and the PA model 
in [CKA23] does not consider the out-of-band emissions (only the in-band distortion). For simplicity, 
the models are the same for different PAs, and one example of the effect of PA nonlinearity is shown 
in Figure 4-6. 
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(a)       (b) 

Figure 4-6 Illustration of the effect of PA on the transmitted signals (1e4 complex numbers with random 
phases and amplitudes), in terms of (a) amplitude [V] and (b) phase [rad]. 

Array calibration error 

The AGE, which models the perturbations of the array element response, and the ADE, which models 
the perturbations in the array element spacing, are considered in the array calibration error. The complex 
excitation coefficient of the n-th antenna at direction 𝝋 is defined as [BJJ+18] 𝑏C(𝝋) = z1 + 𝛿[}𝑒I!+, 
where 𝛿B~𝒩(0, 𝜎__0 ) and 𝛿)~𝒩(0, 𝜎_`0 ) are the relative amplitude error and phase error, respectively. 
Regarding the displacement error, the n-th antenna position is assumed to have a displacement on the 
2D plane of the local coordinate system as 𝐳�C =	𝐳C + �0, 𝛿C,a	, 𝛿C,b�

R , where 𝐳C ∈ ℝ𝟑  is the ideal 
position of the nth antenna in the local coordinate system, 𝛿C,a , 𝛿C,b~𝒩(0, 𝜎_de0 )  are the displacement 

error. The steering vector is then modified as 𝒂(𝝋) → 	𝐛(𝝋) ⊙ 𝑒I
,-
. 𝒛g

/𝐭,		where 𝒁� = [𝐳�/, … , 𝐳�*] 
contains the geometry information of all the antennas. The array calibration error is fixed for a certain 
array and varies across different devices. 

In-phase and quadrature imbalance 

IQI operates on the time domain signal, the transmitting and receiving symbol vectors can be modified 
as [GAI+20] 𝐱[ → 𝛼Q𝐱[ + 𝛽Q𝐱[∗  , 𝐲[ → 𝛼P𝐲[ + 𝛽P𝐲[∗  . The effect of IQI on the received symbols is 
shown in Figure 4-7. 

 
(a)      (b) 

Figure 4-7 Illustration of (a) the effect of IQI on the transmitted signals (𝜶 = 𝟎. 𝟗𝟓, 𝜷 = 𝟎. 𝟎𝟓), and (b) full 
constellation of QAM-16 zoomed in around one signal symbol (right). 

To summarize, an ideal model without any HWIs was defined, which is used for algorithm development 
and evaluation. With HWIs introduced, the impaired model is used as the true (generative) model. In 
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the simulation results in later sections, the performance impact of using the ideal model to process data 
generated by the true model are evaluated.  

4.2 Algorithms for localisation, sensing, and their integration 
with communication  
Hexa-X has proposed and evaluated a variety of algorithms for localisation and sensing based on the 
models from Section 4.1. These models are reported here and associated to [HEX21-D31, HEX22-
D32], where appropriate. An overview of these algorithm is provided in Figure 4-8. 

 
Figure 4-8 Overview of the contributions on algorithms. The numbers refer to the corresponding sections 
in this deliverable.  

4.2.1 6D localisation and bistatic sensing  
Motivation and background  

The problem of 6D single-BS localisation and synchronization of an unsynchronized multi-antenna user 
has been reported in [Ch. 3.1, HEX22-D32], where it was shown that at least 1 NLOS path (with 
reflection from a scatterer at a favourable position) is needed together with the LOS, to obtain the 6D 
state of the UE. The study of localisation coverage indicates that having 2 NLOS paths in addition to 
LOS, renders the problem identifiable for most geometric configurations. The ability to solve the 6D 
localisation depends crucially on the availability of LOS to the BS, which is not necessarily always 
present, especially in dense urban areas. This motivates the research on 6D localisation in obstructed 
LOS scenarios, in which only NLOS paths between the BS and user are present.   

It is worth highlighting that the work reported here has a connection to the signal design solution 
presented in [HEX22-D32]. In particular, the problem of downlink spatial signal design (i.e., BS 
precoder optimization) for mmWave localisation has been studied. This section focuses on the receiver 
side algorithms for location and orientation estimation. Hence, the study in [Ch. 3.1, HEX22-D32] 
complements the one reported here, leading to an end-to-end 6D localisation system. 

Model and methodology 

The considered scenario is a downlink mmWave MIMO OFDM system with a multi-antenna BS at a 
given position and orientation, and a multi-antenna UE, with unknown position, orientation, clock offset 
to the BS. The UE orientation is modelled by an unknown rotation matrix, that maps the global 
coordinate frame to the local coordinate frame of the UE. The rotation matrix is a unitary matrix 
belonging to the spatial orthogonal group, denoted by SO (3). The LOS path is blocked, but there are at 
least 4 NLOS paths available, as shown in Figure 4-9. The paths are considered resolvable, due to the 
large available bandwidth and antenna apertures. Less than 4 NLOS paths are not enough for the 
localisation problem to be identifiable. Moreover, it is assumed that the NLOS paths correspond to 
single-bounce reflection points at unknown positions. In practice, multi-bounce paths may also exist. 
Those paths can be identified and excluded from the localisation scheme, e.g., using iterative [LJW+22] 
or progressive [HRY+22] methods, since they adversely affect localisation accuracy. This is because 
the number of measurements each multi-bounce NLOS path gives (5, i.e., angle and time 
measurements) is less than the number of unknowns (at least 6 unknowns, i.e., the 3D positions of the 
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corresponding first and last incidence points on the propagation path). Therefore, without a priori map 
information, localisation scheme cannot benefit from the multi-bounce NLOS paths. 

  
Figure 4-9 6D localisation with LOS (left) and under a blocked LOS condition (right). 

Following the layers described in Section 3.1.1, a two-stage localisation scheme is adopted where the 
problem is decomposed into a channel parameters estimation routine, followed by a localisation routine 
[CSB+22]. The channel estimation routine determines the marginal posterior densities of the channel 
parameters (in the form of estimates and the associated uncertainties), based on the observations. The 
localisation routine uses the output of the channel parameters estimator to determine the 6D state of the 
UE. The focus of this research is on the 6D localisation from the estimated channel parameters. 

The localisation problem is then given by a maximum likelihood estimation (MLE), which is solved by 
gradient descent, starting from an initial estimate, provided by an ad-hoc estimator [NSJ+23]. The ad-
hoc estimator is based on a least square (LS) optimization problem.   

Results 

The root-mean-square-error (RMSE) of 3D position and 3D orientation estimation vs. the total transmit 
power of the MIMO OFDM system are considered as the performance indicators for the proposed 
localisation scheme. Assuming that there is a channel estimator operating close to the CRB of the 
channel parameters, one can plot the CRB of localisation parameters, on top of the performance curves 
of both ad-hoc and MLE schemes as a benchmark (the simulation parameters can be found in 
[NSJ+23]).  

Analysis of Figure 4-10 and Figure 4-11 shows that both MLE and ad-hoc estimators improve by 
increasing the transmit power and follow the corresponding orientation error bound (OEB) and position 
error bound (PEB). The saturation of performance in ad-hoc estimates is due to the resolution of 
sampling of SO (3). The gap between the performance of ad-hoc estimation and CRB is negligible for 
a large range of transmit powers, and that can even be tightened using MLE. The tightness of MLE to 
the CRB for a practical range, show the efficiency of the proposed estimation algorithms. 

 
Figure 4-10 RMSE of UE orientation estimation vs. 
transmit power without LOS and M=4 NLOS 
paths. 

 
Figure 4-11 RMSE of UE position estimation vs. 
transmit power without LOS and M=4 NLOS 
paths. 

For comparison, Figure 4-12 and Figure 4-13 show the corresponding results in case the LOS path is 
present and only 1 or 2 NLOS paths are available. The results indicate that the LOS path is valuable for 
single-BS 6D localisation, but not strictly needed.  
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Figure 4-12 RMSE of of UE orientation 
estimation vs. transmit power with LOS and 
M=1,2 NLOS paths. 

 
Figure 4-13 RMSE of UE position estimation 
UE vs. transmit power with LOS and M=1,2 
NLOS paths. 

Conclusions 

Evaluation of a 6D localisation scenario at mmWave frequencies (or higher) with a single BS 
transmitting OFDM signals and a multi-antenna UE showed the feasibility of localisation under the 
presence of at least 4 NLOS paths. The localisation routine, given the estimated channel parameters, 
consists of an MLE for which the initialization is provided by ad-hoc estimates obtained from 
geometrical arguments.  

4.2.2 OFDM monostatic ISAC/JCAS   
Motivation and background  

OFDM has been a popular choice as ISAC/JCAS waveform for monostatic sensing applications due to 
its widespread use in cellular communication standards as well as its promising performance and 
flexibility in radar operation [SW11], [PPG22]. As 6G networks are envisioned to operate at high carrier 
frequencies, reaching sub-THz bands (e.g., 140 GHz), hardware impairments (especially, PN), can 
create serious performance bottlenecks for OFDM-based ISAC/JCAS systems. The reason is that PN 
becomes more severe with increasing carrier frequency due to deteriorating oscillator non-idealities at 
high frequencies [CLE22], [SNM+14]. Compared to other types of hardware impairments (such as MC, 
PAN, CFO and IQI), PN represents the most challenging to deal with due to its rapidly time-varying 
behaviour, which necessitates dynamic compensation strategies. In the literature, PN estimation and 
compensation methods for OFDM communication systems have been extensively studied in the last 
two decades, leading to various time-domain [ZTS07], [LY17] and frequency-domain compensation 
algorithms [MRW+11], [PRF07], [CLE22]. However, the impact of PN on the sensing performance of 
OFDM ISAC/JCAS systems and the related PN mitigation strategies for sensing have remained largely 
unexplored. This can be attributed to the fact that at carrier frequencies considered up to and including 
5G NR (both FR1 and FR2), PN has a negligible impact on delay-Doppler estimation accuracy and the 
relevant use cases for radar do not require extreme levels of accuracy (cm or mm-level). 

As envisioned use cases and applications in 6G networks impose tight requirements on sensing accuracy 
[URB+21], PN requires rigorous investigation in monostatic sensing with OFDM ISAC/JCAS systems, 
to both understand its impact on the sensing performance and develop mitigation (and, in certain cases, 
exploitation) algorithms. The aim of this section is to describe a system and signal model for the 
monostatic sensing receiver of an OFDM ISAC/JCAS system under the impact of PN, formulate the 
sensing problem of interest and propose an approach to estimate PN, together with target parameters 
(delay and Doppler), and mitigate its effect on sensing performance. 

The problem tackled here represents an extension of the joint communication and sensing problem in 
[Ch. 4.3, HEX21-D31] to the case with non-ideal oscillators impaired by PN in the monostatic dual-
functional transceiver. In [Ch. 4.3, HEX21-D31], the trade-offs between radar sensing accuracy and 
communications rate have been investigated in the absence of oscillator PN. This section aims to focus 
on the sensing performance under PN, while the impact of PN on the communication performance is 
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studied in [Ch. 4.2.2, HEX23-D23]. Another relation to other Hexa-X deliverables can be found in [Ch. 
3.2.2, HEX22-D32], where the effect of intercarrier interference (ICI) on OFDM radar sensing has been 
explored in high-mobility scenarios and mitigation strategies have been developed. While ICI is a static 
and deterministic impairment whose severity depends on subcarrier spacing, carrier frequency and 
speed of targets in the environment [Ch. 3.2.2, HEX22-D32], PN in general constitutes a more serious 
challenge than ICI for radar sensing as it is a stochastic impairment with rapidly time-varying nature 
resulting from oscillator imperfections.  

Model and methodology 

As shown in Figure 4-14, an OFDM ISAC/JCAS system is considered, which consists of (i) an 
ISAC/JCAS transceiver containing, on the same hardware platform, a conventional OFDM transmitter 
(Tx) and a co-located radar receiver (Rx) for monostatic sensing; (ii) a remote communication Rx. An 
important distinction between radar and communication channels in such ISAC/JCAS applications with 
monostatic sensing transceiver is that the PN statistics in the radar Rx depend on radar channel 
parameters (i.e., target delays) due to up- and down-conversion with the same oscillator, while the PN 
statistics in the communication Rx have no relation to communication channel parameters due to the 
use of an independent oscillator at the communication Rx. In [Ch. 4.2.1, HEX23-D23], PN models have 
been presented for mmWave and sub-THz communication systems. In this deliverable, PN models are 
derived for monostatic sensing in ISAC/JCAS transceivers. As is shown below, such PN models have 
differential nature and thus delay-dependent statistics, different from those in [Ch. 4.2.1, HEX23-D23]. 

 
Figure 4-14 OFDM ISAC/JCAS system with monostatic radar transceiver under the impact of PN. 

Considering an OFDM frame with N subcarriers and M symbols, the problem of interest for radar Rx 
in Figure 4-14 is to jointly estimate delay, Doppler and the multiplicative PN matrix of size N-by-M 
from an N-by-M fast-time/slow-time observation matrix, taking into account the statistics of PN 
samples. Assuming the existence of a single target, the N-by-M observation matrix can be expressed as 
follows: 

𝑌 = 𝛼𝑊⊙𝐹*iz𝑋 ⊙ 𝑏(𝜏)𝑐i(𝜈)} + 𝑍 

where 𝛼,  𝜏,  𝜈  represent complex channel gain, round-trip delay and Doppler shift of the target, 
respectively, 𝑊 denotes the N-by-M multiplicative PN matrix, ⊙ is the element-wise product, 𝐹* is 
the N-by-N unitary DFT matrix, 𝑋  is the N-by-M complex data symbols matrix, 𝒃(𝜏)  and 𝒄(𝜈) 
represent, respectively, the frequency-domain and time-domain steering vectors of size N-by-1 and M-
by-1, and 𝒁 is the N-by-M additive noise matrix. In this problem, 𝛼,  𝜏,  𝜈 and 𝑊 are unknowns to be 
estimated, while 𝑿 is known to the radar receiver due to the co-located monostatic sensing architecture, 
as seen from Figure 4-14. 

The proposed approach to solve this challenging sensing problem consists of the following three stages: 
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• Derivation of range-dependent PN statistics in the radar receiver. 
• Hybrid MLE/maximum a-posteriori (MAP) estimator of delay, Doppler and PN parameters 

based on the PN statistics. 
• Iterated small angle approximation (ISAA) algorithm to optimize the MLE/MAP cost function. 

Range-dependent PN statistics 

Since the Tx and radar Rx shares the same oscillator for up-conversion and down-conversion, 
respectively, the radar Rx observes a differential/self-correlated PN given by 

𝜉(𝑡, 𝜏) = 𝜙(𝑡) − 𝜙(𝑡 − 𝜏) 

obtained as a result of conjugate multiplication of the time-delayed target echo with the transmit signal 
itself. This leads to a self-correlated PN process described by the difference between the original PN 
process and its version shifted in time by the round-trip delay of the target. Hence, the statistics of the 
PN in the radar receiver are delay-dependent. The statistical characterization of the PN can be written 
as 𝜉(𝑡, 𝜏) ∼ 𝑁(0, 𝜎j

0(𝜏)), where the form of the delay-dependent variance depends on the type of 
oscillator. For free-running oscillators (FROs) and phase-locked loop (PLL) synthesizers, there are 
standard expressions (assuming the existence of only white noise sources in the oscillator [Dem06], 
[CB06]), 𝜎j

0(𝜏) = 2	𝜋𝑓klm|𝜏|  (for FRO) and 𝜎j
0(𝜏) = 2	 Z012

Z(33+
(1 − 𝑒.0nZ(33+	|q|	)  (for PLL). The 

sampled version of the PN process has the delay-dependent statistics: 𝜉 = 𝑁z0, 𝑅(𝜏)}, where the 
covariance matrix structure differs between FROs and PLLs. Here, the PN covariance matrix is a 
symmetric Toeplitz-block Toeplitz matrix. Figure 4-15 shows the first row of this matrix (i.e., 
covariance profile) for different target delays and types of oscillators, revealing the delay-dependency 
of the PN statistics. 

 
Figure 4-15 Covariance profile of the delay-dependent PN statistics for different target delays and oscillator 
types. 

Hybrid MLE/MAP estimator 

Given the PN statistics, the hybrid MLE/MAP estimator is derived to estimate the deterministic gain, 
delay and Doppler parameters and the random PN matrix. There are two challenges associated with the 
implementation of this estimator:  

• A-priori unknown PN statistics: Since the PN statistics depend on the unknown target delay, it 
is not possible to estimate the multiplicative PN matrix and compensate for its effect on the 
observations before estimating target parameters. Hence, sensing and PN estimation should be 
performed simultaneously.  

• Nonlinearity of PN: PN appears nonlinearly in the observation-related part of the estimator cost 
function, while it appears linearly in the prior-related part due to its statistics being Gaussian. 
This leads to a high-dimensional non-linear optimization problem with many local minima. 

To overcome the above challenges, an algorithm is proposed, as described next. 
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Iterated small angle approximation (ISAA) algorithm 

To circumvent the nonlinearity of PN, an iterated small angle approximation (ISAA) algorithm is 
developed that invokes the small angle approximation (SAA) 𝑒Ir ≈ 1 + 𝑗𝜃  around the current PN 
estimate at each iteration. This enables progressive minimization of estimation error through successive 
residual PN estimations. Additionally, to deal with the a-priori unknown (delay-dependent) PN 
statistics, an alternating optimization strategy is proposed to update PN and delay/Doppler parameters 
in an alternating fashion. In a nutshell, the ISAA algorithm works as follows: (i) Initialize the PN 
estimate to be all-zeros and find the corresponding delay-Doppler estimates; (ii) At each iteration: Given 
the latest delay-Doppler estimate, update PN estimate by finding residual PN through SAA around the 
current PN estimate. Given the latest PN estimate, update delay-Doppler estimate. (iii) Continue until 
convergence (e.g., negligible change in delay-Doppler estimates). 

Results 

To evaluate the performance of the proposed sensing algorithm in the presence of PN for both FROs 
and PLLs [KWK22], simulations have been carried out using the following parameters: a carrier 
frequency of 140 GHz, a total bandwidth of 50 MHz (limited for computational reasons in this 
simulation study), 256 subcarriers with 195.31 kHz spacing, 10 OFDM symbols, an OFDM symbol 
duration of 5.12 us (with an additional 1.28 us cyclic prefix). The following three benchmark schemes 
are considered, including the proposed algorithm: 

• ISAA: The proposed ISAA algorithm. 
• 2-D FFT: The optimal delay-Doppler estimation method for OFDM radar in the absence of PN. 
• 2-D FFT (PN-free): 2-D FFT applied on the (hypothetical) PN-free observations (to provide a 

genie-aided baseline that can help quantify the PN-induced performance gaps). 

Besides the RMSE performances of the above schemes, theoretical limits are also plotted using the 
CRB analysis (CRB and CRB (PN-free), respectively, for observations with and without PN). In the 
simulations, a target with range 30 m and velocity 4 m/s is considered and an oscillator with 3-dB 
bandwidth 200 kHz and loop bandwidth 1 MHz (in the case of PLL) is used. 

(a)       (b) 

Figure 4-16 and Figure 4-17 show the range and velocity estimation performances with respect to SNR 
for FRO and PLL architectures, respectively. It is observed that the proposed algorithm can successfully 
mitigate the impact of PN in range estimation and exhibit performance very close to that achievable 
without PN, both for FRO and PLL architectures. The same observation is also valid for the 
corresponding theoretical bounds. This indicates that almost perfect recovery of PN-induced 
performance degradations in ranging is possible in monostatic OFDM radar. In addition, the 
performance of the standard 2-D FFT method saturates above a certain SNR as it does not consider the 
existence of PN, which suggests that PN can create bottlenecks for emerging 6G sensing applications 
with stringent accuracy requirements (cm and mm-level). Moreover, looking at the velocity RMSE 
results, PN causes severe performance losses in velocity estimation, especially for FRO architectures. 
This results from high correlation of PN in fast-time (which can be exploited to compensate for its effect 
in range estimation) and its low correlation in slow-time (which makes it difficult to estimate and 
compensate for PN in slow-time, leading to poor Doppler estimation). In the case of PLL, performance 
loss is less severe compared to FRO because PN has non-zero correlations for PLL across consecutive 
OFDM symbols through the use of feedback loops in the oscillator. 
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(a)       (b) 

Figure 4-16 Range and velocity estimation performances with respect to SNR for FRO architectures. 

 
(a)       (b) 

Figure 4-17 Range and velocity estimation performances with respect to SNR for PLL architectures. 

Figure 4-18 demonstrates the ranging performance with respect to oscillator quality (3-dB bandwidth 
for FRO and loop bandwidth for PLL) for a fixed SNR of 20 dB. The proposed MAP-ISAA algorithm 
is robust against worsening oscillator quality, while the accuracy of the standard FFT algorithm 
becomes worse as the 3-dB bandwidth increases or loop bandwidth decreases. Together with Figure 
4-16 and Figure 4-17, this result shows that PN can be effectively mitigated in range estimation under 
a wide range of operating conditions. The reader is referred to [KWK22] for more results and detailed 
interpretations. 

 
(a)       (b) 

Figure 4-18 Range estimation performance with respect to oscillator quality for fixed SNR for FRO and 
PLL architectures. 

Conclusions 

An OFDM-based monostatic ISAC/JCAS system has been considered in the face of oscillator PN. In 
particular, the problem of estimating delay, Doppler and multiplicative PN matrix in the monostatic 
radar receiver has been formulated and a solution approach based on iterated approximation of the 



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 65 / 108 

 

hybrid MLE/MAP cost function has been proposed, taking into account the delay-dependent PN 
statistics in the radar receiver. Key take-aways from the results can be listed as follows: 

• Range vs. velocity accuracy under PN: Due to high (low) correlation of PN in fast-time (slow-
time), the impact of PN on ranging accuracy can be almost entirely mitigated, whereas velocity 
accuracy is severely degraded by PN. 

• FRO vs. PLL – impact of oscillator type: PLLs lead to less severe performance losses in velocity 
estimation than FROs because there exists non-zero correlation between consecutive OFDM 
symbols (i.e., slow-time correlation). 

• Scenarios where PN induces significant degradation: PN-induced performance losses are more 
pronounced at higher SNRs and for oscillators with higher 3-dB bandwidth and smaller loop 
bandwidth. 

4.2.3 AI-based monostatic ISAC/JCAS  
Motivation and background  

As previously mentioned in this deliverable, 6G networks are severely affected by hardware 
impairments. Classical model-based approaches suffer from performance degradation under model 
mismatch, or they become too complex to solve. Data-driven designs relying on machine learning can 
adapt to the impairments, given that they do not assume any underling model. Machine learning for 
ISAC/JCAS has been studied in different scenarios [MSW+22], [SFY+22], [WLH+22]. However, these 
methods often lack interpretability and require high training complexity.  

Model-driven machine learning emerges as a trade-off between model-based and data-driven methods. 
In this approach, the structure of the model-based methods is exploited, but some of the components 
are still allowed to be optimized based on data [SWE+20]. Moreover, the learnt components can be 
initialized based on the model-based assumptions, thus starting from a reasonably well-performing 
point. Model-driven machine learning has found a wide range of applications in communications 
[HJW+19], [SFE+21], [YL22], due to the extensive models available.  

In this section, end-to-end model-driven machine learning for ISAC/JCAS is applied. The goal is to 
extend the previous work reported in [HEX22-D32] to account for randomized prior information of the 
target AoA and to reduce the training time. An architecture with parameter sharing is proposed to 
perform 2 tasks simultaneously: (i) precoder designing at the transmitter and (ii) target AoA estimation 
at the receiver. A comparison between (i) model-driven machine learning, (ii) neural-network-based 
learning and (iii) the best-known baseline is made under hardware impairments and complexity 
constraints. 

Model and methodology 

The problem formulation is summarized in Figure 4-19. A monostatic sensing transceiver equipped 
with a uniform linear array (ULA) is considered, which is also used as communication transmitter. The 
transmitter is divided into an encoder, that maps the information messages to complex symbols and a 
beamformer, that steers the antenna energy into a particular direction. The received sensing signal 
depends on the target presence. If it is present, the signal reflected from the target is received, otherwise 
only noise is received. The communication receiver has a single antenna, and it is assumed to be always 
present. The signal at the communication receiver is independent of the target’s presence, and CSI is 
also received. In both cases, a LOS link is considered between transmitter and target, and between 
transmitter and communication receiver. The location of the target and the communication receiver is 
random in each transmission. Some a priori angular information about target and communication 
receiver locations is available at the transmitter. 
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Figure 4-19 Considered monostatic ISAC/JCAS scenario. 

A model-based transmitter is designed resorting to the beampattern synthesis approach in [AEL+14], 
[TSF+17]. The model-based radar receiver was derived as the maximum a-posteriori ratio test 
(MAPRT) detector [GCH20]. The model-based communication transmitter was selected using M-
quadrature amplitude modulation (M-QAM), and the communication receiver as a maximum likelihood 
estimator, given some channel state information.  

Following the model-based design, an ISAC/JCAS architecture for model-driven learning is developed, 
as summarized in Figure 4-20. The goal is to learn a matrix of steering vector of the ULA transmitter 
for different angles, such that it can adapt to imperfections in the spacing of the antenna elements. Since 
the communication receiver is already optimal given the CSI (even in the presence of impairments), the 
matrix was trained just based on the radar link. However, supervised end-to-end learning was used to 
optimize the elements of the matrix. Thus, a radar receiver based on differentiable operations was 
designed. 

 
Figure 4-20 Block diagram of the ISAC/JCAS model-driven approach. The matrix A is optimized via 
model-driven learning. The radar receiver was designed based on differentiable operations so that the 
gradient can be computed in an end-to-end manner. 

Results 

Here the most important results of the model-driven approach of Figure 4-20 are presented (for more 
results, see [MHK+22]). In Figure 4-21 the performance in terms of probability of detection and angle 
estimation is depicted. The spacing between the antenna elements in the ULA is considered nonideal 
and normally distributed around the ideal value. In addition, the case of complexity limitations for both 
neural-network-based and model-driven learning is studied. In general, machine learning techniques 
outperform the conventional model-based method. Furthermore, when complexity is limited, model-
driven learning still has similar performance, whereas neural-network-based learning severely degrades. 
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Figure 4-21. Monostatic ISAC/JCAS results under hardware impairments. 

In Figure 4-22, machine learning methods are tested to an unseen scenario during training, where model-
driven learning is shown to generalize better than neural-network-based learning to unseen data since 
it exploits the model-based structure of the steering vectors. 

 
Figure 4-22 Results under hardware impairments with low complexity constraints. The target lies in an 
angular sector that is not included in the set of training angular sectors. 

Conclusions 

In this section, a model-driven approach for ISAC/JCAS has been developed. This approach 
outperforms model-based knowledge under the presence of hardware impairments, similar to neural-
network-based learning. However, when complexity is constrained, model-driven learning yields better 
performance than neural-network-based learning, especially when tested with different data from 
training. 

4.2.4 AI-based multi-static ISAC/JCAS  
Motivation and background  

The 6G systems will be deployed in low (< 1 GHz), mid (1-10G) and high frequency bands (>10 GHz). 
At high frequency 6G systems will operate in frequencies which will overlap with traditional radar 
bands, thus enabling 6G communication systems to be employed for sensing. Multiple 6G base stations 
can be employed in the sensing activity to form multi-static sensing. The high-frequency operation of 
6G will enable high-dimension MIMO coupled with the wide bandwidth operation of these systems can 
provide high resolution in angle, range, and Doppler domains [YXX+19], [WSC+21], [BBP+22]. This 
enables both conventional radar type processing such as estimating its parameters such as velocity, 
range, etc. but also in non-radar type sensing where the sensing includes identifying the contextual 
information. In [HEX21-D31] a method to identify the landscape around the UE is proposed wherein 
the path-loss information is captured in a multi-static way towards inference on the landscape. In 
[HEX22-D32] an extension to contextual sensing towards detecting indoor human activity was 
proposed where the main goal was to employ active sensing by exploiting the connection between the 
UE and BS to transfer sensory data (such as inertial sensor data) for detecting the human activity.   

In this work, the focus is on the sensing of passive targets using AI-based methods. Sensing here 
involves detecting the presence of the target and estimating its parameters, such as position. Targets by 
themselves will not aid in any form of the sensing process and hence called passive targets. Vision-
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based target sensing is very common and can be employed in several use cases. Even though vision-
based methods provide highly accurate passive sensing of targets, they compromise privacy and 
security. They also do not work well in low light conditions, and since new cameras need to be installed, 
the cost is increased with coverage. Sensing piggybacked on the omnipresent cellular communication 
will provide enhanced sensing coverage at a low cost. Adding a sensing service on top of the 6G 
communication system will enable several use cases, such as intruder detection, equipment tracking, 
etc. 

There exist several works, such as [Alq17], [YND+17], and [MZW20], where Wi-Fi wireless signals 
have been used for passive sensing. In these methods, channel statistics of mid-band frequencies (2 – 
10 GHz), such as received signal strength indication (RSSI), Doppler shifts, etc., are used to sense 
targets. These studies are not applicable for 6G channels operating in high bands (>10 GHz) since 6G 
channels are sparse with clustered multi-paths which pertains to highly reflective scatterers in the 
environment. Typically, these channels are modelled using geometric clustering models such as SV 
channel models [SV87], [LAH+19].  

In the following, AI-based methods to sense the passive targets using communication infrastructure, as 
shown in Figure 4-23 is discussed. AI methods for detection and estimation of the position of the passive 
targets by exploiting the perturbations in the SV cluster-based geometric channel model is discussed. 
The resolution, coverage, and position uncertainty using the proposed methods for various indoor 
deployments are analysed.  

 
Figure 4-23 Passive indoor sensing using communication infrastructure. 

Model and methodology 

6G channels at high frequencies (above 20 GHz) are sparse. These channels have multipaths in the form 
of clusters with each cluster mapping to a highly reflective surface in the environment as shown in the 
Figure 4-2. A deployment consisting of a single low-cost transmitter having omni-directional anchor 
UE and  𝐿 BS acting as receivers, each having a ULA with 𝑁' antennas with each element separated by 
a half wavelength is considered. 

During default state, that is, when the target is not present in the room, then the CSI between the 
transmitter and the 𝑙-th receive device is given by   

 𝒉𝒍𝒏𝒖𝒍𝒍 = £ £ 𝜷𝒍,𝒖,𝒗𝒂𝒓𝒙z𝝓𝒍,𝒖,𝒗}𝑮z𝝍𝒍,𝒖,𝒗},

𝑵𝒓𝒂𝒚𝒔

𝒖N𝟏

𝑵𝒄𝒍

𝒗N𝟏

   

The values 𝑁6F 	indicates the number of clusters and 𝑁'Ba5 indicates number of rays in that cluster. The 
𝑢-th ray of the 𝑣-th cluster at the 𝑙-th receiver will have a complex gain, AoA and angle of departure 
(AoD) given by 𝛽F,z,{ ,  𝜙F,z,{  and 𝜓F,z,{  respectively.  The transmit gain pattern and receive array 
pattern is denoted by 𝐺 and 𝑎'G respectively. 
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Figure 4-24 𝑳 + 𝟏	Convex shadow regions caused during alternate hypothesis. 

The presence of the target in the scene perturbs each of the 𝐿 links uniquely between the transmitter and 
receiver. Due to the high frequency operation, it is assumed that target completely blocks the rays, and 
there is no diffraction or reflections. This results in 𝐿 + 1 convex shadow regions 𝑆4G ⊂ ℝ0 and  𝑆'G,F ⊂
ℝ0 behind the target as given in the Figure 4-24. Therefore, during alternate hypothesis, the CSI is given 
by 

 𝒉𝒍𝒂𝒍𝒕 = £ £ 𝜷′𝒍,𝒖,𝒗𝒂𝒓𝒙(𝝓𝒍,𝒖,𝒗)𝑮(𝝍𝒍,𝒖,𝒗)

𝑵𝒓𝒂𝒚𝒔

𝒖N𝟏

𝑵𝒄𝒍

𝒗N𝟏

   

where 𝛽′F,z,{ is zero if the ray corresponds to the reflection from the scatter corresponding to the shadow 
region shown in the Figure 4-24 [YH22]. 

In order to sense the perturbation in CSI towards passive target detection, a shallow convolution neural 
network (CNN) based AI pipeline called CsiSenseNet is trained. The tuning of this network is done in 
such a way that the network yields good performance, and, at the same time, it can be implemented in 
embedded platforms. The network is shown in the Figure 4-25. The target detection and position 
estimation part of the CsiSenseNet shares several layers except the last two layers shown in the green 
shaded and blue shaded areas for target detection and position estimation, respectively. 

 
Figure 4-25 AI pipeline for passive target detection and position estimation. 

The CSI data is converted into 2D frames, wherein CSIs for a given beamforming direction from 𝐿 
links are concatenated in horizontal dimension and all the concatenated CSIs at different beam forming 
directions are concatenated in the vertical dimension as given in the equations below. 

 𝒉𝜽𝒊 = �𝒉𝟏,𝜽𝒊®𝒉𝟐,𝜽𝒊® … ®𝒉𝑳,𝜽𝒊� ∈ ℂ
𝑳𝑵𝒓	 ,   

 

 𝑯	 = 	 [𝒉𝜽𝟏
𝑻 |𝒉𝜽𝟏

𝑻 |. . . |𝒉𝜽𝑵𝒃
𝑻 ]𝑻 ∈ ℂ𝑳𝑵𝒓	𝑿	𝑵𝒃   
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where 𝒉r> is the aggregated CSI in direction 𝜃� and | is the concatenation operation. 𝑁3	indicates the 
number of beamforming directions employed [YH22]. 

An indoor deployment in a room of 25 m2 area with single transmit device and 𝐿	receive devices (BSs) 
each having an ULA with 𝑁' = 8 antennas is considered. Each receiver has beamforming capability to 
scan between −𝜋 /2 to +𝜋 /2 using 𝑁3 = 7  beams as shown in Figure 4-24 with L=1. For target 
detection, an AI pipeline is trained using the different realization of channel 𝐻	 using a simulator for 
both hypothesis (null and alt). The labelled training set (𝐻� , ℎ𝑦𝑝�)	|	𝑖 = 1,2, . . . 𝑀 is used to train the 
target detection part of the AI pipeline shown in Figure 4-25 to minimize the binary cross entropy loss.  
Similarly, position estimation part of the network is trained using the training set (𝐻� , 𝑝�)	|	𝑖 =
1,2, . . . 𝑀, where 𝑝� is the true position of the target for the alternate hypothesis channel realization 𝐻�. 
The position part of the CsiSenseNet is trained to minimize the L2 regression loss. 

Results 

MFM simulator [Rob21] is used to create three deployment scenarios with number of receivers, 𝐿 =
1,2 and 3. The channel model for alternate hypothesis is modified as discussed above. To simplify the 
CSI computation during alternate hypothesis, all the rays within the occlusion angles, 𝒪4G/  and 𝒪'GF  are 
blocked. 

Resolution Analysis: The relation between the size of the object with the accuracy of detection, 𝒫 for 
the proposed AI method is analysed.   To assess the performance, CsiSenseNet is trained by quantizing 
the room into 0.0625 m2 bins and generating 2000 CSI realizations for each hypothesis having object 
of different sizes in them.  The average performance for placing the target of various sizes at 1000 
random positions for different deployments with 𝐿 = 1,2, 𝑎𝑛𝑑	3 is as shown in the Figure 4-26 [YH22]. 

 
Figure 4-26 Accuracy of detection variation with the size of the target for different deployment. 

Coverage Analysis: The detection accuracy variations in the 2D space of the room are analysed. The 
detection accuracy not only depends on the size of the target, but also on the position where the target 
is present. Coverage is better for targets closer to the nodes or larger sized. The coverage analysis for 
the proposed AI methods for different deployments with number of receivers 𝐿 = 1,2	𝑎𝑛𝑑	3 is shown 
in Figure 4-27 [YH22]. 

 



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 71 / 108 

 

Figure 4-27 Coverage analysis for different deployment and sizes. (a) Coverage for L=3 and scatter width, 
rho=0.5 (b) Coverage for L=3 and target width, 𝛔 = 𝟎. 𝟓	𝒎 (b) Coverage for L=3 and target width, 𝛔−=
𝟎. 𝟖	𝒎 (c) Coverage for L=1 and target width, 𝛔 = 𝟎. 𝟖	𝒎. 

Position estimation: In order to assess the performance of the CsiSenseNet towards position estimation, 
the AI agent is trained with data from 2000 CSI realizations by placing the target in the centre of each 
quantized bins of 0.0625m2. Then various sized targets are dropped at 1000 random positions to 
evaluate the performance. The performance of the proposed algorithm is shown in Figure 4-28 using 
the CDF (𝐹�(ϵ)) of the L2-error,  ϵ, mean of the L2-error, µ� , and the 90-percentile, Δ��2 [YH22]. 

 
Figure 4-28 Performance analysis of CsiSenseNet for Position estimation. (a) and (b) are performance for 
L=1 and L=3 and (c) compares the performance of the CsiSenseNet on L=3 deployment with baseline 
algorithm. 

In Figure 4-28-(c) the performance of the CsiSenseNet is compared with the baseline method. In the 
baseline method the position is estimated by triangulating beamforming angles with maximum 
attenuations [YH22].  

Conclusions 

Passive target detection using vision-based methods is commonly employed and they provide highly 
accurate target detection. However, these methods suffer from degraded performance when it comes to 
privacy, security, coverage, and cost [YH22]. When passive sensing is piggybacked on the 
communication infrastructure it reduces cost, increases privacy, and enhances coverage. However, to 
accomplish good performance in terms of accuracy of detection and parameter estimation, efficient 
algorithms are needed. A shallow CNN-based AI pipeline called CsiSenseNet for passive target 
detection and position estimation is proposed. 

The proposed methods indicate that the sensing resolution (i.e., size of the target that can be faithfully 
detected) can be improved by having a deployment with many receivers, as shown in Figure 4-26. 
Results indicate that human-sized target (σ = 0.8	𝑚) can be detected with more than 90 percent 
accuracy with two receivers. The coverage study indicates that the larger objects have good coverage 
and coverage along the beamforming direction of the receiver is better as indicated by Figure 4-27. The 
analysis of position estimation indicates that the position uncertainty for a given sized target can be 
reduced by having more receivers. The proposed estimation method outperforms the angle-based 
baseline methods, as shown in Figure 4-28.  

4.2.5 Bi-static ISAC/JCAS  
Motivation and background  

One of the major drawbacks when considering a monostatic ISAC/JCAS system which has co-located 
transmission and receive antennas, is the mutual interference that cause by the communication and 
sensing signals that share the same antenna [BTL+19]. Even though most of the existing research on 
ISAC/JCAS considered the system as full duplex, in practical scenario achieving full duplex 
communication is highly challenging. Therefore, this interference can degrade the performance of both 
functions, leading to reduced communication throughput and degraded sensing parameter estimation 
accuracy. In a bi-static ISAC/JCAS system, the sensing signal is transmitted and received by separate 
antennas, which can significantly reduce the mutual interference and improve the accuracy of sensing 
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parameter estimation. Hence, ISAC/JCAS in bi-static or multi static setup is worthy to investigate 
considering it as a practical solution to overcome this problem. 

In [JVG+22], the joint design of the transmitter and radar with user receivers was addressed, resulting 
in a general resource allocation problem. However, neither radar-centric nor communication-centric 
designs could achieve a scalable trade-off between the two functions. Authors in [PPG22] considered a 
joint sensing and communication model where the modulation symbol is precoded by the 
communication and sensing beamforming vectors to serve both purposes. In [LML+18] a transmit 
beamforming design was proposed that utilized the communication waveform as a radar sensing 
waveform. However, these works had a loss of degrees of freedom for sensing when the number of 
communication users was small. To address this, [LHS+20] proposed to jointly optimize both 
communication and sensing waveforms, making full use of antenna array degrees of freedom. In 
[LLL+22] the CRB is introduced as a measure of sensing performance Instead of minimizing the 
mismatch between desired sensing waveforms and used it in the ISAC/JCAS joint waveform design. 

The focus of this work is on a development of an ISAC/JCAS beamforming in a multi-user and multi-
target MIMO network, with particular attention paid to the optimization of the target estimation 
performance as measured by the CRB for unbiased estimators. The proposed problem considers the per-
user SINR constraints as the communication performance guaranteeing metric and further constraint on 
transmit power budget limit. 

Model and methodology 

The considered scenario is a mmWave MIMO OFDM bi-static ISAC/JCAS system, with two multi-
antenna BSs that are inter-connected via backhaul links. Each BS serves a street which is perpendicular 
to each other and assumes that the wireless channel between BSs is obstructed. At a given time, one BS 
(BS1) works as the ISAC/JCAS transmitter, while the other BS (BS2) acts as the sensing receiver that 
receives the reflected signals from the sensing targets. Due to the backhaul link, it is assumed that the 
transmitted signal is known to the sensing BS. Let 𝑁4	and 𝑁' denote the number of antennas at the 
transmit and sensing BSs respectively. Both transmit BS and sensing BS comprise of uniform linear 
array (ULA) with half-wavelength separation. BS1 communicate with K single-antenna UEs while 
detecting L stationary point targets distributed within the environment. Above-described system setup 
is shown in Figure 4-29.  

 
Figure 4-29 Bi-static ISAC system of two MIMO BSs, K single antenna UEs and L sensing targets. 

At the transmit BS, both the communication and sensing functionalities operate simultaneously by joint 
beamforming. Let 𝒔𝒄 ∈ ℂ𝑲 contains K unit-power data symbols intended for the K users, where each 
data symbol for the i-th communication user is denoted as 𝑠� ∈ ℂ. The sensing signal is denoted as 𝒔𝒔 ∈

BS1

BS2

Comm  Sig nal

Sensing Sign al

UE 1
UE 2

UE K

N_t

N_r

Tar get 1

Tar get L



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 73 / 108 

 

ℂ*? and assume orthogonal to communication signals, 𝒔𝒄. Hence, the total transmit signal is written as 
s = [𝑠6 , 𝑠5]H ∈ ℂ(^�*?). Let W = [𝑊6 ,𝑊5] ∈ ℂ*?×(^�*?) denote the transmit beamforming matrix to be 
design, where 𝑊6 = [𝑤/, 𝑤0, … , 𝑤^] ∈ ℂ*?×^ is the communication beamformer for K communication 
users and 𝑊5 ∈ ℂ*?×*?  is the beamforming matrix for sensing. Therefore, the signal x ∈ ℂ*? 
transmitted by BS1 can be expressed as, x = ∑ 𝑤E𝑠E^

EN/ +𝑊5𝑠5. 

Without loss of generality, the following assumptions are assumed to be satisfied by the transmit signals. 
The communication signals intended for different users are uncorrelated, i.e., 𝔼{𝑠�𝑠Ii} = 0 for 𝑖 ≠ 𝑗 , 
and 𝔼{|𝑠�|0} = 1. The sensing signals sent from different antennas are uncorrelated with each other, 
i.e.,  E{𝑠5𝑠5i} = 𝐼*?. (These waveforms can be generated by pseudorandom coding.) 

By transmitting x from BS1, the received signal 𝑦E ∈ ℂ at the receiver of the communication user k is 
𝑦E = ℎEi𝑥 + 𝑧6 where,  𝑧6 ∈ ℂ is an additive white Gaussian noise (AWGN) with the variance of	σ60, 
ℎE ∈ ℂ*? represents the communication channel between BS1 and the k-th communication user which 
is assumed to be known to both BSs. Further substituting x in previous equation, received signal of the 
communication user k is represent as, 𝑦E = ℎEi𝑤E𝑠E +∑ ℎEi𝑤I𝑠I^

I�E + ℎEi𝑊5𝑠5 + 𝑧6  where, the first 
term is the desired signal for the k-th communication UE, while the second term and the third term are 
the interference caused by the signals to the other UEs and the sensing signals, respectively. Thus, the 
signal-to-interference plus noise ratio (SINR) at the k-th communication UE can be expressed as, 

γE =
®ℎEi𝑤E®

0

∑ ®ℎEi𝑤I®
0
+ ®ℎEi𝑅5ℎE®

0
+ σ60^

I�E

 

where, R+ = W+𝑊5i denotes the sensing covariance matrix. 

 The received echo signal y+ ∈ ℂ�@  at the receiver of the BS-2 due to the transmitted signal x reflected 
from the sensing targets is given by 	𝑦5 = 𝐺x + 𝑧5 , where z+ ∈ ℂ�@ is an AWGN with the variance of 
each entry being σ+0 ,	G ∈ ℂ�@×�A represents the target response matrix and can be further expressed as, 
𝐺 = ∑ ρF𝑏(ϕF)𝑎i(θF)M

FN/  where L is the number of targets, ρ�, θ�  and ϕ�  denote the reflection 
coefficient, azimuth AoD, and azimuth AoA associated with the l-th target. a(θ�) and b(ϕ�) are the 
transmit array response vector and receive array response vector respectively. 

From the perspective of target sensing, the parameter estimation accuracy is of the main interest in the 
work, the CRB is adopted to evaluate the performance of the target sensing for the beamforming design. 
Assuming M as FIM with respect to estimation parameters, the CRB for the G is the inverse of FIM, M 
which can be expressed as, CRB(𝐺) = 𝑡r(𝑀./). Hence, transmit beamforming optimization problem 
which optimizes the sensing performance while guaranteeing the per-user communication throughput 
satisfying the total power constraint can be expressed as, 

min
{�B}	,	")≽	2

𝑡𝑟(𝑀./) 

s.t.		γE ≥ ΓE , 𝑘 = 1,… , 𝐾	

	£‖𝑤E‖0
^

EN/

+ 𝑡𝑟(𝑅5) ≤ 𝑃H 

where Γ� is the SINR threshold of the k-th communication user and PR is the maximum transmission 
power of the BS1. 

Assuming no prior information about the sensing targets, response matrix G is estimated instead of 
estimating individual parameters of G. In this scenario the FIM M with respect to vectorized G is 
reduced to /

�),
𝑅GH ⊗ 𝐼*C, where R� is the sample covariance matrix of x given by 𝑅G = 𝑥𝑥i. Therefore, 

objective function of above optimization problem, CRB for the G will be reduced to σ50𝑁'𝑡𝑟(𝑅G./). 

Results 
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To evaluate the performance of the presented beamforming optimization solution for bi-static ISAC 
system, simulations were carried out using numerical tools.  Bi-static system considers here work in 28 
GHz carrier frequency and the transmit array is an ULA with 16 elements while the receive array is 
ULA with 20 elements. The total available transmit power is 30 dBm while the variance of both 
communication and sensing channels are 0 dBm.  

To check the trade-off between target estimation MSE and per user SINR threshold for single target 
scenario, simulations were carried out fixing number of communication users in the system. Target 
estimation MSE calculated from the optimization problem against the per user SINR threshold when 
the number of communication users are K=12 and K=6 is plotted in Figure 4-30. 

It can be clearly seen from the graph that sensing parameter estimation performance is degrading as the 
per user SINR threshold is increasing. It is mainly due to allocating more power towards communication 
user direction compared to the sensing signal. It is clearly observed that as the number of users increase, 
the system performance degrades rapidly compared to the moderate number of users i.e., K=6 in this 
scenario. 

 
Figure 4-30 Trade-off between target estimation MSE and per user SINR threshold for single target 
scenario, when the number of communication users are K=6 and K=12. 
Similarly, to check the trade-off between target estimation MSE against number of communication 
users for single target scenario, simulations were carried out fixing the per user SINR threshold value 
in the system. Target estimation MSE calculated from the optimization problem against the number of 
users in the system when per user SINR threshold at 10 dB and 20 dB is plotted in Figure 4-31. 

2 4 6 8 10 12 14 16 18 20
SINR(dB)

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

M
SE

(d
B)

Target Estimation MSE vs users SINR

K = 6
K = 12



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 75 / 108 

 

 
Figure 4-31 Trade-off between target estimation MSE against number of communication users for single 
target scenario, when per user SINR threshold is at 10 dB and 20 dB. 

As mentioned earlier, this graph also proves that as the number of users increases, there is a noticeable 
decrease in estimation performance. However, when the required SINR threshold is around 10 dB, the 
variation of the MSE is not that significant even though the number of users is increased. Hence, this 
system performs well when modest number of communication users and SINR threshold is configured 
for operation. 

Conclusions 

The mutual interference caused by communication and sensing signals sharing the same antenna in a 
monostatic ISAC/JCAS system can degrade the performance of both functions. While most existing 
ISAC/JCAS research assumes full-duplex communication, achieving it in practice is challenging. A bi-
static or multi-static ISAC/JCAS system with separate transmit and receive antennas can significantly 
reduce mutual interference and improve sensing parameter estimation accuracy. This work proposes an 
ISAC/JCAS beamforming solution for a multi-user and single target MIMO network that optimizes 
target estimation performance while satisfying per-user SINR and transmit power budget constraints. 
Currently this work is extended to detecting multiple targets and target's channel parameter estimation. 
In the future, different scenarios are to be considered. 

4.2.6 Coverage analysis for extended reality  
Motivation and background  

Extended reality (XR) comprises virtual reality (VR), augmented reality (AR), mixed reality (MR) and 
it is expected to be the emerging immersive application in the future communication systems 
[BMM+20]. Due to the high data rate and high-accuracy localisation performance requirement, the 
related XR applications need to be supported by the mmWave (30-100 GHz) and even the THz 
frequency band (0.1-10 THz). Although promising localisation results are shown in these works and 
new localisation-aware mobile network deployment solutions are proposed [ASB+22], the coverage 
issue is rarely discussed, which is a practical issue in real localisation scenarios. This coverage is more 
pronounced when 3D orientation of the UE is considered (i.e., 6D localisation) due to the antenna array 
equipped at the UE side. As a result, by exploring the spatial structure of the sub-arrays (SAs) (i.e., 3D 
array) in an array of SAs system, the connectivity can be enhanced and the coverage with regards to 
both communication and localisation KPIs can be improved. 

Model and methodology 

Consider a far-field downlink scenario with M BSs and one UE, as shown in Figure 4-32-(a). The 
positions and orientations of the BSs are known in a global coordinate system (GCS). Each BS is 
equipped with a planar array and is connected to an independent radio frequency chain (RFC). By 
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adopting a 3D array of SAs structure, the array of the UE consists of N planar SAs arranged in a 3D 
space with fixed relative positions and orientations, as shown in Figure 4-32 and Figure 4-33. Each SA 
is connected to an independent RFC. Both localisation (i.e., determining the position and orientation of 
the UE) and communication functions are considered in this system. 

 
Figure 4-32. Illustration of the considered geometric model. (a) A downlink MIMO wireless system with 
multiple BSs and one UE equipped with a 3D array. (b) The geometry of the azimuth and elevation 
components of the AoD and AoA. 

In THz wireless communication systems, the LOS path plays a dominant role [SNA+20]] while the 
multipath fading effect also exists due to the scattering on aerosols in the atmosphere [BPA19]. A 
commonly used model for THz wireless propagation captures the LOS path through a deterministic 
model and generates the multipath components using random processes of known distributions 
[TSC+21]. As experimentally validated by [PBA21], Rice distribution that models both LOS and NLOS 
components can achieve a good fit to empirical measurement data in an indoor THz wireless 
environment. Therefore, a Rician fading model is used to characterize the statistics of the considered 
THz channel, which contains all the geometric information (e.g., AoA, AoD, and delay) of the signal 
propagation path. Based on the channel model, the localisation error bound for 3D position and 3D 
orientation estimation can be derived. Sequentially, the localisation coverage can be defined as the 
probability that the PEB/OEB is lower than a threshold 𝜉)/𝜉� when the UE is at random positions with 
a random orientation [ZBC+22].  

Results 

Two different array configurations (2D and 3D) are evaluated, each configuration with 6 SAs. For the 
3D array, each SA is placed at the centre of a side of a 0.1	 × 	0.1	 × 	0.1mk cube. On the other hand, 
the 2D array has all the SAs placed on a plane. Figure 4-33 shows the two array layouts where the cube 
is tiled into a plane. To evaluate the performance of the two array configurations, an indoor scenario 
with two BSs as shown in Figure 4-34 is considered, where the UE is placed inside a 20 × 20 × 5m 
indoor space (i.e., −10 < 𝑥 < 10,−10 < 𝑦 < 10, 0 < 𝑧 < 5). 



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 77 / 108 

 

 

 
Figure 4-33 Illustration of the planar (2D) and cuboidal (3D) array layouts by tiling the cube into a plane. 

 
Figure 4-34 The indoor scenario considered in simulations. 

The localisation coverage of the 2D and 3D array configurations are evaluated. To this end, the UE 
position and orientation are generated using a uniform distribution, namely, 𝑥, 𝑦~𝑈(−10, 10) ,  
𝑧~𝑈(0, 5),  and 𝛼, 𝛽, 𝛾~𝑈(0, 5). The PEB and OEB samples are collected to attain an empirical CDF. 
To give a compact view of the PEB/OEB’s threshold with the coverage in different order of magnitude, 
the complementary cumulative distribution function (CCDF) is shown, by performing two simulations: 
(i) M = {2, 3, 4} BSs in a system with a fixed antenna directivity. From Figure 4-35 and Figure 4-36 it 
is observed that the planar array (dashed curves) suffers from limited coverage for all cases. As 
explained earlier, this is due to the lack of LOS with enough BSs in some specific UE orientation. Take 
the 4 BSs, 𝜃 = 180� case with a coverage of 70% (outage of 30%) for example, a PEB within about 
0.028 m using the cuboidal array is attained, while the planar array gives a PEB within about 0.173m. 
The same result holds in most of the range of the threshold 𝜉)/𝜉�, revealing that the cuboidal (3D) array 
can achieve better coverage than the planar (2D) array in the practical range of threshold. Besides, from 
Figure 4-35 it is seen that under the same threshold, the more BSs that are deployed, the lower the 
outage and thus the higher the coverage that can be obtained for both 2D and 3D arrays. From Figure 
4-36, it is seen that increasing the antenna directivity (i.e., decreasing 𝜃) would improve the localisation 
coverage in the low 𝜉� area but degrade the localisation coverage in the high 𝜉� area. This is because a 
more directional antenna increases the antenna gain and thus produces a lower PEB and OEB in the 
covered space, which results in the higher coverage in the low 𝜉�	area. However, at the same time, a 
narrower beam also causes the shrinkage of the covered space, which results in the coverage limit in 
the high 𝜉� area. 
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Figure 4-35 PEB and OEB coverage of the two types of arrays under {2,3,4} BSs with antenna directivity 
𝝑 = 𝟏𝟖𝟎𝐨. 

 
Figure 4-36 PEB and OEB coverage of the two types of arrays under antenna directivity 𝝑 =
{𝟏𝟐𝟎𝐨, 𝟏𝟓𝟎𝐨, 𝟏𝟖𝟎𝐨} with 2 BSs. 

Conclusions 

A downlink, far-field sub-THz band MIMO wireless system is considered with multiple BSs and one 
UE equipped with a 3D array over a Rician fading channel. By deriving the localisation error bound in 
terms of PEB and OEB, the planar and 3D array configurations were analysed and compared with 
regards to the coverages of these metrics. The numerical results revealed a higher coverage for 3D array 
in both localisation and communication KPIs given a suitable threshold, and minor performance loss in 
certain areas compared with the planar array. The results are instructive for the BS placement 
optimization, array design of the THz localisation and communication systems, which can be potential 
future research directions.  

4.2.7 Location-aided communications  
Motivation and background  

With 4G and 5G, wireless networks have made great progress in serving stationary/low mobility 
devices. At high speeds, however, there are still various issues to be solved. To connect everything at 
any time and any place, as one of the main objectives of 5G and beyond, vehicle-to-anything (V2X), in 
general, Internet-of-Vehicle (IoV) [GMA+22] communication plays an important role as the passengers 
in their vehicles expect the same quality-of-service (QoS) as they experience at home. With levels 3-5 
of self-driving vehicles and the probable standardization of mobile integrated access and backhaul 
(IAB) in 3GPP Release 18, considerably higher rates may be required compared to those provided by 
LTE. Here, following 5G NR, there may be a need for using mmWave communications via small-cell 
deployments.  

Although mmWave communication supports high data rates, it can be significantly affected by the 
penetration loss, along with severe path loss and beamforming mismatch. Blockage becomes more 
problematic for high mobility IoV systems, e.g., in highways or rural areas, due to the lack of good 
reflectors (e.g., buildings) and the mobility of vehicles. Beamforming mismatch was highlighted in 
[HEX23-D23] as an important challenge for mmWave communication and the necessity for side 
information (such as location information) was pointed out to perform initial beam access.  
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Recently, as one contribution to [HEX22-D32], [GMA+22] proposes a dynamic BS handover scheme 
for blockage avoidance using additional large-scale predictor antennas [GMP+21] mounted on top of 
vehicles. However, deploying extra BSs/antennas may not be commercially viable, and requires 
backhauling/handover with possible failures/delays. More importantly, deploying a BS/IAB along a 
highway/inter-city road may not be feasible if electricity connection is missing. 

Instead of deploying additional BSs, one may consider the concept of RISs, as a low-power alternative 
solution. With a proper deployment, RISs can cover different areas of the highways/inter-city roads, 
which makes it possible to bypass dynamic blockages with no need for handover, backhauling, and 
wired energy supply of regular BSs, which would consume higher power with larger overheads. 

In [GMA+22b], the potentials and challenges of RIS-based IoV communications were studied in 
highways/inter-city roads with dynamic blockage pre-avoidance. The work concentrated on two key 
challenges of RIS in high-speed IoV networks, namely, channel state information at the transmit side 
(CSIT) acquisition and imperfect beam reflections. To reduce the CSIT acquisition overhead, a large-
scale fading-based service region prediction scheme is proposed. Here, the service regions of different 
RISs, based on the location information, are learnt by the network beforehand for predicted dynamic 
blockages positions. In this way, without instantaneous CSIT, the BS can exploit the vehicle and the 
dynamic blockers speed information to pre-select the RISs in different time slots. Then, the hardware 
aspects such as the transceiver impairments and phase noise effects leading to imperfect reflections are 
studied and the performance of the RIS-based scheme with multiple candidate techniques is compared. 

Model and methodology 

To enable multi-RIS IoV communications, one needs to reduce the RIS selection and configuration 
overhead as well as the sensitivity to the vehicles speed. For this reason, a large-scale based RIS pre-
assignment (LSRPA) scheme is proposed in which the UEs and the blockers speed/position information 
is utilized along with the large-scale channel properties to predict and pre-select the RIS of interest, 
among multiple ones. 

 
Figure 4-37 The proposed blockage pre-avoidance scheme in RIS-aided IoV networks. 

Consider the cases with either a macro or a small BS along a highway/inter-city road, as illustrated in 
Figure 4-37. The LSRPA scheme follows the following procedure. At time slot T1, if the vehicular UE 
detects a dynamic blockage, e.g., by a truck, it estimates the speed and the position of the blocker, e.g., 
using cameras, lidars. Then, along with its own speed/position information, the UE informs the BS 
about the speed and the position of the dynamic blocker (As an alternative approach, each vehicle can 
inform the BS about its own speed/position information). Knowing the blocker speed/position 
information at T1, the BS predicts the blocker position at Slot Tn. Then, the BS utilizes the large-scale 
channel condition, i.e., the average performance which has been learned over time for the different 
blocker positions, to find the appropriate regions of interest to be covered by different RISs in different 
time slots. Then, the BS exploits the UE speed/position information provided at T1 to predict the UE 
position at Slot Tn and pre-select the appropriate path towards the UE, either through direct BS-UE 
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connection or via an RIS-assisted link. Finally, at Slot Tn, only the instantaneous CSIT of the pre-
selected path, and not all possible paths, is acquired and the BS/RIS beamforming is adapted 
accordingly. 

Results 

Considering the cases with one BS and two or three RISs with perfect and imperfect reflection 
efficiency, in the following, the performance of the LSRPA scheme is evaluated, in comparison with 
other alternative techniques. Typical RIS setups, as in, for example, [ZRS+21] are used, and the RIS 
beamforming is performed using [3, Algorithm 1]. As the metric of interest, the throughput (defined as 
the total number of successfully decoded bits per total transmission duration) is evaluated. Both sub-6 
GHz (2.8 GHz) and mmWave (28 GHz) bands are considered and different numbers of RIS elements 
(10-500), are shown in Figure 4-38. The effect of the hardware impairments is studied. To evaluate the 
efficiency of the LSRPA scheme, it is compared with different alternative methods, listed in Table 4-1. 
Table 4-1. Evaluation methods for location-aided communications. 

Name of the method Details 

Proposed LSRPA scheme Utilizing RISs for dynamic blockage pre-avoidance. 

Additional BS An additional BS is deployed to bypass the blockage with more cost. 

Network controlled repeater It is a normal repeater with beamforming capabilities. More expensive 
but has active signal amplification. 

Benchmark An ideal case where BS search for all possible links with perfect CSIT. 

Random phase LSRPA method without optimizing the RIS phase. 

No RIS The UE is served by BS direct link without the help from RIS. 

Here, throughput is presented as a function of the BS transmit power with dynamic blockage. The BS 
and the UE are equipped with 16 and 4 antennas, respectively. The RISs have 200 elements. The 
transmit power at the repeaters is set to 32 dBm. With transceiver impairment, the proportionality 
coefficients, which describe the severity of the distortion noises at the transmitter and the receiver, are 
set to 0.005 (see [XWW+21] for the details of the hardware impairment model). The BS-RIS 1/repeater 
1 and BS-RIS 2/repeater 2 hop distances are set to 200 m and 126 m, respectively. The hop distance 
between the BS and the additional BS and RIS 3 are 1500 m and 150 m, respectively. Finally, the results 
of sub-6 GHz refer to the case that the BS switches to sub-6 GHz with no RIS. Except for the results of 
sub-6 GHz with 20 dB VPL, 2.8 GHz frequency and 5 MHz bandwidth, the rest of the results are 
obtained with 40 dB VPL, 28 GHz frequency and 10 MHz bandwidth. 
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Figure 4-38 Location-aided communication performance evaluation, from [GMA+22b]. 

A few interesting insights can be drawn from the results: 

• The proposed LSRPA scheme can reach the same performance as the benchmark, with lower 
overhead, thanks to the utilization of location information. 

• The performance loss is not high compared to additional BS cases for both 2 and 3 RISs. 
• Hardware impairments and random phases could degrade the performance drastically. 
• Sub-6GHz is better when using a direct path thanks to lower penetration loss. 

Conclusions 

The potentials and challenges of RIS-assisted communication for blockage pre-avoidance in moving 
networks were studied. As demonstrated, RIS pre-selection and blockage prediction gives a chance to 
make the network performance more robust against dynamic blockages with an acceptable CSI 
acquisition overhead, compared to exhaustively estimate all RIS channels.  
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5 From theory to practice 
In this section the effects of hardware impairments on localisation and sensing measurements are 
investigated. There are also results presented from measurements performed with a demonstration setup 
focusing on AoD estimations and ISAC. 

5.1 Impact of hardware impairments 
Most localisation and sensing works rely on idealized models of the received signals as a function of 
the channel parameters (angles, delays, Dopplers) induced by the propagation environment, based on 
the assumption of deterministic and sparse channels in high-frequency systems. However, in sub-THz 
bands for 6G communications, pilot signals can be distorted due to the presence of HWIs. Consequently, 
when algorithm derivation is based on a mismatched model (i.e., without considering the HWIs in the 
channel model), the localisation performance is unavoidably affected. In this section, an OFDM-based 
system is considered and the impacts of various HWIs on the received observations based on the HWI 
models mentioned in Section 4.1.2 are evaluated. It is assumed that the localisation and sensing 
algorithms have no knowledge about these residual HWIs. The degradation of performance is quantified 
by the misspecified Cramér-Rao bound (MCRB) [FGG+17], and the impact of individual impairments 
are also discussed. 

5.1.1 The effect of hardware impairments on sensing 

5.1.1.1 Analysis of impact of hardware impairments on bistatic sensing 
In this section, the effects of each hardware impairment namely, PN, IQI, and PA are analysed through 
simulations for range estimation in a bistatic sensing scenario. The simulation setup is based on the 5G 
NR CP-OFDM grid with 120 kHz subcarrier spacing, 400 MHz bandwidth, and 16-QAM modulation. 
The environment consists of a transmitter and a receiver, plus two other reflections from the walls 
according to Figure 5-1. Both transmitter and receiver are equipped with a linear antenna array of 8 
antenna elements, and free path loss model is used for the LOS path and reflections. The range spectrum 
is depicted based on 2-D FFT on the grid without applying any further windowing. 

 
Figure 5-1 Simulation environment for evaluating the impact of HWIs on bistatic sensing. 

The effect of each HWI represents itself as added distortion to the received signal and increases the 
noise floor in the range spectrum as indicated in Figure 5-2, Figure 5-3, and Figure 5-4. The theory 
behind this phenomenon can be explained by Bussgang theorem [BUS52]. Suppose that the input-
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output relation for a nonlinear system is defined as 𝒛 = 𝑭(𝒙). Based on the Bussgang theorem, in a 
MIMO scenario the input-out relation can be expressed as 

𝒛 = 𝑭(𝒙) = 𝑩𝒙 + 𝑫 

Where B is a matrix of the form of 

𝑩 = 𝑪bG𝑪G./ 

Where 𝑪𝒛𝒙 and 𝑪𝒙 are cross-correlation and auto-correlation matrices, and D is the distortion matrix 
uncorrelated with x. This distortion represents the increase of noise floor. This model can be applied 
for all HWIs without loss of generality. 

The increase of noise floor level can be problematic in case of a multi-target scenario with different 
radar cross-sections for different targets, as the weak reflections corresponding to smaller radar cross 
sections may fall below the noise floor and masked out. Even in case of not being masked out, still the 
higher noise floor affects the detection algorithms, for example in constant false alarm rate (CFAR) 
detector, the higher noise floor directly affects the threshold for detection that can filter out weak 
reflections. 

 As can be seen in the Figure 5-2 and Figure 5-3, the target at 128 meters is masked out in case of 
applying the HWIs effect for PN and IQI. In Figure 5-4, the effect of PA nonlinearity is depicted for 
two different cases of 0% input back-off (IBO), and 20% IBO. By applying 20% IBO, the nonlinearity 
effect is suppressed to some level that the difference between the highest target peak and the lowest 
target peak decreases by 0.5 dB. In this way, it shows how the suppressed nonlinearity effect contributes 
to the detection. When targets have less difference in spectrum magnitude, the CFAR detection scales 
the detection threshold in a way that turns out to higher probability of detection for weak targets. On 
the other hand, increasing too much on IBO decreases the total received power which can lead to lower 
SNR, so the choice of IBO should be optimized by considering the system settings and thresholds for 
the detection in the CFAR detector.  

 
Figure 5-2 Range spectrum map considering the 
effect of PN. 

 
Figure 5-3 Range spectrum map considering the 
effect of IQI. 
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Figure 5-4 Range spectrum map considering the effect of PA. 

5.1.1.2 Analysis of impact of phase noise on monostatic sensing 
In this part, the same ISAC/JCAS setup as in Section 4.2.2 is considered and the MCRB analysis 
[FGG+17] is employed as a tool to theoretically quantify the impact of PN on monostatic sensing when 
the sensing receiver is unaware of PN, i.e., when the receiver applies standard algorithms without taking 
into account the presence of PN [KME+22]. The following theoretical bounds are evaluated: 

• CRB (PN-free): The deterministic CRB on delay-Doppler estimation in the absence of PN 
provides a hypothetical baseline to reveal PN-induced performance gaps. 

• CRB: The hybrid CRB on delay-Doppler estimation in the presence of random PN quantifies 
the sensing performance when the sensing receiver is aware of PN and has the knowledge of 
its statistics. 

• Lower bound (LB): The LB on delay-Doppler estimation, obtained as a result of the MCRB 
analysis [FGG+17], quantifies the sensing performance when the receiver is unaware of PN. 

Simulations have been conducted using the following parameters: a carrier frequency of 140 GHz, a 
bandwidth of 30.72 MHz, comprising 256 subcarriers with 120 kHz subcarrier spacing. Each OFDM 
symbol has a duration of 8.91 µs, comprising the data part (8.33 µs) and the cyclic prefix (0.58 µs). In 
addition, a target with range 50 m and velocity 4 m/s is considered and an oscillator with 3-dB 
bandwidth 100 kHz and loop bandwidth 1 MHz (in the case of PLL) is used. 

Figure 5-5 and Figure 5-6 show the theoretical bounds on range-velocity estimation with respect to SNR 
and target range for FRO architectures, respectively. It is seen from the LB curves that the mismatch 
between the true model with PN and the assumed model without PN (i.e., the PN-unaware receiver) 
leads to large performance losses in range and velocity estimation, which are especially more 
pronounced at high SNRs and far-away targets. The reason is that the variance of the delay-dependent 
PN process increases with target delay [KME+22]. In addition, at low SNRs, the dominant factor 
affecting the sensing performance is additive noise (thermal noise), while at high SNRs, the effect of 
PN becomes more significant than that of additive noise, leading to performance bottlenecks. 

 
Figure 5-5  Theoretical bounds on range and velocity estimation under the impact of PN, as a function of 
SNR. 
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Figure 5-6 Theoretical bounds on range and velocity estimation under the impact of PN, as a function of 
target range. 

In Figure 5-7, the theoretical bounds are plotted with respect to PLL loop bandwidth. It is observed that 
ignoring PN can lead to an order of magnitude degradation in ranging accuracy. For velocity estimation, 
the gap between the LB and the CRB is less pronounced compared to range estimation, indicating that 
the effect of PN on velocity estimation is difficult to mitigate since the correlation of PN across OFDM 
symbols is very low thus cannot be exploited for PN estimation and compensation.  

 
Figure 5-7 Theoretical bounds on range and velocity estimation under the impact of PN, as a function of 
PLL loop bandwidth. 

5.1.2 The effect of hardware impairments on localisation 
Based on the channel models with HWIs described in Section 4.1.2, simulations to evaluate the effect 
of HWIs on localisation are performed (the details of simulation parameters can be found in 
[CKA+23b]).  

5.1.2.1 Channel estimation results 
For convenient analysis, one specific realization of the HWIs for the system is adopted. The results of 
channel parameters estimation using the ESPRIT (estimation of signal parameters via rotational 
invariance techniques) method [RK89] (circle, square, and diamond markers) and the MMLE 
(mismatched MLE) (solid curves) are shown in Figure 5-8-(left). The estimators are benchmarked by 
the CRBs of the ideal/mismatched model (CRB-MM, dashed curves) and the LB using a mismatched 
model (dotted curves with cross markers). Note that the average transmit power P is calculated without 
considering the nonlinearity of the power amplifier (calculated before the PA). When the transmit power 
P is low, the LB (of using a mismatched model) has a similar performance as CRBs. This indicates that 
in low transmit power, the mismatched model will not significantly affect the performance, as the 
expected accuracy is low and limited by the noise. With the increase of transmit power, the contribution 
of MCRB decreases due to an increased SNR, and eventually, the mismatched localisation is lower 
bounded by the absolute lower bound (ALB). This indicates that the localisation performance can no 
longer be improved by increasing transmit power, which cannot be ignored in the scenarios require 
high-accuracy localisation performance. Regarding the estimators, the ESPRIT (using a mismatched 
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model) provides low-complexity results with limited performance in delay estimation. However, the 
refined results using an MMLE can reach the LB (solid curves align well with the dotted curve).  

 
(a)      (b) 

Figure 5-8 The effect of HWIs on localisation. (a) Comparison between channel parameters estimation 
results (ESPRIT and MMLE) and different lower bounds (CRB of the MM and the LB of the mismatched 
estimator) in terms of AoA, AoD and delay. (b) Comparison between localisation results (position, 
orientation, and clock offset estimation) and different lower bounds (CRB of the MM and the LB of the 
mismatched estimator). 

5.1.2.2 Localisation results 
Based on the estimated channel parameters, the UE position and orientation can further be calculated. 
Like the channel estimation results, two estimators (LS and MMLE) and two bounds (CRB and LB) are 
evaluated. The results for localisation are shown in Figure 5-8-(b). The figure shows that at low transmit 
powers, the LB and CRBs coincide, implying that the HWIs are not the main source of error. At higher 
transmit powers (10 dBm for OEB, and 20 dBm for PEB), LB deviates from the CRBs, and the 
positioning performance is thus more severely affected by HWIs. The MMLE in high SNR is close to 
the ALB, indicating the validity of the MCRB analysis. Now that the validity of the bounds has been 
established, in the following the effect of HWIs on localisation is evaluated based on the bounds. First 
the impairments are studied individually, then the impact of the waveform type is evaluated, and finally, 
the impairment levels are varied.  

5.1.2.3 The effect of individual impairments  
To understand the effect of different types of HWIs, the LB for AoA, AoD, and delay estimation are 
studied by considering one type of HWIs at a time. The results are shown in Figure 5-9 for (a) PN, (b) 
CFO, (c) MC, (d) AGE, (e) ADE, and (f) IQI. The effect of PA is discussed in Figure 5-10. Considering 
the HWIs defined as random variables with a fixed impairment level, multiple hardware realizations 
are performed with a fixed pilot signal, and all the resultant LBs are plotted in the shaded regions. The 
results show that different types of the HWIs affect angle and delay estimation differently. The PN, 
CFO, and IQI introduce noise on the symbols across different subcarriers and hence affect delay 
estimation. Since the phase change introduced by CFO affects the phase changes across beams, angle 
estimation will also be affected. Instead of affecting the phase changes between different subcarriers, 
the MC, AGE, and ADE distort the steering vectors and therefore have a more significant effect on the 
angle estimation. For all the HWIs, the negative effect on the performance occurs when the transmit 
power is high.  
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Figure 5-9 LBs of channel parameter estimation under different types of impairment with multiple 
realizations: (a) Phase noise, (b) Carrier frequency offset, (c) Mutual coupling, (d) Array gain error, (e) 
Antenna displacement error, (f) IQ-imbalance. The y-axis represents angle in degrees and delay in meters. 

High peak-to-average-power ratio (PAPR) is one of the critical issues in implementing the OFDM 
signals, and a promising alternative is to use DFT-S-OFDM. When increasing the transmit power, the 
PAN is more likely to happen, as can be seen in Figure 5-10-(a). The delay estimation suffers more 
from the nonlinear distortion because of the clipping of transmit signal, which distorts the uniformity 
of phase changes across the subcarriers. The effect on angle estimation is less pronounced (at the same 
level of transmit power) since different antenna elements experience similar distortions with identical 
PAs adopted in this work. The random OFDM symbols and the FFT version of the benchmark symbols 
(a special case of DFT-S-OFDM by choosing an identity mapping matrix) are compared, and the results 
are shown in Figure 5-10-(b). Due to the reduced PAPR by DFT-S-OFDM, the localisation performance 
can be improved, as shown in the right figure, at the expense of reduced data rate by the spreading factor 
employed in DFT-S-OFDM [Mie19]. 

 
Figure 5-10 The effect of PA on channel parameters estimation using (a) OFDM, and (b) DFT-S-OFDM. 
The legend is the same as Figure 5-9. 

In summary, the simulation results showed that PN and IQI have a stronger effect on delay estimation, 
while MC, AGE, and ADE have a more significant effect on angle estimation. The CFO and PAN affect 
both angle and delay, where the former one depends on the sweeping strategy and number of 
transmissions, and the latter’s factor is determined by the transmit power or amplitude of the signals. 
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5.2 Over-the-air demonstration  
In this section, the setup and of the experiment and their results for mmWave localisation and sensing 
are presented. The objectives of these experiments are to (i) understand the practical limitations (in 
particular the impact of hardware impairments) of localisation and sensing; (ii) report the achievable 
performance with a real hardware platform. The demonstration setup consists of a Xilinx Zync 
Ultrascale+ RFSoC ZCU111 evaluation kit, 2 SiversIMA semiconductors EVK06002 57-71 GHz radio 
evaluation kits and a PC for data processing. The waveform used for the measurements is an OFDM 
signal based on the 5G new radio (NR) standard, modified to have a subcarrier spacing of 960 kHz. 
Two different waveforms have been used with different bandwidths, one with 400 MHz bandwidth and 
the other one with 800 MHz. 

5.2.1 Localisation  
The localisation measurements have focused on how to improve the AoD estimation using derivative 
beams. Figure 5-11 provides an illustration of the measurement setup and the definition of AoD. Here, 
the measurements at the Rx are processed to estimate the AoD from the Tx array, which could in 
principle be combined with range estimates to estimate the location of the Rx. As a first step the beams 
had to be created and characterised. This was done using the demonstration setup with the Tx radio 
mounted on a turntable, and a power meter for measuring the received signal. The Tx radio is equipped 
with a 16-element uniform linear array with 2.5 mm inter-element spacing and the carrier frequency is 
69.12 GHz. The Tx and the Rx were mounted three meters apart surrounded with absorber material, as 
can be seen in Figure 5-12. Each beam was characterised for directions in the range ±60º with 
measurement steps of 1.8º. In Figure 5-13 the measurement results for the boresight beam and its 
corresponding derivative beam are presented. 

 
Figure 5-11 Bird-eye view illustration of the setup for AoD measurement experiments, showing the 
definition of turn-table orientation and AoD. 
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Figure 5-12 Setup used for beam (left) and AoD (right) measurements. The Tx radio is mounted on a 
turntable in both cases. For the beam measurements a horn antenna is mounted 3 m away and connected 
to a power meter and for the AoD measurements the horn antenna is replaced with the Rx radio. The setup 
is also surrounded with absorber material to minimise reflections from the surroundings. 

 
Figure 5-13 Measurement results from beam characterisation of directional beam in blue solid line and its 
corresponding derivative beam in dashed orange line. 

For the measurements, an OFDM waveform with N = 384 subcarriers and M = 1120 symbols is 
transmitted. A total of 10 beams are employed (5 directional/sum and 5 derivative/diff beams), and each 
occupying a certain number of symbols in the time domain, as shown in Figure 5-14. Each pair of 
directional and derivative beams is steered towards a certain angle, leading to a total of 5 angles (beam 
look directions) given by [-5.8 -2.9 0 2.9 5.8] degrees, respectively.  

 
Figure 5-14 OFDM time-frequency beam assignment for AoD estimation experiments. 
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To achieve finer resolution in AoD estimation, measured beam responses in Figure 5-13 are interpolated 
to obtain 0.01 deg resolution, as shown in Figure 5-15. The interpolated responses are very close to the 
original measured responses, and thus used in AoD estimation. 

 
(a)      (b) 

Figure 5-15 Measured and interpolated beam responses to be employed in AoD estimation, corresponding 
to (a) directional and (b) derivative beams. 

Since the beam responses are real, a non-coherent processing strategy is adopted to estimate AoDs: 

1. The observed time-frequency OFDM matrix is coherently integrated over the frequency 
domain. Since the time delay of the LOS path is zero through synchronization procedures, no 
phase change occurs across subcarriers, implying that directly adding up the subcarriers for 
each symbol is equivalent to coherent integration. 

2. Absolute squares of the resulting integrated observations are computed. 
3. A least-squares (LS) problem is formulated to estimate AoDs, given the interpolated version of 

the beam response measurements. 

In Figure 5-16, several AoD estimation results are presented for different true AoD values, 
corresponding to different turntable orientations in Figure 5-12. It is observed that the AoD estimates 
obtained via the proposed non-coherent processing algorithm are quite accurate for various values of 
the true AoD.  
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(a)      (b) 

 
(c)      (d) 

Figure 5-16 AoD estimation results for different AoD values (turntable orientations). The angular spectrum 
corresponds to the objective function of the LS problem as a function of AoD.  

In Figure 5-17, the AoD estimation errors are reported as a function of the ratio of the number of 
derivative beams to the total number of beams employed while keeping this total number fixed. Note 
that Figure 5-14 represents a special case of this ratio (50%). The goal of this experiment is to evaluate 
the accuracy improvement provided using derivative beams in AoD estimation. As seen from the figure, 
around 80% usage of derivative beams yields the best AoD estimation performance, suggesting that the 
conventional directional-beam only transmission (corresponding to 0% in Figure 5-17) is not an optimal 
strategy for AoD estimation and positioning (though it might be optimal for communication metrics). 
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Figure 5-17 AoD estimation error with respect to the ratio of the number of derivative beams to the total 
number of beams employed (directional + derivative beams). 

In summary, several key take-aways from OTA localisation experiments are as follows: Firstly, very 
accurate AoD estimation results can be achieved in the presence of a-priori information on the receiver 
location (11.6 degrees in our case) in a LOS-only propagation environment. In particular, with perfect 
Tx/Rx beam alignment, 0.01 degrees accuracy can be attained, while with 5 degrees Tx/Rx beam 
misalignment, 0.2 degrees accuracy can be attained (note that 16-element array implies approximately 
6 degrees of resolution). Also, optimal beams for communications (i.e., SNR-maximizing directional 
beams) do not necessarily correspond to optimal beams for localisation. Finally, using a combination 
of directional and derivative beams leads to better performance in AoD estimation than using only 
directional beams. 

The AoD estimation accuracy can be translated into localisation accuracy as follows: a UE at a known 
distance of R meters with an angle estimation error 𝜃 is localised with a position error of 𝛿 = 𝑅𝜃 
[Rao17]. Hence at 10 meters, 0.2 degrees AoD errors leads to a position error of 35 cm, while 0.01 
degrees AoD error leads to a position error of 0.2 cm.  

5.2.2 Sensing 
The sensing measurements were performed in an office area with the Tx and Rx radios placed 6.6 m 
apart, as shown in Figure 5-18, Figure 5-19, and Figure 5-20. Both radios have beam steering 
capabilities with 63 different available beams, equally distributed in the range ±45º. During the 
measurements 50 different Tx beams and 56 different Rx beams are used. They are swept so that all 
different combinations of Tx and Rx beams are measured, in total 2800 combinations. All 
measurements are done on 5600 symbols, i.e., 2 symbols per beam combination. With a symbol duration 
of about 1.1 µs, the total measurement time is 6.25 ms. 



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 93 / 108 

 

 
Figure 5-18 Measurement setup with Tx radio to the left and Rx radio to the right, separated by 6.6 m. 
Both radios are oriented facing 45º from each other out from the wall. 

 
Figure 5-19 View from Tx radio. The Rx radio is visible in the left part of the figure at an angle of 45º. 

 
Figure 5-20 View from Rx radio. The Tx radio is visible in the right part of the figure at an angle of 45º. 

The aim of the radar functionality is to be able to detect and possibly track objects in a surrounding. In 
an area such as an office there are lots of different static objects which would give reflections and hence 
detections. To improve the capability of detecting moving objects a background measurement can be 
performed which then can be subtracted from subsequent measurements. In this case, 10 different 
background measurements were performed during night in the office when nobody was present. The 
results from these measurements are shown in Figure 5-21. The left plot shows the received power in 
arbitrary units as a function of transmitted and received beam direction. The right figure shows a range 
plot generated from an FFT of the channel estimation. The system is calibrated so that the LOS path 
corresponds to 0º angle on Tx and Rx, and 0 m distance in the range plot. These are also the most 
pronounced peaks in the background measurement. In addition to these a few more details can be 
observed. In the direction plot there are two blobs in the bottom right corner as well as two more faint 
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ones around [Tx angle, Rx angle] = [48,40] and [35,60]. In the range plot several peaks can be seen in 
addition to the LOS-peak. These are found around 1, 2 and 8 m. The 8 m peak comes from reflections 
in the windows visible in Figure 5-19 and Figure 5-20. The perpendicular distance from each radio to 
the windows is 6.6 m, which gives a pathlength of about 8.2 m longer than the LOS-path. These are 
also the reflections which cause the blobs in the bottom right of the angle plot. At 2 m the peak comes 
from reflections around the cupboards also visible in Figure 5-19 and Figure 5-20. The perpendicular 
distance from the radios to the cupboards is around 2.8 m which corresponds to and increased distance 
from the LOS-path of 2.1 m. These peaks correspond to the other two blobs in the angle plot at [Tx 
angle, Rx,angle] = [48,40] and [35,60]. The last peak at around 1 m has no obvious explanation, but it 
is always visible in all background measurements. Possibly it is reflections from the ceiling or floor, 
even though that should result in a shorter distance. 

 
Figure 5-21 Background measurement when the office area is empty. The left figure shows the received 
power in arbitrary units as a function of the beam direction of the Tx and Rx radios. The right figure shows 
the range plot where several peaks are visible. The system is calibrated so that the LOS-path corresponds 
to 0 m distance and 0º angle. 

Using the knowledge about the response from the background in the office, the detection and tracking 
capability of new obstacles can be improved. This is done by subtracting the background from 
subsequent measurements, in that way enhancing the difference from the empty office space [SV14]. 
A test was made where a person is tracked when moving parallel to the radios at a perpendicular distance 
of about 2 m. Starting from a position in line with the Tx radio and then taking a measurement every 
0.5 m, stopping when being in line with the Rx radio. The results from some of these measurements are 
shown in Figure 5-22 to Figure 5-24. From the results some positions are more favourable than others 
as the peak heights varies. This is due to the geometry of the setup where the waves are better reflected 
at certain angles, so it depends both on the position and orientation of the person. What can also be 
noted is that the person is not only introducing a new reflection point, but at some positions the 
background reflections are also suppressed as they are blocked by the person. This is shown as negative 
peaks in the plots that always have the same Tx or Rx angle as a corresponding positive peak.  
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Figure 5-22 Top figure shows results when standing 0.5 m in front of Tx, and the bottom figures shows 
results when moving 1 m towards Rx. 

 



Hexa-X                                                                                                                            Deliverable D3.3 

 

Dissemination level: public Page 96 / 108 

 

 

 
Figure 5-23 When the person continues to move along the setup, 1 m at a time, the movement can be tracked 
as the blob in the angle plot moves accordingly. 
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Figure 5-24 As the person continues the movement some positions generate better reflections than others. 
It can also be noted that some reflections visible in the background get cancelled out by the presence of the 
person, shown as negative values in the angle plots. 

For each peak in the angle plots a two-dimensional Gaussian can be fitted to obtain the angles and a 
corresponding error. This can be used to calculate the intersection points for each position and track the 
path of the moving person. In addition, the error can also be plotted based on the width of the Gaussian 
fit. To improve the position estimates the range measurements can be utilised. Again, with a Gaussian 
fit the peak position and the width can be obtained to calculate both the range and its corresponding 
error. In Figure 5-25 the measurement results are shown where the blue dots are the measured positions, 
based on the angle information, encircled with their corresponding 1 sigma error, the red crosses the 
nominal positions and the green stars represents the Tx (0,0) and Rx (0,6.6) radios. The black lines 
show the possible positions based on the range information with the one sigma error indicated by the 
dashed lines for the position at y=0.5 m and the dotted lines for the position at y=3.5 m. The results 
from the angle and range measurements can be combined to obtain a more accurate position and 
decrease the total error. This is shown in Figure 5-26, where the most probable position also is indicated 
based on both the angle and range data. From this figure, it can be concluded that the uncertainties in 
the measurements are lower for positions closer to the Tx or Rx radio. This is because the angle 
uncertainty has a smaller effect at smaller distances, meaning that if the object is close to one radio the 
angle uncertainty of that radio does not add much to the total error. On the other hand, larger distance 
to the other radio causes an increased sensitivity to the uncertainty of that angle. That is compensated 
for by also taking the range information into account, but as can be seen in Figure 5-25, the range 
information does not help as much for the positions where the distances to Tx and Rx are similar.  
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Figure 5-25 The path of the passing person. The 
green stars represent the Tx and Rx radios, the red 
crosses the expected positions and the blue dots the 
measured positions based on the intersection 
points of the angles. The blue lines show the 1 
sigma error of the position estimate. The black 
lines show the measured range with its 
corresponding 1 sigma error, dashed lines for the 
position at y=0.5 m and dotted lines for the position 
at y=3.5 m. 

 
Figure 5-26 The blue dots are the measured 
positions calculated from a combination of the 
angle and range information. The shaded blue 
regions show the 1 sigma error bound for each 
position while the red crosses indicate the expected 
position and the green stars show the positions of 
the Tx (y=0 m) and Rx (y=6.6 m) radios. 

 

In general, the measurement error is in the order of 0.1 m to 0.3 m, depending on the position relative 
to the radios. However, there are several ways of improving these results. One obvious thing to 
investigate is the AoD and AoA estimations. In this example it is the index values of the beams that 
have been used. With a more precise way of determining these angles, e.g., using derivative beams 
shown in section 5.2.1, the results could be much improved. Another way to improve the results would 
be to increase the number of subcarriers in the signal to increase the resolution in the range estimation. 
This can be achieved by either increasing the bandwidth or decreasing the subcarrier spacing. 
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6 Conclusions 
Localisation/positioning and sensing are expected to be tightly integrated with communication in 6G 
systems. This integration can come in various forms (device-level, waveform-level, resource-level) and 
will significant implications in terms of new services and applications that can be supported, as well as 
in terms of the communication capabilities themselves.  

For such an integration, localisation and sensing must be an inherent part of the 6G architecture, which 
must ensure sufficient sensing infrastructure, optimized and adaptive space-time-frequency resources, 
as well as computational and storage resources for signal processing methods with different interfaces 
(from raw data to processed object trajectories) to the external services and with support for sensor 
fusion. Since sensing and localisation services may in some cases reduce available resources for 
communication, management and orchestration should ensure that all services and application (both 
from within the network as well as external to it) can be fulfilled by the network. Further work on the 
integration of localisation and sensing in the 6G architecture is thus recommended.  

Supporting the KPIs of the Hexa-X use case families places demands on the infrastructure, the 
hardware, as well as the bandwidth and time resources. Suitable allocation, optimization, and selection 
of all these resources is needed to meet the stringent localisation and sensing KPIs. It was found via 
real-world demonstrations that large contiguous spectrum is necessary, as well as large arrays at both 
the Tx and Rx sides, if both extreme location and extreme orientation accuracy is needed. Determination 
of infrastructure placement and space-time-frequency resources can be solved by suitable optimization 
problems, which can account for both the KPIs and to some extent the KVIs (e.g., energy consumption).   

While 6G localisation and sensing will be able to support use cases with extreme requirements in terms 
of KPIs, Hexa-X has taken a broader view and considered the implications in terms of the KVIs, namely 
trustworthiness, sustainability, and inclusiveness. For each of these KVIs, localisation and sensing play 
a dual role. On the one hand, localisation and sensing can contribute to improved trustworthiness, 
sustainability, and inclusiveness, while on the other hand, the localisation and sensing processes 
themselves should be trustworthy, sustainable, and inclusive. Focusing on the latter role (the processes) 
and on trustworthiness, there are important issues related to security (protection against attacks of the 
sensing signals and processes), to dependability (ensuring integrity of the sensing information), and 
privacy (of both connected users and assets). All these topics require further study.  

This deliverable also reported final results regarding models and methods.  

• In terms of models, the use of geometric channel propagation models is recommended, with 
inherent consistency in time, space, and frequency bands. Moreover, since localisation, sensing 
and communication will all occur over the same channel, unified channel models that can 
support both traditional communications, but also localisation and sensing, should be further 
developed. Complementary to channel models, realistic hardware models are also important in 
the development and analysis of localisation and sensing methods and designs. Several such 
models have been presented.  

• In terms of methods, results on both localisation and sensing have been reported, considering 
both model-based and machine learning-based (AI-based) approaches. In the absence of 
hardware impairments, high accuracy can be achieved, including centimetre-level and 
decimetre-level localisation accuracy under LOS and obstructed LOS conditions. AI-based 
methods have revealed new signal designs and signal processing methods, even in the presence 
of hardware impairments. Coverage analyses with 1 and 2 BSs were conducted to provide a 
uniform quality of service. Finally, the impact of location information for improving 
communication was studied, aided by the introduction of a RIS. 

Finally, this deliverable bridged the gap from theory to practice, by providing both an in-depth analysis 
on the impact of hardware impairments and by listing the achievable performance from OTA 
demonstrations. Hardware impairments can be transformed to higher noise floors, leading to masking 
effects, which is important for safety-critical applications. It was also shown that, in most cases, 
hardware impairments tend to be more detrimental for localisation and sensing than for communication, 
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though there are certain exceptions, and in some rare cases impairments can even be harnessed to 
improve performance. The OTA demonstrations of new localisation beams shows that conventional 
communication beams, corresponding to SNR-maximizing directional beams, are sub-optimal for 
localisation and sensing. Specifically, combined use of standard directional beams and newly proposed 
derivative beams leads to optimal performance for localisation and sensing (with the percentage of 
derivative beams dependent on the specific scenario; see Figure 5-17), while using only directional 
beams is optimal for communications as they maximize SNR at the targeted angle. For sensing, results 
from a bistatic setup at 60 GHz showed that even with simple signal processing, localisation errors 
between 0.1 and 0.3 meter were achievable for passive objects. For localisation of UEs, AoD errors of 
around 0.01-0.2 degrees were reported, which can be related to positioning errors around 0.2-3.5 cm at 
a range of 10 meters under the assumption of known BS position and orientation. To further improve 
localisation accuracy, three interrelated aspects must be considered: better hardware impairment 
mitigation, better algorithms, and better system calibration.  

As for communication, the future work should focus on holistic optimization of radio design 
considering different degrees of freedom not only in the infrastructure but also in the signal processing, 
to ensure meeting the sustainability goals, while fulfilling the extreme requirements of emerging use 
cases. 
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