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Mission and Scope

• Hexa-X WP4 (AI-driven communication and computation co-
design) develops concepts for AI-based air-interface design and 
aims to deliver a secure and sustainable 6G distributed learning 
platform able to optimally support and address distributed edge 
workloads and learning/ inferencing mechanisms

• This report is the third and final deliverable of project Hexa-X WP4, 
building on D4.1 and D4.2, and detailing the final set of solutions 
provided by the technical tasks in the work package, i.e., T4.2 and 
T4.3 giving summarizes the demonstration activity.

• Technical areas of focus are: 

• Network performance enhancement using AI/ML in 6G

• 6G network as an efficient AI platform 

• AI/ML as an enabler for 6G network sustainability 

• Privacy, security & trust in AI-enabled 6G

• Demonstration activities - Federated eXplainable AI (FED-XAI) 
demo 



AI-driven communication and compute solutions

• Future 6G network functions 
and use cases will be 
intertwined with various 
forms of learning and 
intelligence in many aspects 
including air interface design, 
data management, optimality 
of compute and processing 
functions, network 
automation & service 
availability. 

• The right-hand illustration 
shows how Hexa-X WP4 
addresses all the above 
domains with technical 
enablers, algorithms, joint 
solution proposals for 
communication and 
computation to help fulfilling 
Hexa-X Connecting 
Intelligence research 
challenges.

Contribution of WP4 technical enablers in network architectural blocks 



Hexa-X WP4 quantifiable targets

Quantifiable 

target #

Title WP4 task of 

relevance (*)

T1 Increased AI algorithm robustness to system parameter volatility, lower 

complexity and significant Bit Error Rate (BER)/ BLock-Error Rate (BLER) gain, 

as compared to classical approaches

T4.2

T2 Increased AI algorithm robustness to system parameter volatility, lower 

complexity and efficient resource utilisation and rate gain as compared to 

classical approaches 

T4.2

T3 Resilient communication and compute network services for distributed AI 

applications in large scales

T4.3

T4 The accuracy of an XAI model within (<10%) of “black box” solutions T4.3

T5 Energy reduction of a factor of (>10) at the infrastructure level and a factor of 

(>100) at the user devices’ side, as a result of (network & application) workload 

offloading and learning/ inferencing task delegations

T4.3

T6 Increased trustworthiness of AI through privacy and security enhancing 

technologies and AI network intrusion detection capability

T4.3

(*) Task 4.2: AI-driven air interface design 

Task 4.3: Methods and algorithms for sustainable and secure distributed AI 



Network performance enhancement using 

AI/ML in 6G



Network performance enhancement using AI/ML in 6G

• Main emphasis: how can AI/ML-based solutions enhance 
the network performance in a quantifiable way?

• The first part of the chapter focuses on radio access 
network performance improvements over classical 
design methods

• Communication reliability improvements

• Bit-rate and spectral efficiency improvements

• Designs accounting for nonlinear distortion

• In the latter part of the chapter, the focus shifts to 
improvements in E2E network operation & management

• AI/ML-based predictive orchestration

• Distributed AI for automated UPF scaling in low-
latency network slices

• KPIs:

• Bit Error Rate (BER)/ 
Block Error Rate (BLER)

• Channel estimation error

• Complexity

• Bit rate or spectral 
efficiency

• Flexibility

• Mobility support

• Latency

• Network energy efficiency

• Inferencing accuracy



ML-based end-to-end learning of RIS-assisted communication 

systems

• Problem/ challenge to be addressed

• Reducing the computational complexity and improving the 
performance of signal processing tasks in RIS-assisted 
communication systems.

• Overcome suboptimal solution approaches in modular level 
optimisation tasks by end-to-end optimisation of the 
communication system.

• Final proposed solution 

• A CNN-based autoencoder to jointly optimise the transmitter, 
receiver, and the RIS to learn the transmit signals at the BS 
and reflection coefficients of the RIS,  minimising the end-to-
end symbol detection error.

• The autoencoder jointly optimises the sub-tasks of the 
transmitter, the receiver, and the RIS such as 
encoding/decoding, channel estimation, phase optimisation, 
and modulation/demodulation.

• Evaluation towards 6G KPIs/ KVIs

• Improved BER/BLER performance

• Quantifiable “Connecting Intelligence” targets

• T1: improved end-to-end BER/BLER and low complexity 

processing

The BER performance of the CNN

autoencoder for RIS-assisted system

for higher communication rates.

The BER performance (BPSK) of the

proposed CNN autoencoder for RIS-

assisted communication vs baseline

(theoretical) for different RIS sizes.

The RIS-assisted communication system model and system architecture.



AI-based enhanced beam selection

The problem
• Beam scanning has increasing overhead for

• higher frequencies
• large antenna arrays
• D-MIMO

Final proposed solution
• Beam identification inspired by compressed sensing
• Exploiting channel sparsity in angular domain
• For 𝑁 antennas, only 𝑀≪𝑁 measurements needed
• Scenario-specific dictionary optimization

• Sparse AI/ML-based decoder
• Based on learned iterative soft thresholding algorithm (LISTA)

Highlights
• Significant gain from both components:

• Optimized dictionary
• Trained neural sparse decoder

• Shows better generalization properties than MLP decoders

Evaluation towards 6G KPIs/KVIs
• Reduced beam scanning time (5-20% of baseline), lower connection drop, faster 

recovery

Quantifiable targets
• Contributing to (T2) efficient resource utilisation by enabling shorter beam 

scanning bursts



AI-empowered receiver for PA non-linearity compensation

• Problem/ challenge to be addressed
• Power Amplifier (PA) non-linearity degrades throughput 
• Classical methods compensate PA non-linearity at transmitter side

• PA power back-off → low energy efficiency
• Digital-pre-distortion (DPD) → high complexity at transmitter side

• Final proposed solution 
• Neural network (NN)-based demapper to compensate non-linearities at 

receiver

• Integrated with legacy methods for equalization and channel estimation

• Inputs: equalized symbols (split in real and imaginary part) and SNR 
estimate

• Outputs: soft bits used as input to the LDPC decoder

• Evaluation towards 6G KPIs/ KVIs
• KPIs: Coverage, Spectral efficiency, Energy efficiency, Throughput, BER, 

BLER

• KVIs: sustainability 

• Quantifiable “Connecting Intelligence” targets
• Spectral efficiency - Up to 20% increase

• Energy efficiency - Up to 70% increase in Power Added Efficiency (PAE)

• Throughput – Up to 20% increase

• BLER: 1 dB gain @ 10% BLER for 64QAM 



AI-Based Enhancements for Sub-THz

• Problem/ challenge to be addressed
• How to facilitate pilotless transmissions and learn a 

waveform that is more resilient against hardware 
impairments?

• Evaluations carried out at sub-THz

• Final proposed solution 
• Learn a waveform and a receiver jointly
• The learned waveform is more resistant against 

nonlinear distortion and can be detected without any 
pilots by the jointly learned convolutional receiver 
(DeepRx)

• Evaluation towards 6G KPIs/ KVIs
• Higher bit rate, increased spectral efficiency

• Quantifiable “Connecting Intelligence” targets
• T1 by providing a BLER improvement, and T2 by 

improving the throughput

• The BLER gain is approximately 2 dB, while the 
throughput improvement is in the order of 20-30%



Neural network and machine learning aided channel

(de)coding for constrained device

• Problem/ challenge to be addressed
• Improve the efficiency of Forward Error Correction (FEC) 

mechanisms for short packets in IoT use-cases

• Final proposed solution
• Design and optimisation of linear block codes and decoders

modelled jointly in an auto-encoder model

• Decoder inspired by Belief Propagation structures currently in 
use for the decoding of 5G LDPC codes

• Evaluation towards 6G KPIs/ KVIs
• Bit Error Rate (BER)/ BLock-Error Rate (BLER) gain.

• Complexity gain

• Quantifiable “Connecting Intelligence” targets

• T1, T2,T4



AI/ML-based predictive orchestration (ATO)

• Problem/ challenge to be addressed

• Integration of AI/ML techniques into management and 
orchestration operations in 6G mobile networks

• Legacy management and orchestration approaches lack the 
capabilities to face with 6G mobile networks requirements 
(i.e., integration of the extreme-edge domain, manage the 
compute-continuum as a whole, flexible and dynamic 
operations across domains, etc.)

• Final proposed solution 
• Classify three types of M&O forecasting algorithms:

• Long-term forecasting

• Mid-term forecasting

• Short-term forecasting

• Integrate Predictive orchestration as a particular approach of the 
more generic AI-based orchestration concept

• Design a mapping between Hexa-X WP6 M&O architecture and 
the proposed algorithms and functions.

• Outputs: Design and conceptual mapping to WP6 M&O 
architecture Building blocks.

• Evaluation towards 6G KPIs/ KVIs
• KPIs: Energy efficiency, latency, programmability, elasticity, 

scalability, automation, resiliency.

• KVIs: sustainability and trustworthiness

• Quantifiable “Connecting Intelligence” targets

• T2

• T3

• T5



Distributed AI for automated UPF scaling in low-latency 

network slices (NXW)
• Problem/challenge to be addressed

• Current orchestration solutions based on centralized AI may not be
optimized for B5G/6G low-latency use cases with distributed UPFs

• The traffic required for monitoring and training data distribution for
centralized AI can lead to network congestion

• Final proposed solution 
• Architectural enhancement for orchestrating distributed AI functions,

some closer to UPFs at the edge and others at the core
• Use of application, network and infrastructure data collected at the

edge for local decisions, e.g., inferencing and proactive edge
resource management

• Evaluation towards 6G KPIs/KVIs 

• Results obtained in the lab validation with a 
synthetic dataset covering 6 weeks of UPF simulated 
traffic for urban mobility patterns

• Inferencing latency (T3): 6.8ms (Target: 30s)
• Inferencing accuracy (T3) (Avg over 5hr):

• Training accuracy: 83% (Target: 89%)
• Runtime accuracy: 86% (Target: 83%)

• Training latency (T3): <1s (Target: < 1min)

• Quantifiable “Connecting Intelligence” targets
• T3: The inferencing at the edge compute can help reducing the

inferencing latency. Inferencing accuracy can be affected due to
limited resource at the edge

T3 KPI: 

Inferencing 

latency 6ms

T3 KPI: Training 

latency <1s

T3 KPI: Inferencing accuracy

Training accuracy: 83%

Runtime accuracy: 86%



CC LBB

Channel charting based beamforming

• Problem/ challenge to be addressed

• Beam search can be very time consuming when using a lot 
of antennas at the base station. Location-based 
beamforming method help reduce the computational 
burden but rely on the precise knowledge of users’ 
locations which are not always available.

• Final proposed solution
• Take an already learned channel chart as input for a 

location-based beamforming NN. This allows a base station 
to choose appropriate precoders based on chart locations 
instead of spatial locations. This alleviate the need for a 
precise estimation of user locations and opens the way to 
several applications such as channel mapping in space and 
frequency.

• Evaluation towards 6G KPIs/KVIs

• Precoder correlation to channel

• Quantifiable “Connecting Intelligence” targets

• T2: reuse of channel chart for low-complexity precoding

Schematic view of the proposed method. First, channel

measurments h are used to learn a chart z. A NN then

takes the learned chart as input to produce

corresponding precoders w. The two steps could be

done at two different base stations.

BS2BS1

CDF of the correlations. Blue curve corresponds to 

the original LBB at BS1. Orange curve corresponds 

to CC at BS1 and LBB at BS2 at different 

frequencies.



6G network as an efficient AI platform 



6G network as an efficient AI platform 
Enable and enhance the global operation of AI services, with computing as a native part of future networks

• Proposed solutions address the following problem:
1. Network services and data structures for AI applications

• AIaaS - seamless exploitation of network knowledge
• Flexible compute workload assignment, CaaS
• AI workload placement for energy, knowledge sharing and trust optimisation

2. Efficient inference for distributed AI
• Scalable and resilient deployment of distributed AI
• Joint communication and computation orchestration for edge inference
• Goal-oriented communication approach for edge inference
• Network impairment resilience of autonomous agents

3. Efficient training for distributed AI
• Centralized training and decentralized execution (CTDE) approach to multi-cell multi-user MIMO
• Federated ML model load balancing at the edge
• Frugal Federated Learning

• Relevant KPIs/KVIs
• AI agent availability, reliability, latency
• Network and UE energy reduction, i.e., energy efficiency
• Inferencing accuracy
• Resource efficiency and complexity



AIaaS - seamless exploitation of network knowledge
• Problem/ challenge to be addressed

• How to enable a UE carrying an ML model keep it up-to-
date in mobility/ connection interruption regimes.

• Final proposed set of solutions
• Relevant data structures for AI Service (AIS)-assisted 

inferencing
• Data structures relevant to AIS discovery to be used for 

service interoperabilit

• Targeted 6G KPIs/ KVIs 
• (On device) AI agent availability, AI agent reliability

• Quantifiable “Connecting Intelligence” targets

• T3: aim is to enable “seamless learning” and learning 
scalability by introducing some filtering criteria during 
AI agent discovery

• T5: the design goal is to route an inferencing task to the 
most relevant and available AI agent with a maximum 
tolerable E2E latency and energy consumption level.

Signalling flow for requesting/delivering of new relevant ML models from 

a multitude of nodes per some filtering criteria

User 
Equipment

Indicate availability

Provision of model 
configuration

Combination of all 
models and 
selection of 

subset / single 
model

Neighbor 
Node 1

Neighbor 
Node 2

Neighbor 
Node K

...

Provision of model configuration

Indicate availability
Indicate availability

Request provisioning

Request provisioning

Provide model
Provide model

Provide model
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Application of the 
final Model for 

inferencing



Flexible computing workload assignment 

(Compute-as-a-Service, CaaS)

• Problem/ challenge to be addressed
• How to delegate/ distribute (generic) processing tasks across 

the network,
• How to choose the appropriate representation of the code 

depending on the platform characteristics (heterogeneity) and 
container design for code (indicating code suitability for 
specific Hexa-X Use Cases and for “High Risk” AI applications 
as determined by the Draft European AI Act).

• Final proposed set of solutions
• Extension of definiton of Radio Application Package (RAP) 

format to accomodate for indication of suitability for specific 
Hexa-X User Cases,

• Extension of definiton of Radio Application Package (RAP) 
format to accomodate for indication of suitability for specific 
„High Risk“ AI applications defined by the European AI Act. 

• Targeted 6G KPIs/ KVIs
• AI agent availability
• Network energy efficiency
• Flexibility

• Quantifiable “Connecting Intelligence” targets

• T5, as aiming to facilitate flexible workload offloading 
Radio Application Package containing a specific bit which 

indicates that the manufacturers guarantees compliance for 

specific AI “High Risk” categories

Bit 1 set to “1” means suitability for 1. Biometric identification and

categorisation of natural persons:

(a) AI systems intended to be used for the ‘real-time’ and ‘post’

remote biometric identification of natural persons;

Bit 2 set to “1” means suitability for 2. Management and operation of

critical infrastructure:

(a) AI systems intended to be used as safety components in the

management and operation of road traffic and the supply of water,

gas, heating and electricity.

Bit 3 set to “1” means suitability for 3. Education and vocational

training:

Bit 3 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI

systems intended to be used for the purpose of determining access

or assigning natural persons to educational and vocational training

institutions;

Bit 3 set to “1”, sub-Bit 2 set to “1” means suitability for (b) AI

systems intended to be used for the purpose of assessing students

in educational and vocational training institutions and for assessing

participants in tests commonly required for admission to

educational institutions.

----



AI workload placement for energy, knowledge sharing and 

trust optimisation
• Problem/ challenge to be addressed

• Dealing with the trust, traffic, and energy consumption problems, that 
physical nodes who undertake the execution of AI algorithms/workloads, 
face

• The main challenge is to optimise the placement of the AI 
algorithms/workloads to the various physical nodes with respect to the 
energy consumption of the overall network towards sustainability, the 
traffic, and the trust of these physical nodes

• Final proposed solution 

• Algorithm solving the optimisation problem following a meta-
heuristic technique, for allocating the AI algorithms/workloads to 
physical nodes.

• Input:

• AI algorithms’/workloads’ computational requirements, level of 
criticality,

• physical nodes’ computational and communication capabilities, 
energy consumption, trust level and data vicinity.

• Output:

• efficient (near optimal) AI placement

• Evaluation towards 6G KPIs/ KVIs
• Up to 23% reduction of power consumption compared to baseline (random 

feasible placement)

• Up to 98% reduction of E2E latency depending on number of AI workloads, 
compared to baseline (random feasible placement)

• Quantifiable “Connecting Intelligence” targets

• T3: increase availability with efficient workload placement

• T5: AI workload placement accounting network energy consumption



Resilient deployment of distributed AI - Technical Summary

The problem
• Sensor sharing in Hyperconnected resilient applications
• Sensor data and AI logic distributed over a multitude of wireless devices

• Overlapping inputs – unnecessarily high load
• Variable input quality – application-level feedback
• Delay sensitive application – early inference results needed

Final proposed solution
• Proposed AI application and communication system architecture
• Incremental evaluation framework
• Evaluated on ANN-to-SNN converted neural networks
• Application – network interface

• Application to provides continuous ms-level feedback on input quality
• Network to prioritize device-edge communications accordingly

Highlights
• Accuracy-latency trade-off can be controlled
• Significant load reduction due to application-network joint control

Targeted 6G KPIs/ KVIs
• Enables flexible trade-off between inferencing latency and accuracy
• Increased device density can be reached due to reduced aggregated edge load

Quantifiable “Connecting Intelligence” targets

• T3: the proposed joint communication-control solution for distributed AI 
inference enables reduced edge load and increased device density, while 
maintaining resilient operation

Load reduction due to the application-network

joint control is significant, down to 20%

Accuracy-latency trade-off can be controlled

with incremental inference



Joint communication and computation resource orchestration 

for edge inference

• Problem/ challenge to be addressed
• Dynamically classify data collected by end users
• Challenge: deal with time-varying connect-compute 

network conditions including
• Availability of edge computing resources
• Data arrivals
• Wireless channels

• Final proposed solution
• DNN splitting for partial computation offloading with

• Adaptive selection of DNN splitting point
• Device transmit power optimisation

• Evaluation towards 6G KPIs/ KVIs
• Device energy consumption (communication and 

computing)
• End-to-end delay (communication and computing)

• Quantifiable “Connecting Intelligence” targets
• T5 on energy consumption reduction - simulations based

evaluations show high gain w.r.t. benchmark solutions
(i.e., full offloading and full local inference)

Reference scenario

trade-off between average E2E delay and energy saving for different 

MEH’s computing resource availabilities



Goal-oriented communication approach for edge inference

• Problem/ challenge to be addressed
• Strike the best trade-off between energy, latency, and 

accuracy of an edge inference task (e.g., image 
classification)

• Final proposed solution
• Base the success of communication on application

performance (e.g., confident inference in time), rather 
than bit-quality metrics

• Evaluation towards 6G KPIs/ KVIs
• Goal-effectiveness, defined as correct (or confident) 

inference on time

• Device energy consumption

• Edge server energy consumption

Evaluated w.r.t. classical communication metric (e.g., BER)

• Quantifiable “Connecting Intelligence” targets

• T5 on energy consumption reduction, also at the network
side thanks to cooperative inference across multiple
edge servers

Goal-effectiveness, device energy consumption, and edge server 

energy consumption, as a function of bit-level quality metrics (i.e., 

BER)



Network impairment resilience of autonomous agents

• Problem/ challenge to be addressed
• Use of ML to predict mobility/ connection interruption regimes 

and provide resilience for the UE / AI agent.

• Final proposed solution 
• Deploy data analytics methods to predict quality issues ahead of 

time to prepare the UE/AI agent for connectionless operation.

• Can be implemented both on agent and network side

• Evaluation towards 6G KPIs/ KVIs
• AI and computation: safety, maintainability/recovery. 

Signalling of incidents ahead in time. 

• Use cases: Massive twinning, Robots to Cobots, AI partners, V2X 

• Real-time intelligent decisions based on distributed data -
Agents interpret intents and surroundings, perform challenging 
and risky tasks

• Quantifiable “Connecting Intelligence” targets
• T3 (AI agent availability and reliability),

Figure: sample 

measurement using 

smartphone own data 

collection



Centralized Training and decentralized execution (CTDE) 

approach to multi-cell multi-user MIMO

• Problem/challenge to be addressed
• Problem: multi-cell and multi-user precoding problem to 

minimize interference

• Challenge

• Learning to coordinate multiple agents (or base stations) 
with partial observability

• Multi-dimensional continuous action space

• Final proposed solution 
• CTDE framework based on multi-agent deep deterministic policy

gradient (MA-DDPG) algorithm

• Learn multi-dimensional continuous action policy in a 
centralized manner with a shared critic (taking CSI, 
precoding vectors of every cell as input)

• Decentralized inference (taking local CSI, no inter-cell data
sharing as input)

• Pre-processing step to handle "phase ambiguity" and reach faster
convergence and better performance

• Evaluation towards 6G KPIs/ KVIs
• Interference in multi-cell environment is mitigated to achieve 

maximum weighted sum rate (i.e., pareto-boundary of rate 
region) in two cell two UE scenario.

• This result shows that the proposed solution can learn a pareto-
optimal beamforming strategy.  

• Quantifiable “Connecting Intelligence” targets

• Increased agent density (decentralized inference) (T3)

• Improved inferencing accuracy or improved latency (T3)



Federated ML model load balancing at the edge
• Problem/ challenge to be addressed

• In mobile sensor streams with highly skewed and 
nonstationary data distributions, remedy imbalance w.r.t.
amount and type of sensor

• Negative impact 1: slow tasks that delay the completion of 
the whole stage – latency, energy

• Negative impact 2: uneven knowledge of the environment 
resulting on suboptimal accuracy

• Final proposed solution 
• A dynamic reconnection solution to provide load balancing 

to remedy potential hot spots and data type diversity to 
ensure quality balance for the federated learners.

• Experiments with Simulation of Urban Mobility (SUMO) 
generator [http://sumo.dlr.de/index.html]

• Evaluation towards 6G KPIs/ KVIs
• AI agent availability, Latency, Energy reduction
• Optimal assignment of resources
• Increasing AI agent density.
• Relevant use cases: Interacting and cooperative mobile 

robots, Smart city – sensors connected to AI services

• Quantifiable “Connecting Intelligence” targets
• T2 (complexity gain (reducing the processing time)
• T5 (inference & E2E latency) 

Federated Learning application

• Middle node: hot spot with too much data

• Bottom node: insufficient data with one 

type (camera) missing

• Reconnection decision with state 

migration between the bottom AI agents.



Frugal Federated Learning (FL)

• Problem/ challenge to be addressed
• Dealing with over-the-air learning scenarios where 

available radio and storage resources are limited at device 
and edge RAN.

• Final proposed set of solutions
• Device capability-adaptive and & overhead over-the-air FL
• FL contributing device reporting to FL aggregator of its 

capabilities and learning status during FL training
• ML model codebook - construction & maintenance 

operations
• ML model codebook Lifecycle Manager (LCM) and model 

similarity score
• FL training methods applying the proposed device 

capability-adaptive ML model codebook-based FL training

• Targeted 6G KPIs/ KVIs
• Inferencing accuracy
• Latency
• End-to-end energy efficiency

• Quantifiable “Connecting Intelligence” targets

• T3, T5, as aiming to enable large scale deployment of AI 
agents by economising needed radio, computing and 
storage resources.

Example of producing different device-specific ML model codebooks, derived 

by a base ML model codebook and tailored to device capabilities –- FL 

initialisation/ establishment stage.

Proposed status report by each FL device –- for upload to the FL aggregator 

in each FL training round.



AI/ML as an enabler for 6G network 

sustainability 



AI/ML as an enabler for 6G network sustainability 

Improving 6G energy efficiency with low-complexity AI solutions

Proposed final solutions in 3 main categories

1. Universal functional approximation property of AI/ML

2. Moving complexity from inference into offline training

3. AI/ML to acquire more additional data from network for energy saving



Low complexity radio resource allocation in cell-free massive 

MIMO

• Problem/ challenge to be addressed
• Reducing the computational complexity in 

radio resource allocation tasks in cell-free massive 
MIMO networks.

• Improve the flexibility/adaptability of the resource 
allocation algorithms to varying system configurations.

• Final proposed solution 
• An unsupervised learning-based DNN to learn the 

optimal resource allocations in a data-driven 
manner to achieve sum rate maximisation objective.

• Problem 1: The DNN PowerNet proposed in Hexa-x D4.2 
for joint power control and fronthaul capacity allocation 
to maximise the system sum rate shown to be able to 
adapt to different system parameters such as number of 
users, total fronthaul capacity etc.

• Problem 2: Joint pilot power and data power control in 
cell-free massive MIMO uplink transmission considered to 
improve the system sum rate. 

• Evaluation towards 6G KPIs/ KVIs
• Complexity gain
• Flexibility

• Quantifiable “Connecting Intelligence” targets
• T2: rate gain via low complexity and efficient resource 

utilisation

Average sum rate performance with

different power control and capacity

allocation algorithms for 50 access points

and 10 users in the cell-free massive

MIMO network. The DNN results are

obtained using the model trained with

total capacity C = 1 bits/s/Hz.

Cumulative distribution of the sum rate for

50 access points and 5 users in the cell-

free massive MIMO network, obtained using

the model trained with 10 users.

Sum rate performance comparison for

fixed power transmission and pilot and

data power control using the proposed

unsupervised learning approach.



ML-based channel estimation for RIS-assisted systems with 

mobility

• Problem/ challenge to be addressed
• Uplink channel estimation for an RIS-assisted 

mmWave vehicular network
• Estimating sparse angular parameters and Doppler 

shifts using ML

• Final proposed solution 
• Use a sparse mmWave angular domain channel 

model (angle of arrivals, complex path gains, 
Doppler shifts)

• Neural network model to predict AoAs (discrete 
point + error)

• Optimization-based algorithm to estimate Doppler 
shifts, path gains

• Use DeepMIMO for channel simulation

• Evaluation towards 6G KPIs/ KVIs
• Channel Estimation Error
• Spectral Efficiency

• Quantifiable “Connecting Intelligence” targets
• T2: Improved channel estimation accuracy under 

mobility, while reducing the pilot overhead

DNN architecture for AoA

prediction.

System model.

Variation of NMSE with SNR (dB) 

for direct channel.

Variation of NMSE with SNR (dB) 

for RIS channel.



Generalizable low complexity channel estimation using 

neural networks
• Problem/ challenge to be addressed

• Generalize the channel estimation 
performance beyond learning of the training 
data distribution, i.e. prepare the NN for 
channel model mismatch   

• Reduce the sample/computational complexity 

• Final proposed solution framework
• Use Turbo-AI structure, which is inspired by 

MMSE formulation iteratively. 
• To save computation complexity use Turbo AI 

architecture for different domains of the 
channel, i.e., Spatial, Frequency, time, 
separately. 

• Extensive training on different channel 
models can help to alleviate dependency on 
specific model parameters.   

• Targeted 6G KPIs/ KVIs
• Channel Estimation Error
• Spectral Efficiency

• Quantifiable “Connecting Intelligence” targets

• T1

The NN is trained on CDL-A,-D & -E, while tested on dataset generated according to CDL-

B and CDL-C, to show TurboAI’s generalizability beyond the definition. The performance 

degradation is due to the channel model mismatch. 



Deep unfolding for efficient channel estimation

• Problem/ challenge to be addressed

• Channel estimation algorithms based on physical models are 
theoretically very accurate but also very sensitive to hardware 
impairments and modifications.

• Final proposed solution
• View the channel estimation algorithm as a NN (deep unfolding 

technique) that can be optimized and thus adapt in real time 
to incoming data. The new idea is to use structured dictionary 
and a hierarchical search within it to drastically reduce both 
sample complexity and time complexity.

• Evaluation towards 6G KPIs/KVIs

• Channel Estimation Error

• Quantifiable “Connecting Intelligence” targets

• T2: improved channel estimation and reduced complexity

The model’s channel estimation performance compared

to baselines.



Hybrid model for channel charting

• Problem/ challenge to be addressed
• Channel charting aims at localizing users relatively to one another 

in an unsupervised manner (without requiring access to GNSS , using 
only channels). It can be used for several applications, ranging from 
resource or pilot allocations to beam prediction. Most existing 
channel charting methods rely on the second order moment of 
channels and are thus computationally expensive.

• Final proposed solution
• A hybrid model for the task of channel charting:

• Structure of a model-based neural network with few 
parameters

• Smart initialization based on an specifically designed channel 
distance measure and dimensionality reduction method 
(Isomap)

• Training using a triplet loss exploiting temporal information 
obtained from the channel collection process

• Evaluation towards 6G KPIs/KVIs
• Charts of better quality (TW, CT)

• Quantifiable “Connecting Intelligence” targets
• T2: low complexity on-the-fly channel charting

The real path the user follows (left) and the final channel

chart produced by the hybrid model (right). 

Comparison of the proposed approach to several 

variants on channels from the DeepMIMO dataset.

Trustworthiness (TW) and continuity (CT) are given (the 

higher the better) as a function of the size of the 

considered neighbourhood K.



Privacy, security & trust in AI-enabled 6G



Privacy, security & trust in AI-enabled 6G

• The use of ML on massive amount of data is 

steadily increasing in time

• Cyber-attacks can be detected thanks to in-

network AI/ML functionality

• Trustworthiness in AI/ML becomes critical for 

AI-pervasive 6G because AI/ML-based decisions 

are done for autonomy of communication and 

detection of cyber-attacks

• D4.3 focuses on possible adversarial attacks to 

AI/ML and mitigation technique to increase the 

robustness of AI model, also focus on how 

privacy of AI/ML can increase, and how to 

better interpret the AI/ML via explainable AI.



Security of AI-driven power allocation for D-MIMO

Fig1. D-MIMO network with potential attacks

• Tech contribution
• Highly complex calculations for optimal power control problem in D-MIMO systems is needed.
• Instead, usage of a well-trained AI model to approximate exact solution.  

• Motivation: Vulnerability of AI models against adversarial attacks. Malicious UE's or malicious RU's in the network 
manipulating the pilot signals or channel relate data being transmitted to DU (control unit) in an attempt to
degrade the performance of AI-driven power allocation functionality.

• Aim: Evaluating the success of adversarial attacks against the target AI model and define a defense mechanism.

• Final solution approach
• Carefully crafted perturbations are applied to the input of the AI model which degrade the performance of the 

network in terms of both spectral and energy efficiency 
• Comparison of the risk associated with adversarial attacks with conventional attack threats.

• A defense mechanism to mitigate the effects of such attacks.

• Targeted 6G KPIs/ KVIs 
• AI security & privacy

• Adversarial attack success rate
• Adversarial defense success rate 

• WP4 quantifiable targets 
• T6: The security of the AI can be evaluated by estimating the success rate of the adversarial attacks and how 

much the defense mechanism decrease the success rate of adversarial attacks. 

• Evaluation results
• Effects of the adversarial attacks on per-user Spectrum Efficiency and average Energy Efficiency with different 

amount of perturbations and different levels of input information.

• Simulation environment: 

• In MATLAB to generate our experimental training and test data sets.
• 16 RUs distributed on a uniform grid in a 500m × 500m area.

• 4 UEs and their locations are randomly chosen in the same region at each trial.

• Adversarial attacks with optimized perturbations can significantly degrade the performance of the network in 
terms of both spectral and energy efficiency. In our experiments, we observed 60.51% success rate of adversarial 
attacks. In addition, the mitigation method decreases the success rate of attacker 37.29%.

Fig2. CDF of per-user SEs for different cases



Security mechanism friendly privacy solutions for federated 

learning

• Problem/challenge to be addressed
• FL is a privacy aware method however model updates that are sent to the FL 

server may leak some information about the clients. 
• Challenge: providing security and privacy at the same time
• Aim: Enhance the FL privacy and prevent malicious behavior of the clients 

• Final solution approach
• Introduce a multi-hop communication along with blind signature to hide the 

identity of the clients and prevent malicious behavior of clients (i.e. model 
modification, involving multiple model update in one round of FL). 

• Extend the work: introduce and utilize a detector entity to the network to 
ensure that local model updates arrive to the server i.e. the clients can not 
drop the packets of other clients. 

• Targeted 6G KPIs/KVIs as defined by WP4
• AI Privacy:
• Model accuracy
• Total Overhead

• WP4 quantifiable targets 
• T6:It is hard to provide concrete numbers about the evaluation of privacy 

enhancement, but it has been proven with security arguments that the 
solution hides the identities of the local model updates. 

• We expect the accuracy of the model generated at server after applying 
defense mechanism to be (>90%).

• In case of total overhead, the proposed method is expected to have (<30%) 
overhead after applying the defense mechanism. 

• Evaluation results 
• Our proposed method brings 10.76 % overhead to the typical FL when 

communication speed is 504 Mb/sec
• The accuracy of the model is remained unchanged.

Fig 1. Proposed interactions of server, clients, and detector. 

Fig 2. Overhead of our solution depending on the communication speed



XAI models: Fuzzy regression trees and TSK Fuzzy Rule Based Systems 

• Problem/ challenge to be addressed
• Explainability as a requirement towards Trustworthy AI

• Rule based systems (RBSs) and Decision Trees (DTs) 
considered highly inherently interpretable models

• Concepts from fuzzy set theory can further boost modelling 
capability and interpretability

• Final proposed solution 
• Four variants of Fuzzy RT (FRT) as combination of different 

local regression models and different inference strategies

• Firtst-order Takagi-Sugeno-Kang Fuzzy Rule-based Systems 
(TSK-FRBSs) with enforced interpretability

• Evaluation towards 6G KPIs/ KVIs
• Inference accuracy (measured as MSE on regression task): gain 

of XAI model (TSK) vs less interpretable state-of-art solution 
in the range [-4%,+37%] 

• Explainability: high level of interpretability ensured by the 
adoption of inherently interpretable models

• Quantifiable “Connecting Intelligence” targets

• T4: accuracy of an XAI model within (<10%) of “black box” 
solutions

Example of a rule from TSK model generated on the california benchmark
dataset (regression problem).

(Left) Strong triangular uniform fuzzy partition over a generic input attribute. 
Three fuzzy sets represent («low», «medium», «high») values, respectively.
(Right) Toy multi-way FRT. A path from the root to a leaf represents a rule.

IF 
longitude (𝑥1) is Low AND latitude (𝑥2) is Medium AND

housingMedianAge (𝑥3) is Medium AND totalRooms (𝑥4) is Low AND 

totalBedrooms (𝑥5) Low AND population (𝑥6) is Low AND 

households (𝑥7) is Low AND medianIncome (𝑥8) is Medium 

THEN 
𝐦𝐞𝐝𝐢𝐚𝐧𝐇𝐨𝐮𝐬𝐞𝐕𝐚𝐥𝐮𝐞
= 0.83 − 1.08𝑥1 − 0.95𝑥2 + 0.08𝑥3 + 0.41𝑥4 + 2.18𝑥5 − 5.29𝑥6 + 0.27𝑥7 + 1.28𝑥8

TSK TSK [FSN+20]

Train Test Train Test

WI 1.28 1.38 1.48 1.52

TR 24.06 40.30 32.07 62.93

MO 3.99 6.36 4.49 8.22

CA 4.78 4.81 4.62 4.64

Results: our proposed
XAI model (TSK with
maximum matching) vs
less interpretable state-
of-art solution (FSN+20)



Fed-XAI – Federated Learning of Explainable AI models

• Problem/ challenge to be addressed

• Enabling collaborative training of explainable AI models 
without violating privacy of users

• Main challenge: traditional protocols (e.g., Federated Averaging) 
are not immediately amenable to FL of highly interpretable 
models such as Decision Trees and Rule-Based Systems

• Final proposed solution

• Fed-XAI: Federated Learning of Rule-Based Systems

• Definition of a novel approach for Federated TSK FRBS

• Evaluation towards 6G KPIs/ KVIs

• Inference accuracy of XAI models learned in federated fashion 
higher than those locally learned: evaluation on benchmark 
datasets in terms of MSE with gain in the interval [1x,2x]

• Explainability: high level of interpretability ensured by the 
adoption of inherently interpretable models

• Quantifiable “Connecting Intelligence” targets

• T4: accuracy of an XAI model within (<10%) of “black box” 

solutions

Illustration of federated 
learning of XAI models:
• [A], [B], [C] 

communication steps
• (1) local learning 

(2 aggregation

Experimental results: average MSE on four regression datasets.
Comparison between local, federated and centralized learning
schemes. Error bars represent standard deviation.



Demonstration activities - Federated 

eXplainable AI (FED-XAI) demo 



Demo: Federated eXplainable AI (FED-XAI)

• Problem/ challenge to be addressed
• Fed-XAI models target at forecasting QoE (regression problem)

• Several instances of vehicular User Equipment (UE), connected to 
a B5G/6G network, receive (or send) a video stream, whose 
perceived quality is crucial for the availability of advanced driving 
assistance systems, such as see-through (or tele-operated driving)

• Final proposed solution 
• Development of a framework for Fed-XAI: 

• Intel OpenFL library for FL process, extended for Fed-XAI support

• Container as de-facto standard for lightweight virtualization

• Messages are exchanged via RESTful APIs over HTTPS for security

• Evaluation towards 6G KPIs/ KVIs
• Inference accuracy:

• Federated Learning (FL) compared with Local Learning (LL) setting

• Fed-TSK compared with standard FL of NNs

• Explainability: high level of interpretability ensured by the 
adoption of inherently interpretable models 

• Quantifiable “Connecting Intelligence” targets

• T4: accuracy of an XAI model within (<10%) of “black box” 
solutions

Snapshot of Fed-XAI dashboard: predictions and related explanations

ECDF of the differences of test MSE
scores between FL and LL (dark
blue) and between FL and
Centralized learning (light blue).

FL - TSK FL - NN

MSE 𝑅2 MSE 𝑅2

0.066 0.559 0.059 0.606

Average values of test MSE
scores and 𝑅2 scores
obtained with the FL setting
by the TSK and NN models



Conclusions on tackling the Connecting 

Intelligence research challenge



Summary

• AI-driven communication & computation co-design will constitute a major leap forward 
by 6G systems over previous generations. Instead of addressing AI and computation 
tasks on higher layers only, corresponding enablers will be deeply anchored in future 
6G system and will rely on AI- and compute-native design approaches. 

• D4.3 provides new innovative proposals and detailed studies of corresponding key 
enablers – further adding details, substantive insight and evaluation results over the 
previous Hexa-X Deliverables D4.1 and D4.2. 

• Technical areas of focus are the following:

• Network performance enhancement using AI/ML in 6G

• AI/ML as an enabler for 6G network sustainability

• 6G network as an efficient AI platform

• Privacy, security & trust in AI-enabled 6G

• Demonstration activities - Federated eXplainable AI (FED-XAI) demo 

• Finally, all new approaches have been evaluated again Hexa-X Key Performance 
Indicators (KPIs) and Key Value Indicators (KVIs) as they have been defined on a project 
wide level. Chapter 8 of D4.3 summarizes the Hexa-X quantified targets in Connecting 
intelligence towards 6G.



Summary of the AI-driven solutions of the document by their 

domain of application

• The technical solutions 
described in this report 
contribute to various 
network domains. 

• A corresponding breakdown 
to technical solutions in the 
illustration on the right-
hand side. 
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