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Executive Summary 

This report is the third and final deliverable of project Hexa-X work package four (WP4) “AI-driven 

communication and computation co-design”. The main objectives of WP4 are to develop AI/ML 

mechanisms in 6G systems, demonstrating performance efficiency, feasible complexity and 

unprecedented adaptivity in wireless transceiver and other air interface functionalities, and to provide 

design concepts for 6G networks to become an intelligent and sustainable platform for in-network and 

application-level AI functions. These objectives are addressed in this document. 

AI/ML-based network performance enhancement methods analysed in this report show significant 

benefits in spectral efficiency, channel coding and beam management overhead, as well as 

demonstrating capabilities to compensate the distortions caused by hardware impairments, especially 

on higher frequency bands of 6G. These challenges are studied from multiple viewpoints: using end-

to-end learning techniques to jointly optimize transmitter and receiver side RAN functions, but also by 

relying on compact receive or transmit side algorithms. Performance improvements introduced by AI 

solutions are also shown in the management and orchestration network domain. In the comprehensive 

view of using AI for performance enhancement functions, it is also essential to investigate the 

complexity and energy footprint of these solutions. These questions are addressed as part of the 6G 

network sustainability investigation, with well-designed AI architectures demonstrating improved 

energy efficiency without significant compromises in the performance indicators. The view of network 

sustainability is further strengthened by providing reduced complexity solutions for optimization 

problems practically intractable by conventional methods. 

We envision 6G networks to become an intelligent and trustworthy platform for AI applications running 

either in a network domain or over the top. Design concepts for efficient execution are described from 

three perspectives: supporting network services, challenges of model training and real-time inference 

functions. Network services are proposed with open interfaces and data structures derived by the 

requirements of AI applications. Distributed training with special focus on federated learning is 

investigated with the aim of reducing and balancing the huge data load that would strain the network. 

On the inference side the challenges of distributed operation, high device density, low latency and high 

accuracy requirements are addressed by joint communication and compute solutions. The trustworthy 

operation of AI functions is also covered in the report by enablers for designing AI systems that are 

transparent, explainable, reliable, and fair, while ensuring data privacy and security. Practical 

application of the algorithmic solutions for explainable federated learning is demonstrated as part of the 

joint WP4+WP5 Fed-XAI project demo. 

Finally, the targets for the Hexa-X objective Connecting intelligence towards 6G are addressed and 

mapped to the concepts and solutions described in the document. 
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KPI 

LCM 

LiDAR 

LISTA 

LoS 

LSTM 

LTF 

M&O 

MCS 

MDAF 

MEC 

MIMO 

ML 

MTF 

NLoS 

NMSE 

NWDAF 

NN 

NPU 

QoS 

RAN 

RAP 

REST 

RIS 

RNN 

RRM 

SDO 

SNN 

SP 

STF 

SVM 

UCF 

UE 

UPF 

V2X 

VM 

Key Performance Indicator 

Lifecycle Manager 

Light Detection and Ranging 

Learned Iterative Shrinkage and Thresholding Algorithm 

Line-of-Sight 

Long-Short Term Memory 

Long Term Forecasting 

Management and Orchestration 

Modulation & Coding Scheme 

Management Data Analytics Function 

Multi-access Edge Computing 

Multiple-Input and Multiple-Output 

Machine Learning 

Mid Term Forecasting 

Non-Line-of-Sight 

Normalized Mean Square Error 

Network Data Analytics Function 

Neural Network 

Neural Processing Unit 

Quality-of-Service 

Radio Access Network 

Radio Application Package 

Representational State Transfer 

Reconfigurable Intelligent Surface 

Recurrent Neural Networks 

Radio Resource Management 

Standards Definition Organization 

Spiking Neural Network 

Service Provider 

Short Term Forecasting 

Support Vector Machine 

Use Case Family 

User Equipment 

User Plane Function 

Vehicle-to-Everything 

Virtual Machine 
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1 Introduction 

Hexa-X is the flagship project of 5G-PPP under EU Horizon2020 which develops a Beyond 5G (B5G)/ 

6G vision and an intelligent fabric of technology enablers connecting human, physical, and digital 

worlds. 

This is the final deliverable of work package four (WP4) “AI-driven communication and computation 

co-design”, led by tasks T4.2 - “AI-driven air interface design” and task T4.3 - “Methods and algorithms 

for sustainable and secure distributed AI”. Relevant background information has been documented in 

[HEX-D41] “AI-driven communication & computation co-design: Gap analysis and blueprint”. The 

second deliverable “AI-driven communication & computation co-design: initial solutions” [HEX-D42] 

focuses on the technical areas related to applying AI/ML to networking and concentrates on associated 

technical enablers to be investigated within WP4. This final deliverable concludes the investigations of 

technical areas from D4.2 and summarizes the results, as well as their impact on Hexa-X defined use 

cases, Key Performance Indicators (KPI), Key Value Indicators (KVI) and quantified targets. 

1.1 Objective of the document 

The objective of this document is to describe AI-driven solutions and frameworks applied in various 

6G network domains. These solutions can be AI/ML algorithms to support a specific network function 

(e.g., in RAN, O&M) or a joint communication-compute concept to enable efficient execution of AI 

applications or in-network functions. The report, therefore, presents a detailed investigation of the 

technical enablers and their impact on the relevant Key Performance Indicators. 

Specifically, the document addresses the main work package objectives. 

 

WPO4.1 Elaborate motivations for the application of AI/ML mechanisms in B5G/6G systems and 

identify the needed challenges to be addressed by these systems during a related 

technology roadmap. 

WPO4.2 Design B5G/6G wireless transceivers and air interface functionalities in a cost and 

complexity-efficient manner, either by replacing specific model-based parts of the 

transmission/ reception chain by their AI/ML counterparts, or by adopting an intelligent 

“end-to-end” optimisation approach. 

WPO4.3 Develop data-driven methods for unprecedented adaptivity to the wireless environment 

and radio hardware impairment mitigation to maximise radio access flexibility and 

configurability. 

WPO4.4 Design concepts for an intelligent and sustainable B5G/6G distributed platform capable 

to jointly optimise communication, computing & storage resources across energy-aware 

network elements. 

WPO4.5 Provide a communication framework for federated learning (FL) communications, while 

guaranteeing accuracy and explainability of the models, along with data integrity, 

security, privacy and trust. 

WPO4.6 Define ML applicability contexts for predictive management and orchestration for use 

in SDN and OAM. 

 

WPO4.1 was addressed in [HEX-D41], where the state of the art, motivating challenges and targeted 

benefits were presented, including the role of data in 6G AI systems with data quality, quantity, 

availability, ownership, and monetisation. The challenges have been identified in the areas of AI-based 

air interface design and network supported AI functions. 
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WPO4.2 is addressed in Chapter 3 and Chapter 4 where AI/ML methods were implemented in block-

by-block fashion or end-to-end approach. The AI/ML solutions for modular level functions include 

channel encoding/decoding, channel estimation, as well as beamforming solutions where performance 

improvements and complexity/overhead reductions are achieved by utilising the proposed AL/ML 

implementations. Furthermore, the low complexity end-to-end solutions are presented considering sub-

THz systems and RIS-assisted communication systems which are applicable to new 6G use cases. 

WPO4.3 is also addressed in Chapter 3 and Chapter 4 where attention is paid to hardware impairment 

mitigation and consideration of techniques for addressing channel variations with online learning 

methods. Specifically, the AI/ML-based PA non-linearity compensation approach in Chapter 3 is shown 

to improve throughput, extend the communication coverage, and to enhance energy efficiency. 

Adaptive and flexible AI/ML solutions focusing on generalizable channel estimation of unknown 

channel models and channel estimation in RIS-assisted systems under mobility, and flexible radio 

resource allocation in cell-free massive MIMO are also presented. 

WPO4.4 is addressed by the concepts presented in Chapter 5. Native integration of AI computing 

capabilities in 6G networks enable new latency, compute, and energy efficiency optimization strategies 

for AI functions by exploiting network knowledge. New network services and data exposure capabilities 

are also described that will facilitate the efficient deployment of such AI applications. 

WPO4.5 is addressed in Chapter 5 with a focus on AI as an efficient platform for 6G, in Chapter 6 with 

a focus on privacy, security & trust in AI-enabled 6G and Chapter 7 related to demonstration activities. 

Chapter 5 specifically introduces a federated ML model load balancing at the edge and a Frugal 

Federated Learning approach. Chapter 6 provides solutions for Security mechanism friendly privacy 

solutions for federated learning and Federated Learning of Explainable AI models. Chapter 7 finally 

introduced a Federated eXplainable AI (FED-XAI) demo.  

WPO4.6 is addressed in section 3.2 with improvements in E2E network operation and management.  

Based on the gap analysis on the current M&O solution in 5G network, the technical enablers mainly 

based on the AI/ML techniques have been evaluated and described. These technical enablers focus on 

the predictive state of the network and the network function data plane (i.e., the User Plane Function 

(UPF)) using the data collected from the custom monitoring platform and NWDAF, to make more 

efficient usage of the allocated resources. For each of the different AI/ML techniques, evaluations and 

results are reported in the corresponding sections. Additionally, predictive orchestration AI/ML 

algorithms have been analysed and mapped to the Hexa-X M&O architecture to create a potential 

baseline for future predictive orchestration frameworks and implementations. 

 

1.2 Contributions to the Hexa-X objective on Connecting 

intelligence towards 6G 

WP4 is also contributing to the fulfilment of the Hexa-X objective on Connecting intelligence towards 

6G with the following outputs, measurable and quantified results. 

Introduce AI enablers as part of the B5G/6G air interface design, with emphasis on wireless transceiver 

and signal transmission/reception design and exposed performance benefits: 

Initial solutions for AI/ML-based enablers for B5G/6G air interface design were presented in 

D4.2 which provide radio access network performance improvements over classical design 

methods in terms of bit error rate, spectral efficiency, reliability, and resource utilisation. 

Specifically, AI/ML enablers for communication reliability improvements in D4.2 Section 2.1 

proposed several AI/ML enablers for communication reliability improvements such as LiDAR-

aided human blockage prediction, access point selection in cell-free massive MIMO for initial 

access and mobility management, and compressed sensing-based beam selection in distributed 

MIMO. AI/ML solutions for bit rate and spectral efficiency improvements proposed in the same 

section include design concepts and implementations for constellation shaping, channel 
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(de)coding for constrained devices, location-based beamforming, and beam management in 

initial access. In D4.3, these initial solutions are further improved along with new investigations 

in end-to-end learning of RIS-assisted communications, AI-native air interface design for sub-

THz communications, and channel charting-based beamforming, which are presented in section 

3.1. Furthermore, D4.2 section 4.1 and D4.3 section 4 proposed different channel charting and 

channel estimation solutions including channel estimation in RIS-assisted systems. 

Deliver efficient (with respect to sustainability, security, privacy, and trust-awareness) management 

and governance of AI mechanisms, functions and agents, considering system-wide constraints of 

processing, storage, memory, data and networking resources: 

Design concepts are provided for efficient global operation of distributed AI/ML mechanisms 

in 6G networks with focus on performance, sustainability, and trustworthiness. Requirements 

and solutions for 6G as an efficient AI platform are described in section 3 and 4 of D4.2 and 

section 5 of D4.3. It covers network services and interfaces for AI, efficient compute and 

communication resource usage for distributed AI inference and federated learning at the edge, 

and optimal allocation of AI workloads depending on communication load, power usage and 

trust levels. Section 5 of D4.2 and section 6 of D4.3 provides privacy, security and trust 

mechanisms for AI/ML: privacy solutions for federated learning, defence mechanisms against 

adversarial attacks, and explainable AI for mitigation of biased decisions in federated learning 

systems. AI-based management and orchestration solutions are provided in section 2.2 of D4.2 

and section 3.2 of D4.3: solution for predictive scaling of system resources by introducing 

distributed deployment of AI agents at the network edge, and a framework for predictive 

orchestration. 

Designs for data-driven wireless transceiver of low complexity, either “block-per-block”, or, by means 

of “end-to-end” optimisation: 

AI/ML approaches which enable low complexity transceivers by joint or end-to-end 

optimisation of the signal processing blocks is of great interest in AI-based air interface design. 

To this end, section 2.1 in D4.2 proposed a joint constellation and receiver learning mechanism 

for sub-6-GHz communications which enables pilotless transmissions, thereby reducing 

communication overhead and improving spectral efficiency. It is further extended to sub-THz 

communications in D4.3, where end-to-end learning of a sub-THz transmitter and receiver is 

presented in D4.3 section 3.1. Furthermore, an AI/ML-based end-to-end learning approach for 

RIS-assisted communications is proposed in D4.3 section 3.1, which provides BER gains and 

low computational complexity. In terms of AI solutions for optimising individual blocks in the 

wireless transceivers, several enablers are presented in section 2.1 and section 4.1 in D4.2, and 

section 3.1 and section 4 in D4.3 including channel (de)coding, beamforming and beam 

management, channel charting, low complexity channel estimation including channel 

estimation in RIS-assisted systems, and radio resource allocation in cell-free massive MIMO. 

Frameworks for data-centric hardware impairment mitigation and adaptivity to the wireless 

environment: 

The AI/ML-based hardware mitigation solutions presented in section 2.1 in D4.2 and section 

3.1 in D4.3 include PA-induced out-of-band emissions reduction and PA non-linearity 

compensation. The former utilised a CNN at the transmitter to learn a waveform that produces 

less out-of-band emissions under a nonlinear PA and is accurately detectable at the receiver, 

while the latter enables energy efficient PA operation by compensating in-band distortions due 

to PA nonlinearities, at the receiver. The adaptive and flexible AI/ML solutions include 

generalisable channel estimation of unknown channel models, channel estimation in RIS-

assisted systems under mobility, and flexible radio resource allocation in cell-free massive 

MIMO which are presented in D4.3 section 4. 

Concepts and mechanisms to support and manage collaborative AI components across the network, 

also leveraging Federated Learning (FL) and deployment of eXplainable AI (XAI) models: 
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Seamless and pervasive in-network AI operation is supported by AIaaS concept targeting 

stringent availability and reliability requirements even in highly mobile environments 

(D4.1/section 2.5, D4.2/section 3.1, D4.3/section5.1). An algorithm is provided in D4.2 (section 

3.3) for optimal placement of AI workloads including the factors of communication load, power 

usage and trust levels, with numerical evaluation in D4.3 (section 5.1). Solutions for efficient 

resource usage and resource allocation for cooperative inferencing at the (extreme) edge is 

addressed in D4.2 (section 3.2 and 3.3) and D4.3 (section 5.2) by goal-oriented 

communications, joint communication and compute orchestration, and by integration of AI 

inference control mechanisms with communication functions in resilient distributed AI 

architectures., Numerical evaluations on distributed AI scenarios derived from Hexa-X use 

cases. Concepts to reduce the massive amount of data required for distributed and specifically 

federated learning are described in D4.2 (section 3.2 and 4.2) and D4.3 (section 5.3). A general 

scheme for FL of Decision Trees and Rule-Based Systems has been reported in D4.2 (section 

5.2 and 5.3) along with preliminary results for the task of QoS/QoE prediction with XAI 

models. In D4.3, the accuracy and interpretability of XAI models for regression tasks (Fuzzy 

Regression Trees and Takagi-Sugeno-Kang Fuzzy Rule-based Systems) have been further 

investigated. Results for AI/ML privacy and security are provided in D4.2 and D4.3. Although 

federated learning is a privacy-preserving collaborative learning, the model updates sent to the 

aggregator server may still leak private information. Methods to improve the privacy and 

security of data in federated learning is provided in D4.2 (section 5.1) using differential privacy 

and multi-hop communication with blind signature. In D4.3 (section 6.2), this method is 

enhanced where dropping the model updates by malicious client is prevented. The effect of 

adversarial attacks on an in-network AI use case was evaluated, for which a defence mechanism 

is provided in D4.3 (section 6.1) to decrease adversarial attack success rate and increase the 

robustness of the model. 

Development and assessment of intelligent orchestration methods, such as predictive orchestration: 

Architectural design and workflow definition among the main principal software components 

in the edge and cloud domains, aiming at the data collection and training of a distributed AI 

agent for scaling the UPF instances. Details are available in D4.2 (section 2.2.2). In D4.3 

(section 3.2.1), the quantifiable measurement of inferencing and training latency and 

inferencing accuracy are reported. An in-depth view of the requirements of predictive 

orchestration for future 6G mobile networks is provided in D4.2 (section 2.21) and D4.3 

(section 3.2.2) including advanced monitoring system and forecasting algorithms classification. 

Furthermore, a mapping between the WP6 D6.2 M&O Architecture blocks and the proposed 

Predictive Orchestration blocks is detailed. 

The document, as the final deliverable of WP4, also summarizes the quantified results of the following 

targets defined for the Connecting intelligence towards 6G project objective in detail in Chapter 8: 

▪ (T1) Increased AI algorithm robustness to system parameter volatility, lower complexity and 

significant Bit Error Rate (BER)/ Block-Error Rate (BLER) gain, as compared to classical 

approaches 

The target has been addressed by multiple technical enablers in section 2.1 and 4.1 in D4.2 and 

section 3.1 and 4 in D4.3, by improving BER/BLER via either optimising the individual tasks 

such as channel (de)coding, channel estimation, beamforming, hardware impairment 

compensation, or by end-to-end learning of the wireless transceivers. To summarise some of 

the quantitative results in section 3.1, the AI-based end-to-end learning for sub-THz is shown 

a BLER gain of 1-2 dB, while the AI-powered receiver for PA non-linearity compensation 

achieved approximately 1 dB gain at 10% of BLER for simulations with higher order 

modulations such as 64QAM and 256 QAM. The end-to-end learning system for RIS-assisted 

communications on the other hand resulted in a BER < 0.001 for BPSK equivalent 

configuration and BER < 0.01 for QPSK equivalent configuration for SNR > 15dB when full-

CSI is assumed. Among the channel estimation solutions proposed in section 4, the ML-based 

generalisable low complexity channel estimation solution has achieved an NMSE within 3 dB 
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range of MMSE of the optimal solution, enabling improved BER and throughput by reducing 

channel estimation error. Furthermore, the channel estimation in RIS-assisted systems with 

mobility achieved 5-10 dB reduction in NMSE while also reducing the resource overhead. 

(Further details in section 8.1.) 

 

▪ (T2) Increased AI algorithm robustness to system parameter volatility, lower complexity and 

efficient resource utilisation and rate gain as compared to classical approaches 

Several technical enablers are proposed in D4.2 section 2.1 and 4.1, and D4.3 section 3.1 and 

4, focusing on AI/ML approaches to provide spectral efficiency improvements and efficient 

resource utilisation while reducing processing complexity and improving flexibility. From the 

results presented in section 3.1, the AI-based end-to-end learning for sub-THz has achieved a 

throughput gain of 10-20%, with reduced transmission overhead due to pilotless detection. The 

AI-powered receiver for PA non-linearity compensation achieved approximately 20% 

throughput gain. This also enables communication link coverage extension in the presence of 

PA non-linearity and has shown to improve energy efficiency (70% improvement of PA power-

added efficiency) at the transmitter side. The AI-based compressed sensing for beam selection 

in D-MIMO in section 3.1 also has shown rate gain via efficient resource utilisation, achieved 

by reducing the beam scanning time to 5-20% of the baseline exhaustive scan. The ML-based 

low complexity resource allocation mechanism for cell-free massive MIMO proposed in D4.2 

section 4.1 is more than 50 times less computationally complex compared to the optimisation-

based baseline, while achieving above 95% spectral efficiency performance. It has also shown 

the flexibility and generalisability of the data-driven resource allocation approach by achieving 

at least 90% spectral efficiency compared to baseline when using the same trained-DNN model 

for different system configurations in the considered problem scenario. (Further details in 

section 8.2.) 

 

▪ (T3) Resilient communication and compute network services for distributed AI applications in 

large scales (e.g., applications with >1000 collaborating AI components) 

The target has been addressed by multiple technical enablers in D4.3 section 5 and section 3.2. 

In a resilient distributed sensor sharing application, where a massive number of AI-enhanced 

sensor components provide information for the inference task, over-the-air communication was 

significantly reduced (by 80% compared to baseline), which enables dense deployment of these 

devices. Considering that the device density requirements for the targeted demanding 6G use 

cases is 5-10 times higher than 5G requirements, this difference is largely offset by the proposed 

joint compute and communication solution, which remains efficient at ~1000 collaborating AI 

components. Deployment and operation of AI components at large scale is further addressed 

by the concept of AIaaS in high mobility environments, an algorithm for AI workload 

placement, and in the context of automated UPF scaling in low-latency network slices. (Further 

details in section 8.3.) 

 

▪ (T4) The accuracy of an XAI model within (<10%) of “black box” solutions (e.g., Deep Neural 

Networks – DNNs) 

The target has been achieved both in the context of classification and regression tasks. In D4.2, 

Sec. 5.2.1, the adoption of XAI models (fuzzy and classical Decision Trees (DTs)) has been 

investigated for the task of QoE classification, leveraging a publicly available benchmark 

dataset. Such inherently interpretable models are slightly outperformed (in the range [2%, 5%] 

and in any case within 10%, in terms of f-score) by a Random Forest classifier which, as an 

ensemble model, is generally considered opaque. In D4.3, the trade-off between accuracy and 

interpretability of XAI models for regression tasks (Fuzzy Regression Trees and Takagi-

Sugeno-Kang Fuzzy Rule-Based Systems) has been investigated. The proposed TSK FRBS 

with enhanced interpretability is shown to be comparable to (or even better than) a less 

interpretable state of art TSK-FRBS, based on an empirical comparison on several benchmark 

datasets. Specifically, the gain of XAI model vs less interpretable state-of-art solution is in the 

range [-4%, +37%]. (Further details in section 8.4.) 
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▪ (T5) Energy reduction of a factor of (>10) at the infrastructure level and a factor of (>100) at 

the user devices’ side, as a result of (network & application) workload offloading and 

learning/inferencing task delegation 

The target has been addressed by technical enablers in D4.2 and D4.3, focusing on the problem 

of energy consumption at devices and infrastructure side, including communication and 

computing. Simulation based assessment of energy consumption reduction at UE side is 

achieved by partial offloading of inference workloads through DNN splitting. Depending on 

channel models (e.g., path loss exponent) up to 90% reduction was shown in case of highly 

available edge computing resources. Further gains can be obtained through the goal-oriented 

approach, where 12% energy reduction was shown in the simulated scenario without losing 

performance, and even higher gains were obtained by trading off inference accuracy. At the 

infrastructure side, optimised workload placement has shown to reduce the power consumption 

by 23% compared to baseline strategies, and in the scenario under high availability of 

computing resources in the mobile edge 2x to 10x energy consumption reduction was obtained 

thanks to cooperative inference. (Further details in section 8.5.) 

 

▪ (T6) Increased trustworthiness of AI through privacy and security enhancing technologies; 

using differential privacy to evaluate privacy versus communication utility trade-off. 

The target has been achieved by solutions described in D4.2 section 5.1 and D4.3section 6. The 

study on Differentially Private (DP) Federated Learning focused on DP as a metric to measure 

the privacy of a dataset or a machine learning model in a radio network use cases by quantifying 

the degree to which an individual’s data can be inferred from the output. DP increased privacy 

with a trade-off on accuracy. Using multi-hop communication and blind-signature, the privacy 

of collaborative machine learning is enhanced because the server can no longer map participants 

with their model updates. The accuracy of the model does not change after applying the 

proposed method, and the resulting overhead is considered reasonable. From security aspect, 

the machine learning model must be robust and resistant to adversarial attacks. Vulnerability 

of an AI-based radio network use case against adversarial attacks was shown and a defence 

method was proposed to improve model resilience against adversarial attacks, with 37% 

reduction of attack success rate in the simulated scenario. (Further details in section 8.6) 

 

1.3 Structure of the document 

The document is structured in the following way:  

Chapter 2 provides a general overview and of the technical enablers in a structured way with references 

to the detailed studies. 

Chapter 3 explores network performance enhancement using AI/ML in 6G focusing on two main 

research design targets, i.e., (i) radio access network performance improvements over classical design 

methods and (ii) improvements in End-to-End (E2E) network operation and management. 

Chapter 4 discusses AI/ML as an enabler for 6G network sustainability by complexity reduction in radio 

access network functions.  

Chapter 5 presents 6G networks as an efficient AI platform, describing technical solutions to execute 

AI functions and AI applications efficiently in 6G networks, considering seamless operations, 

communication and compute resource efficiency in both learning and inference tasks. 

Chapter 6 investigates privacy, security & trust in AI-enabled 6G, elaborating on the topics of security 

and privacy of AI in 6G, and explainable AI (XAI) with design and implementation of federated XAI 

(Fed-XAI) algorithms. 

Chapter 7 gives an outline about demonstration activities carried out in WP4 (Fed-XAI demo). 
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Chapter 8 summarizes how Hexa-X targets are addressed by the technical areas and their KPIs. 

The document concludes and provides overall guidelines in the Conclusion chapter. 
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2 AI-driven communication and compute solutions 

Future 6G network functions and use cases will be intertwined with various forms of learning and 

intelligence in many aspects: air interface design, data management, optimality of compute and 

processing functions, network automation, service availability, while it will also call for the 

implementation of suitable mechanisms for trustworthy operation. WP4 addresses all the above 

domains with technical enablers, algorithms, joint solution proposals for communication and 

computation to help fulfilling Hexa-X Connecting Intelligence research challenges [HEX-D12]. The 

technical solutions described in this report, therefore, contribute to various network domains. The 

mapping of these areas to the architectural blocks identified in [HEX-D13] are illustrated in Figure 2-1: 

and their breakdown to technical solutions in Figure 2-2. 

 

Figure 2-1: Contribution of WP4 technical enablers in network architectural blocks identified in D1.3. 

AI/ML solutions for RAN performance enhancements and sustainable 6G are connected to both 

Infrastructure Layer and Network Service Layer, as the supported functions are targeting radio 

processing algorithms to improve communication performance, introduce energy efficient solutions, 

and supporting novel RAN concepts like Distributed MIMO (D-MIMO) and Reconfigurable Intelligent 

Surfaces (RIS). These AI/ML solutions can heavily rely on network-specific infrastructure elements or 

more generic AI accelerator hardware. 

RAN performance improvements are addressed by multiple AI techniques in this document. In the 

transceiver chain, joint training of transmitter/encoder and receiver/decoder frameworks and algorithms 

lead to better spectral efficiency (in general or compared to similar complexity solutions), reduced level 

of pilot usage, overcome suboptimal solutions of modular designs, increased robustness against 

hardware impairments. Power amplifier non-linearities are also addressed by receiver-only solutions. 

Further improvements of beam selection overhead and latency are shown in massive D-MIMO 

deployments. The related technical enablers are the following: 

▪ ML-based end to end learning of RIS-assisted communication systems (Section 3.1.1), 

▪ NN/ML aided channel (de)coding for constrained devices (Section 3.1.2), 

▪ AI based compressed sensing for beam selection in D-MIMO (Section 3.1.3), 

▪ AI empowered receiver for PA non-linearity (Section 3.1.4), 

▪ AI-Based Enhancements for Sub-THz (Section 3.1.5), 

▪ Channel charting based beamforming (Section 3.1.6). 
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While RAN performance improvements are obvious goals for AI algorithms, the complexity and energy 

efficiency aspects must also be considered. This is a recurring concern as AI/ML based solutions can 

often yield large neural networks which have to be executed in real time. In some cases, the increased 

complexity from AI is justified by the benefits and gains seen in spectral efficiency or latency. But even 

in these cases, the problems may be solved by well-designed AI architectures, where reduced 

complexity is achieved by applying expert knowledge instead of a large set of fully connected dense 

layers or other general purpose NN layers, as demonstrated by the results below. Another area for 

AI/ML to improve energy efficiency is addressing large optimization problems that are practically 

intractable by conventional methods, like D-MIMO power allocation. In these cases, the general 

function approximation property of neural networks can be utilized. Further details are described in the 

following solutions: 

▪ Low complexity radio resource allocation in cell-free massive MIMO (Section 4.1), 

▪ ML-based channel estimation for RIS-assisted systems with mobility (Section 4.2), 

▪ Generalizable low complexity channel estimation using neural networks (Section 4.3), 

▪ Deep unfolding for efficient channel estimation (Section 4.4), 

▪ Hybrid model for channel charting (Section 4.5). 

 

 

Figure 2-2: Summary of the AI-driven solutions of the document by their domain of application. 

In the area of Intelligent E2E Management and Orchestration AI/ML solutions are presented as a way 

forward to enhancing the network communication in 6G systems, including predictive solutions 

regarding improvements on orchestration aspects, as well as a decentralised solution to improve the 

scaling of architectural components through a case study of efficient provisioning of User Plane 

Function (UPF), as described in the following sections: 
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▪ Distributed AI for automated UPF scaling in low-latency network slices (Section 3.2.1), 

▪ AI/ML based predictive orchestration (Section 3.2.2). 

The main goal of the enablers included in the block of “6G network as an efficient AI platform” is to 

enable and enhance the global operation of AI services over the network, considering computing 

capabilities as a native part of future networks. These functionalities primarily reside in network service 

layer, with strong interface and exposure requirements towards in-network AI functions and the 

application layer. The relevant technical enablers address multiple areas. Network services are proposed 

with open interfaces and data structures derived by the requirements of AI applications, fulfilling 

stringent availability and reliability requirements even in highly mobile environments. The specific 

requirements of AI applications in the form of data availability or trust levels are also considered during 

workload placement. See following sections for details: 

▪ AIaaS - seamless exploitation of network knowledge (Section 5.1.1), 

▪ Flexible compute workload assignment, CaaS (Section 5.1.2), 

▪ AI workload placement for energy, knowledge sharing and trust optimization (Section 5.1.3). 

Many of the AI-enabled 6G use cases require real-time critical functionalities, which would normally 

pose stringent requirements on the communication network bandwidth, latencies, device density and 

traffic volumes over wireless connections. However, the application level KPIs can also be achieved by 

joint design of application-level metrics and controls with supporting communication functions in 6G. 

This can be done by exploiting noise and loss tolerance of neural networks and adapt the operation to 

the real-time environment knowledge measured by the network. Concepts and solutions are described 

in the following enablers: 

▪ Scalable and resilient deployment of distributed AI (Section 5.2.1), 

▪ Joint communication and computation orchestration for edge inference (Section 5.2.2), 

▪ Goal-oriented communication approach for edge inference (Section 5.2.3), 

▪ Network impairment resilience of autonomous agents (Section 5.2.4). 

Similar considerations apply to the model training tasks, where the major challenges are the huge data 

volume to be managed and shared between the AI agents. Data reduction techniques are provided for 

Federated Learning in general, and also for multi-agent ML by combining centralized training with 

decentralized execution, as studied in a MIMO network application: 

▪ Centralized training and decentralized Execution for multi-cell MU-MIMO (Section 5.3.1), 

▪ Federated ML model load balancing at the edge (Section 5.3.2), 

▪ Frugal Federated Learning (Section 5.3.3). 

This report also covers AI trustworthiness in three aspects: security, privacy and explainability, with 

the technical enablers below. The main goal of these enablers is to design and develop AI systems that 

are transparent, reliable, and fair and also ensure data privacy and security. Since AI systems are usually 

used to process and analyse data such as personal information, a security breach could result in 

significant harm. It is also important for AI systems to be transparent and explainable in decision-

making process and be understandable and trustable by humans. Therefore, developing and deploying 

trusted AI systems is essential. The details of  the following technical enablers and also the demo related 

to Federated Explainable AI can be found in Chapter 6 and 7 of the report: 

▪ Adversarial evasion attacks in AI-driven power allocation (Section 6.1.1), 

▪ Defence mechanisms to increase robustness of AI-driven power allocation (Section 6.1.2), 

▪ Security mechanism friendly privacy solutions for federated learning (Section 6.2.1), 

▪ XAI models: Fuzzy regression trees and TSK fuzzy rule based systems (Section 6.3.1), 

▪ Fed-XAI: Federated Learning of Explainable AI models (Section 6.3.2). 
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3 Network performance enhancements using AI/ML in 6G 

In this chapter the emphasis is on technical enablers for AI/ML-based solutions to enhance 6G network 

performance. The chapter contains two sub-chapters, introducing eight technical enablers. The first sub-

chapter focus on radio access and link-level enhancements, comparing proposed solutions to classical 

design methods. The second sub-chapter presents AI/ML-based solutions for network management and 

orchestration. 

3.1 Radio access network performance improvements over 

classical design methods 

This sub-chapter presents six technical enablers for radio access and link-level enhancements. The first 

enabler targets system performance improvements in a reconfigurable intelligent surfaces (RIS)-

assisted communication system by jointly optimizing the transmitter, receiver and RIS. The second 

enabler presents ML-based channel decoding for constrained devices. AI-based compressed sensing for 

beam selection, described in terms of a low latency solution, is the third enabler. This will be useful in 

high mobility beam tracking scenarios. The fourth enabler discusses a solution for compensation at the 

receiver for PA non-linearity at the transmitter. This is followed by the fifth enabler presenting learned 

constellations at the transmitter and AI-based receiver as part of an AI-native air interface, extending 

earlier work to sub-THz frequencies. The last enabler in the sub-chapter is channel charting based beam 

forming where the relative location of users is utilized. Performance gains are quantified in terms of bit 

error rate (BER) / block error rate (BLER), bit rate or spectral efficiency improvements, as well as 

computational complexity reduction in most of the above. 

3.1.1 ML-based end-to-end learning of RIS-assisted communication 

systems 

RIS is an emerging wireless technology for controlling the radio signals between a transmitter and a 

receiver using a planar surface that consists of a large number of passive reflecting elements. They can 

be used to improve the system performance by changing the phases of the incoming signals especially 

when the transmitter to receiver direct path is blocked. In an RIS-assisted system, there are additional 

signal processing tasks in the RIS such as the channel estimation and reflection coefficient optimisation 

(phase shift optimisation of the RIS reflection elements to maximise the transmission rate) in addition 

to the signal processing blocks in the transmitter and receiver in a conventional system. Recent works 

in RIS related research have proposed ML-based approaches for such different signal processing tasks 

in RIS-assisted [GSR+21, GZC+20, KKH+19]. On the other hand, several works have proposed end-

to-end learning of a communication system, where the transmitter and receiver are jointly optimised 

using the autoencoder concept [FCD+18, WWL+19]. Such an ML-based end-to-end communication 

system is also much simpler and straightforward than the complex algorithms involved in each sub-task 

of the signal processing chain. Motivated by this fact, in this work we investigate the potential of ML-

based end-to-end learning in an RIS-assisted communication system. We exploit the learning capability 

of ML-based autoencoders for joint optimisation of the transmitter, RIS, and the receiver in an RIS-

assisted communication system to improve its bit error rate (BER) performance. 
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                                         (a)                                                                          (b) 

 

Figure 3-1: RIS-assisted communication system model and system architecture. 

 

Downlink transmission of a single-user RIS-assisted system is considered, where an RIS is placed in 

between the base station (BS) and the user equipment (UE). Single-antenna user is assumed and the 

RIS has N elements. The downlink transmission happens from the BS to the UE through the direct 

channel and cascade channel as shown in Figure 3-1/a. The system architecture illustrated in Figure 

3-1/b is implemented as a ML-based end-to-end system: the transmitter and receiver are implemented 

as two convolutional neural networks (CNNs) and the channel block (consisting of the RIS block and 

noise layer) is implemented as a fully connected deep neural network (DNN) block. The RIS block is 

pre-trained to predict the optimal phase shifts to maximize the SNR of the transmitter-to-RIS-to-

receiver cascade link using either perfect or imperfect channel state information (CSI) of both direct 

and cascade channels. With perfect CSI, the RIS block is trained with random channels (the direct links 

from the transmitter to the receiver and the transmitter-to-RIS-to-receiver links), which are assumed to 

be known to the RIS. For the imperfect CSI scenario, pilot transmission with a predefined reflection 

coefficient matrix for the RIS is considered and least square channel estimations are obtained and 

feedbacked to the RIS to find the optimal reflection coefficients for the data transmission. This pre-

trained RIS block is then used in the end-to-end model. The full transmitter-channel-receiver model is 

then trained in an end-to-end manner to minimise the symbol detection error. We denote this CNN-

based end-to-end as a CNN-autoencoder (CNN-AE).  

Figure 3-2 shows the comparison of the BER performance of the CNN-AE for the RIS-assisted system 

when the number of RIS elements varies for BPSK modulation scheme. The results are also compared 

against the theoretical BER performance of an equivalent system. The theoretical BER values of the 

RIS-assisted system is calculated using equations in [BDD+19] and only the transmitter-to-RIS-to-

receiver channel is considered there. Furthermore, for the theoretical BER calculations, it is assumed 

that the channel values are known and the optimized phase shift values that maximize the SNR are 

obtained through equations. The CNN-AE BER performance on the other hand are obtained for both 

instances when the transmitter-to-receiver direct channel is included and excluded. Figure 3-2 shows 

that when the number of elements in the RIS are increased the BER of the CNN-AE system has 

decreased. The CNN-AE system has a lower BER compared to the theoretical in the high SNR range, 

and the performance improves when the number of RIS elements is increasing. In these simulations we 

have trained the CNN-AE for a given SNR in each RIS setting and evaluated the BER across the 

considered SNR range using the trained model. While this shows the flexibility of the CNN-AE, it 

should be noted that the training SNR considerably effect the performance of the CNN-AE and therefore 

needs to be carefully selected to achieve the expected performance. 
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Figure 3-2: BER performance (BPSK) of the proposed CNN-AE for RIS-assisted communication vs 

theoretical [BDD+19] for different RIS sizes. 

Furthermore, the BER performance of the CNN-AE when the RIS-assisted system is configured in 

different communication rates which is equivalent to applying different modulation schemes in a 

conventional communication system is shown in Figure 3-3. The number of RIS elements is selected to 

be 16 for these simulations. Therefore, this shows the compatibility of the proposed  system for different 

modulation schemes. 

 

Figure 3-3: BER performance of the CNN-AE for RIS-assisted system for higher communication rates. 

Finally, the comparison of BER performance for perfect CSI and imperfect CSI for QPSK modulation 

scheme when number of elements are 16 is shown in Figure 3-4. The pilot-aided channel estimation 

mechanism explained earlier is implemented in the imperfect CSI scenario. It shows that the BER 

performance is reduced with imperfect CSI compared to perfect CSI. 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 26 / 138 

 

 

Figure 3-4: BER performance of the CNN-AE system with and without perfect CSI. 

The numerical results show the potential of a CNN-AE system for an RIS-assisted communication 

system which is capable of learning transmit signals and the optimal reflection coefficients for the RIS 

in an end-to-end manner to minimize the BER. Such a system would be relevant and beneficial in 

“Interactive and cooperative mobile robots" use case where new RIS-assisted communication 

architectures could be used to manage a cluster of drones over a 6G network for improved end-to-end 

performance [HEX-D41]. The relevant target for this enabler is T1 - Improved end-to-end BER/BLER, 

which we have used to evaluate the performance of the proposed CNN-AE system. 

 

3.1.2 NN/ML aided channel (de)coding for constrained devices 

Efficient Forward Error Correction (FEC) schemes are a key enabler for Ultra-Reliable Low Latency 

Communications (URLLC) and/or Internet of Things (IoT) scenarios. Such use-cases usually imply the 

use of short packets (datagrams of a tens bits to a few hundred bits) and low-complexity 

coding/decoding procedures, in line with the conflicting constraints of latency, energy consumption, 

hardware cost, available computational power, etc.  

Existing FEC codes, such as Bose Chaudhuri and Hocquenghem (BCH), Tail-Biting Convolutional 

Code (TB-CC), Turbo, Polar or Low-Density Parity Check (LDPC) codes and their respective decoders 

strike different trade-offs which, further leading to different FEC choices for different use-cases.  As an 

illustration of this, the 3GPP standardized the use of Polar codes for the control channels and LDPC for 

the data channels of the 5G New Radio (5G-NR) interface for enhanced Mobile Broad-Band (eMBB) 

applications [3GPP16]. The rationale is that LDPC codes offer near capacity performance and efficient 

decoding [FMI99], [CDE05], in the large code block regime, but their performance is subpar for shorter 

codes. Conversely, polar codes provide excellent performance at a reasonable decoding complexity for 

shorter block lengths and their complexity becomes a limiting factor for larger code lengths. 

In this current setup, devices are required to support two different FEC schemes along with their 

respective decoders, adding to the complexity and cost of the devices.  

In this work, we investigate the use of Linear Block Codes (LBC) for short block lengths, typically in 

the range of few tens up to hundreds of bits, using Belief Propagation (BP) decoders, as used for LDPC 

codes. The goal is to provide a unified decoder architecture that would encompass both extrema in block 

regimes, and therefore suit both data and control planes requirements. Such an architecture would be of 

great interest for next generation communication networks such as 6th Generation (6G) networks. 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 27 / 138 

 

This work relies on machine learning to discover efficient short block codes under BP decoding and to 

optimize the decoder under complexity constraints, i.e., fixed number of iterations. 

Proposed approach 

The overall model used in this work is an auto-encoder, encompassing both the encoding of messages 

and the decoding of channel codes, as illustrated in Figure 3-5:. 

 

Figure 3-5: Model architecture. 

This model consists of two main building blocks, namely the encoder and decoder, and shared 

parameters: the Code 𝒞(𝑛, 𝑘). The encoder, as the name suggests, carries out the encoding of messages 

and modulation, while the decoder performs the decoding of channel codes, more specifically of the 

evaluated Log-Likelihood Ratios (LLRs). The training process evaluates the output of the decoder with 

respect to the input of the encoder using a loss function ℓ(𝑥̃, 𝑥), here the Binary Cross Entropy (BCE). 

The Code parameters, i.e., the parity equations, are optimized using a Stochastic Gradient Descent 

(SGD) variant. 

Encoder: 

The encoder side is a differentiable implementation of a linear block coder, where input messages are 

multiplied by a generator matrix 𝐺 and further modulated using a Binary Phase Shift Keying (BPSK) 

constellation. More specifically, the proposed encoder block describes linear combination in 𝔽2 by 

representing the XOR function as a differentiable product of bipolar symbols and follows the logic 

described in Figure 3-6: 

• Binary words of size k are converted into bipolar form (i.e. {0;1} are mapped to {+1; −1}). 

• Inputs are broadcasted and multiplied by trainable external binary weights, i.e., the code’s 

generator matrix 𝐺, thus selecting the bits participating in each of the n encoding equations. 

• For the variables that were not selected the neutral element of the product (+1) is added. 

• Finally, a product reduction is performed for each of the 𝑛 encoding equations.  
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Figure 3-6: Encoder model - execution graph. 

Channel: 

A simulated AWGN channel model is adopted, defined as an identity function and an addition with a 

vector of noise. This model has a single non-trainable parameter, the noise variance, and is thus 

differentiable w.r.t the encoder parameters. 

  

Decoder: 

The decoder part of the auto-encoder supports mainly 3 functions: 

1. Demodulation: Log-Likelihood Ratios (LLRs) of the received noisy symbols are computed 

according to the type of modulation used (BPSK) and current noise level. A trainable 

normalization is used to find the best LLR range to be provided to the forthcoming decoder. 

2. Decoding: The LLRs are provided to a Neural Network Belief Propagation decoder which is 

described below. This trainable decoder has parametric weights on the received LLRs to 

improve the decoding performance when compared to standard BP decoders.  

3. The results of the different decoding iterations are recombined to form the final decoding result 

using a trainable weighted sum and thus be able to only select the iterations outputs of the 

decoder that provide the more reliable results. 

 

Code, shared weights: 

The parameters of parity-check and generator matrices (𝐻 and 𝐺) of the code are regrouped in a place-

holder model. To reduce training time, a systematic form is employed to allow for a direct conversion 

between 𝐺 and 𝐻. Using this approach, we ensure that encoder and decoder are always matched). To 

ensure the differentiability of the architecture with respect to the code model parameters, 𝐺 and 𝐻 are 

derived from real scalar weights 𝑊 using a differentiable step function (DSF) defined as: 

𝑓(𝑥) = 𝑠𝑡𝑒𝑝(𝑥)

𝑑𝑓(𝑥)

𝑑𝑥
= σ(𝑥)σ(1 − 𝑥)

 

 

The Neural Network Belief Propagation decoder 
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Arguably the most significant contribution of this work, the NN-NBP decoder is based on the Tanner 

Graph (TG) representation of codes and the Sum-Product Algorithm (SPA). In essence (a detailed 

explanation of those notions is provided in [LDL+22]), the SPA is an iterative decoding algorithm, 

based on message passing between variables nodes and parity check nodes of a Tanner Graph.  

The NN-NBP implements the SPA as a Recurrent Neural Network Cell (RNN-cell) and is illustrated 

in Figure 3-7:. 

 

Figure 3-7: RNN-cell executing the Sum-Product Algorithm. 

At each decoding iteration, the cell receives the normalized LLRs λ𝑖. Input LLRs are summed with 

weighted messages from parity check nodes to variable nodes µ𝑐→𝑣 coming from previous iterations, 

effectively computing update messages from variable nodes to check nodes µ𝑣→𝑐, as defined in the 

“sum” part of the sum-product algorithm:  

µ𝑣𝑖→𝑐𝑗
= λ𝑖 + ∑ 𝑤Σ l,j  µ𝑐𝑙→𝑣𝑖𝑙≠𝑗  . 

The cell’s graph execution then computes updated messages from check nodes to variable nodes, i.e. 

the “product” part:  

µ𝑐𝑗→𝑣𝑖
= 2𝑎𝑟𝑐𝑡𝑎𝑛ℎ (∏ 𝑡𝑎𝑛ℎ (

1

2
µ𝑐𝑙→𝑐𝑗

)𝑙≠𝑖 ). 

Finally, the a posteriori LLRs are computed: 

λ𝑖̃ = λ𝑖 + ∑ µ𝑐𝑙→𝑣𝑖𝑙  . 

The overall architecture builds up around this RNN-cell as shown in Figure 3-8:. 
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Figure 3-8: Complete model architecture. 

Training procedure and datasets 

As mentioned above, the parameters of the Code are trained using an SGD based on the Binary Cross 

Entropy loss function. All datasets used in the proposal are synthesized.  

In a naive approach, learning a code of size (n, k) would require a training dataset including all the 2𝑘 

words. This number grows exponentially with the code size and can become prohibitively large. In the 

case of LBC and under symmetric assumption on the channel and the decoder (implying in the case of 

NN based decoders the use of symmetric activations, absence of biased units, etc.), it is common to 

train or evaluate a decoder only with the zero code-word, while guaranteeing performance on the 

complete code [RU07]. Nevertheless, the training of the encoder is also considered in this work, thus 

requiring the use of different words. The proposed encoder ensures that all code-words are linear 

combinations of the basis of the vector subspace of the code. Hence, the model can be trained using 

only the basis vectors of the words thus reducing the training data-set size from an exhaustive dataset 

of 2𝑘  words to only 𝑘 words.  

Results 

An extensive performance analysis of the codes learned using this proposal is available in [LDL+22]. 

More specifically, we provide results and structure interpretation for very short block lengths codes, 
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e.g. (8,4); we investigate the repeatability and convergence of code training instances on short block 

lengths codes, e.g. (𝑛 = 31, 𝑘 = 16) and we provide extensive results for codes of length of 

interest(𝑛 = 64, 𝑘 = 18,36,45)and (𝑛 = 128, 𝑘 = 64).   

Here, we provide key results that compares learned codes to state-of-the-art LDPCs and Polar Codes.   

 

Figure 3-9: Performance comparison, n=64. 

Figure 3-9: compares learned codes of size 𝑛 = 64 to both regular and irregular state-of-the-art LDPC 

codes designed for this block regime using the Progressive Edge Growth (PEG) algorithm, decoded 

with both a standard BP decoder and an improved BP decoder using our learning proposal (fixed code 

weights). Despite learned codes being in standard form, their performance is significantly better than 

that of regular LDPC codes and in the same ballpark as irregular LDPC codes (no more than 0.5dB 

difference).  

Figure 3-10: compares the performance of learned codes of size 𝑛 = 128 with state-of-the-art LDPCs, 

polar codes and Tail-Biting convolutional codes. The take-away from this graph is that learned codes 

perform close to state-of-the art LDPC codes designed for this code size (again, no more than 0.5dB 

difference) for the same number of decoding iterations, while retaining the standard form property, 

and therefore allowing to skip the decoding altogether for high SNR conditions. 
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Figure 3-10: Performance comparison, n=128, k=64. 

Obviously, there are codes that perform significantly better than proposed codes, but their complexity 

is up to 40 times higher (200 to 5 iterations).  

These results highlight the value of machine learning for code discovery for scenarios that need to 

satisfy composite requirements, here a trade-off between decoding complexity and BLER.  The 

proposed learning approach has indeed allowed to learn codes with low decoding complexity that 

approach state-of-the-art performances while guaranteeing the explicability of the models and the 

compatibility with legacy decoders, i.e. the generating and parity matrices can be extracted and reused 

in a standard BP decoder. 

In addition, the learned codes are particularly suitable for small datagrams and allow direct access to 

the messages (the codes are made up of the message to be encoded to which redundancy bits are 

postfixed) which avoids a costly decoding prior to any exploitation of the data, e.g., CRC check. 

Thus, these results contribute to the achievement of the objectives of the use case "Immersive smart 

cities and integrated micro-networks for smart cities", in particular the related applications requiring 

the transport of small datagrams under constraints of energy efficiency and use of communication 

resources and contribute to the achievement of the target KPIs of WP4 concerning the performances 

in terms of BLER and energy efficiency. 

 

3.1.3 AI based compressed sensing for beam selection in D-MIMO 

Beamforming is a necessary technique to provide reliable coverage at higher frequencies in the 

mmWave range. Using narrow beams has the advantage of higher beamforming gains, capacity and 

coverage, but it also poses a significant challenge to the beam selection process in the form of increased 

overhead. High beam selection delays have especially high impact on connection reliability in 

applications with high user mobility or in deployments with many blockages. Several of the envisioned 

6G use cases, like interactive and cooperating mobile robots or high-speed vehicular communication  

will require reliable connections even in the mmWave range. The problem can become even more 

severe in Distributed massive MIMO (D-MIMO) settings, where there is a large number of APs 

(typically more than UEs), each with multiple transmit antennas and possible beam directions. 
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Compressed Sensing (CS) based beam identification is an efficient way of reducing the delay of best 

beam selection by providing algorithms using significantly fewer measurements than the number of 

beams. This is done by exploiting the channel sparsity in the angular domain ([CSD+17]). We consider 

a MIMO system with n transmit antennas and one receive antenna at the UE. The reference signal for 

beam selection is transmitted over m time slots. Assuming a narrowband propagation model, when 

sending a reference signal p, the beamforming system is described as 

𝒚 = 𝑫𝑩𝒉𝒑 + 𝒏,  

where 𝒚(𝑚×1) is the received signal vector, 𝒉(𝑛×1) is the channel vector for n transmit antennas, 𝑩(𝑛×𝑛) 

is a DFT-based codebook forming n equally spaced beams, 𝑫(𝒎×𝒏) is a matrix for linear combination 

of beam weights (called dictionary or sensing matrix), and n is additive Gaussian noise. In this system 

the channel vector in the angular domain 𝒙 = 𝑩𝒉 is a sparse vector due to multipath sparsity, for which 

the system equation is transformed into a standard sparse decoding problem of Y = Dx+n, which can 

be solved even if 𝑚 ≪ 𝑛. 

Although these CS-based techniques present reduced overhead with certain random dictionaries, local 

environment statistics can also be utilized to further optimize the dictionary. The distribution of beam 

patterns received by UEs is not uniform and statistics on typical joint beam patterns can be exploited. 

Initial investigations indicated that the number of required measurements can indeed be further reduced 

if we apply AI/ML techniques to learn the dictionary for a given deployment [HEX-D42]. 

This dictionary training can be performed with the help of an autoencoder architecture (Figure 3-11:), 

where input is a representative set of beam channel vectors X sampled from potential UE locations. The 

set of channel vector samples may be collected offline with dedicated measurements (drive test) or 

online with regular updates from the mobile devices. The encoder is a dense layer (matrix 

multiplication) with the dictionary elements set as weights (D), which results in the measurements Ymeas. 

The decoder block must implement a sparse decoder algorithm (using the encoder dictionary D) and it 

must also be differentiable so that gradient descent can be applied to optimize D. Several neural sparse 

decoder architectures were investigated, including the Learned Iterative Shrinkage and Thresholding 

Algorithm family of LISTA [GL10], LISTA-CP [CLW+18] and Ada-LISTA [AGE21]. All the above 

algorithms are based on the Iterative Shrinkage and Thresholding Algorithm (ISTA), but their models 

have a significant difference in the number of trainable parameters. While LISTA scales with the square 

of the beam number (n), LISTA-CP scales with the size of the dictionary 𝑛 × 𝑚, whereas Ada-LISTA 

can be trained to be independent of the dictionary and the number of trainable variables scales with 

𝑚 × 𝑚. 

 

Figure 3-11: Autoencoder neural network for optimizing dictionary and sparse decoding. 

The main KPI to compare the performance of different solutions is the best beam match ratio within 

1dB (decoded beam is accepted as best beam if its gain with path loss is within 1dB compared to the 

best). Note that even if the dictionary and the neural sparse decoder are trained jointly, D can still be 

used with any other traditional sparse decoder algorithms. Although using a learned dictionary itself 

shows the expected benefits, significant additional gain can be realized by using the decoder model 

trained with the given dictionary [HEX-D42]. The models with higher complexity and more parameters 
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are expected to be better in this additional optimization, as it can be seen in Figure 3-12:. This analysis 

has been performed based on the open DeepMIMO dataset [ALK19], with 4 access points and 32 

horizontal beams on each of them. That means 128 beams altogether with 128 measurements if 

sequential scanning is used. 

 

Figure 3-12: Comparison of performance of neural sparse decoders with random and optimized 

dictionary. 

The impact of the training data quality has also been investigated. Since collecting perfect training 

dataset is hardly possible, it is important to see if the training is robust enough for less frequent 

sampling. Figure 3-13: shows that more fine-grained sampling leads to better model quality, even a 

sampling distance of 1m results in close to optimal performance, both in line of sight (LoS) and non-

LoS scenarios. This observation suggests that the model with sparse neural decoder generalizes well 

even for a coarser training data. 

 

Figure 3-13: The training performs well in both LoS and more complex NLoS scenarios. The model also 

generalizes well for small training data. 

Decreasing the beam scanning time is especially beneficial in high mobility beam tracking situations 

when fast beam changes are required to prevent losing connection for latency critical communication. 

The improvements demonstrated by this technical enabler may reduce the scanning time by an order of 

magnitude, leading to both lower ratio of connection drops as well as faster recovery times. This will 

contribute to the extreme reliability KPIs required by use cases like “Interacting and cooperative mobile 

robots” or Telepresence and Massive twinning use case families. 

 

3.1.4 AI empowered receiver for PA non-linearity compensation 

Introduction: Power amplifier (PA) non-linearity causes throughput degradation in wireless 

communication systems. The classical methods compensate PA non-linearity at the transmitter-side, 

e.g. by applying power back-off or performing digital-pre-distortion (DPD). However, applying PA 

power back-off leads to lower energy efficiency, and lower output power, and hence reduces coverage; 
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and performing DPD results in higher complexity of the transmitters. We propose an alternative 

approach to compensate the impact of PA non-linearity at the receiver side using a neural network-

based demapper [FHS23] in operating regimes in which out of band emission requirements are fulfilled. 

We evaluated the performance of the proposed method and compare it against legacy receiver using 

KPIs including un-coded bit error rate (BER), block error rate (BLER), throughput, and power added 

efficiency (PAE).  

AI-empowered receiver: The designed receiver architecture for Discrete Fourier transform-spread 

orthogonal frequency-division multiplexing (DFT-s-OFDM) transmitted signals is shown in Figure 

3-14:. The receiver performs channel estimation and equalization of the received signal using legacy 

methods. A neural network-based demapper computes soft bits based on the equalized symbols and 

SNR estimate. The soft bits are used as inputs to an LDPC decoder.  

 

 

Figure 3-14: The architecture of DFT-s-OFDM signal transmitter with AI-empowered receiver for PA 

non-linearity compensation.  

Neural network architecture: A fully connected neural network (FCNN) is used for demapping of the 

received symbols to soft bits. The inputs of the FCNN are the real and imaginary part of the equalized 

received symbol and the SNR estimate, and the outputs are soft bits. The input layer is composed of 

three neurons, there are five hidden layers each composed of 64 neurons, and the number of neurons in 

the output layer is equal to the number of bits per symbol. The hidden layers have a ReLU activation 

function and the output layer has a linear activation function. The neural network is trained using 

synthetic data generated from link simulators, and binary cross entropy is used as loss function for 

training the model. The training is performed over collected training data for different channel 

realizations and a range of SNR values.   

Simulation results: Simulation assumptions for performance evaluations are summarized in Table 3-1. 
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Parameter Setting 

Waveform DFT-s-OFDM 

PA model Memory-less polynomial model 

PA back-off 4dB 

Carrier frequency 3.5 GHz 

Sub-carrier spacing 15 KHz 

Bandwidth 10 MHz 

Channel model TDL-A 

UE speed 3 km/h 

RMS delay spread 100 nsec 

HARQ re-transmissions 3 

MCS Table Table 5.1.3.1-2. in [TS38] 

Table 3-1: Simulation assumptions. 

 

 

Figure 3-15: Uncoded BER performance for 64QAM modulated signals.  

 

Figure 3-15: shows raw BER performance for 64QAM modulated signals. The performance of a legacy 

receiver in the presence of a linear PA can be considered as a lower bound on performance. The NN-

demapper outperforms the legacy demapper and the performance gain is larger at higher SNR regime, 

where PA non-linearity has more severe impact on receiver’s performance degradation.  
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Figure 3-16: BLER performance for 64QAM modulated signals with MCS=19.  

Figure 3-16: shows block error rate (BLER) performance of the considered methods for 64QAM 

modulated signals with MCS index 19. Comparing the BLER performance of the legacy demapper in 

the presence of PA non-linearity, and that of the proposed receiver with NN-demapper, it can be seen 

that, at 10% BLER, which is a reasonable operating point, the proposed method reaches roughly 1dB 

performance gain.  

 

Figure 3-17: BLER performance for 256QAM modulated signals with MCS=20.  

 

Figure 3-17: shows the BLER performance of the studied methods for 256QAM modulated signals. 

Evaluations are performed for MCS index 20, corresponding to the lowest code rate for this modulation 

order. For this modulation scheme even for the lowest code rate defined, the legacy receiver cannot 

successfully detect the signals and fails to reach 10% BLER. However, the proposed receiver with NN-

demapper can provide satisfactory results without any visible error-floor. This confirms that the 

proposed receiver can enable higher order modulations while providing signal reception with desired 

reliability. 
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Figure 3-18: Throughput performance of the NN-empowered receiver and legacy receiver with link 

adaptation.  

The achievable throughput of the considered methods in the presence of link adaptation is shown in 

Figure 3-18:. The highest modulation order that was considered in the simulations with link adaptation 

was 64QAM. The legacy receiver in the presence of linear PA provides an upper bound on the 

achievable throughput. In the presence of PA non-linearity, the legacy receiver achieves lower 

throughput compared to the upper bound, and the performance gap become larger at higher SNR values. 

At high SNR regime, the throughput saturates at a lower level compared to the one that can be achieved 

when there is no PA non-linearity. The proposed receiver with NN-demapper achieves higher 

throughput compared with legacy receiver. The performance gain is larger at higher SNR values and 

the achieved throughput saturates at the same level as the one for the upper bound on throughput. 

Conclusions: The simulation results confirm that the proposed method can increase throughput (20% 

improvement) and/or extend the coverage of a communication link in the presence of PA non-linearity, 

and to enable enhancing energy efficiency (70% improvement of PA power-added efficiency) at the 

transmitter side. The proposed method can be effective in compensating the impact of in-band 

distortion, however, for the out-of-band emission, the transmitter’s parameters need to be set so that the 

resulting transmitter’s signal fulfil out-of-band emission’s requirements. Therefore, the proposed 

method would be suitable for use cases in which the inband distortion is a limiting factor (e.g. high 

throughput transmission using high-order modulation schemes). This method can be also used for 

compensating other hardware impairments such as phase noise at high frequency bands as shown in 

[FS20]. The proposed method can be used in uplink or downlink scenarios and can enable using higher 

order modulation for PAs operating in non-linear energy efficient operating regimes. The proposed 

method requires no extra processing at the transmitter side but requires more complex processing at the 

receiver side compared to the legacy receiver methods. In uplink scenarios which are usually coverage 

limited, this technique enables the user equipment (UE) to increase its output power, and enhance 

coverage, while more capable receivers using this method can perform signal detection in the presence 

of distortions at the base station.  

The proposed method contributes to Hexa-X connecting intelligence targets on BER and BLER gains 

with respect to legacy methods and resilience against hardware imperfections (T1), resource utilization 

enhancement by improving spectral efficiency and throughput gain (T2), and energy efficiency 

enhancement (T5). This enabler could be used in wide range of 6G uses cases that require extreme 

performance, e.g., “fully-merged cyber-physical worlds”; extreme reliability, e.g. “interacting and 
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cooperating mobile robots”; extreme energy efficiency, e.g. “network trade-off for minimized 

environmental impact”; or coverage enhancement, e.g. “earth monitor”.     

3.1.5 AI-Based Enhancements for Sub-THz 

AI-native air interface has a high potential in improving the spectral efficiency, flexibility, and 

resilience against hardware impairments, as shown by various earlier works [KHH+22, PKH+21]. In 

particular, the existing solutions have demonstrated that learning the transmitter and/or receiver 

processing can result in reduced overhead [KHH+22], lower out-of-band emissions [KHH+22], and 

higher detection accuracy under severe inband distortion [PKH+21]. However, most of these works 

have assumed sub-6-GHz scenarios, where propagation models and hardware impairments are quite 

different from the higher frequencies. 

In this section, we demonstrate how to extend the analysis of ML-based physical layer design to sub-

THz frequencies, where especially the hardware impairments cause considerable challenges for 

algorithm design. Our results indicate that joint learning of sub-THz transmitter and receiver processing 

can lead to higher spectral efficiency and high resilience against hardware impairments. This extends 

our original findings reported in [HEX-D42], where similar results were obtained for a sub-6-GHz 

center frequency. 

 

Figure 3-19: System model for end-to-end learned sub-THz link. 

Here, ML-based processing is utilized both at the transmitter and receiver side, as depicted in Figure 

3-19. In the transmitter, the constellation shape is being learned to facilitate pilotless detection 

[KHH+22], which greatly reduces transmission overhead. Namely, with such a learned constellation 

shape, all resource elements (REs) can be used for data transmission. In addition, the transmitter utilizes 

a small convolutional neural network (CNN) to make the transmit waveform better suited for a nonlinear 

power amplifier. In the receiver side, the complete receiver is implemented as a deep convolutional 

ResNet (DeepRx), similar to [HKH21]. 

A key aspect of the proposed approach is to learn the transmitter and receiver elements jointly. This 

approach is referred to as end-to-end learning, and it ensures that the system learns to utilize the air 

interface as efficiently as possible. In practice, such end-to-end learning is achieved by implementing 

the complete transmitter and receiver link as a single differentiable model. This way, the system can be 

interpreted as an autoencoder, where the transmit bit stream is the input, and the bit likelihoods 

estimated by the receiver are the output. The effective model consists of a combination of trainable and 

non-trainable layers, where the latter include elements such as the channel model and noise source. The 

former includes the constellation shape, transmitter-side CNN, and the learned receiver (DeepRx). With 

such formulation, the training can be carried out with supervised learning, where the original bit 

sequence can be used as the labels of a binary cross-entropy loss function. 

To introduce a realistic sub-THz channel model, the measurements carried out in Hexa-X WP2 have 

been utilized [HEX-D23]. In particular, the measurement-based channel model for a center-frequency 

of 140 GHz reported therein has been implemented as a TensorFlow layer in order to facilitate the end-

to-end learning as described above. In addition, a measurement-based power amplifier (PA) model has 

been included in the transmitter, which is pushed well within its nonlinear operation region to represent 

a nonideal sub-THz PA. To evaluate the performance limits of the proposed approach, a CP-OFDM 

waveform is utilized, which has a rather high peak-to-average-power ratio (PAPR). In this study, a 

subcarrier spacing of 1 MHz is assumed. 
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(a) 

 

(b) 

Figure 3-20: (a) BLER and (b) goodput of the learned system, compared against baseline 

solutions. 

The performance results are shown in Figure 3-20 in terms of the BLER and goodput. The latter is 

calculated similar to [KHH+22], and it reflects the useful bit rate after accounting for the overhead 

reserved for the transmission of pilots and the cyclic prefix. Firstly, it can be observed that the proposed 

approach achieves essentially the same BLER as the genie-aided baseline relying on perfect channel 

knowledge. With a BLER of 10%, the gain over the practical baseline is over 2 dB. 

When considering the goodput, the gain over the practical baseline is equally evident. Depending on 

the SNR, the goodput gain is in the order of 20-30%. Note that the goodput of the genie-aided baseline 

is calculated without any pilots, meaning that the learned scheme can only outperform that by 

suppressing the nonlinearities produced by the transmitter PA. In this particular example, the learned 

scheme is mainly targeting higher ACLR, meaning that the throughput is on par with the genie-aided 

baseline, while the out-of-band emissions are 10 dB lower. 

Altogether, this solution addresses the target T1 by providing a BLER improvement, and target T2 by 

improving the throughput. The BLER gain is approximately 2 dB, while the throughput improvement 

is in the order of 20-30%. 

3.1.6 Channel charting based beamforming 

Channel charting (CC) is the task of locating users relative to each other in an unsupervised way and 

can be viewed as a way to discover a low-dimensional latent space charting the channel manifold. A 

more thorough description of CC is given in section 4.5. In this work, we propose to leverage a learned 

chart together with the recently proposed location-based beamforming (LBB) method [LYP+22a] and 

presented in [HEX-D42] to show that CC can be used for mapping channels in space or frequency. 

 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 41 / 138 

 

 

Figure 3-21: Setting where two BSs communicate with users. 𝒉 is an uplink channel and 𝒈 is a downlink 

channel. 

LBB, as the name suggests, traditionally relies on a user’s location to predict its associated optimal 

precoder. However, users’ locations are not always available and usually require a separate system (e.g., 

GNSS) to provide them. On the other hand, CC only requires channel measurements to produce a chart 

of pseudo-locations coherent enough with the real locations. Such a chart appears to be the ideal 

candidate to replace the latter for unsupervised deployments. This would effectively allow a base station 

to choose appropriate precoders using the LBB technique but relying on chart locations instead of spatial 

locations. Ultimately, the goal of the proposed contribution is to map channels in space or frequency, 

which amounts to determine a downlink precoder 𝒘𝒌,𝒋 that should be highly correlated with the 

downlink (target) channel 𝒈𝒌,𝒋, based on the knowledge of the uplink (origin) channel 𝒉𝒊,𝒋, as illustrated 

on Figure 3-21. The origin and target channels are not necessarily on the same band nor even on the 

same base station (𝑘 and 𝑖 may be different).  

The inference phase of the proposed method comprises three steps (depicted on Figure 3-22:): 

1. At first, 𝐷 latent variables 𝒛𝒊,𝒋 ∈ ℝ𝐷 are computed from the origin channel 𝒉𝑖,𝑗 using channel 

charting methods [SMG+18] (with 𝐷 ≪ channels’ dimension) at the 𝑖th BS. In particular, the 

efficient channel charting method of [LEM21] is used in this paper. 

2. Then, the latent variables 𝒛𝒊,𝒋, that can be seen as a compressed version of the channel are sent 

from the ith BS to the 𝑘th BS.  

3. Finally, the kth BS performs location based beamforming using the latent variables as inputs, 

so as to output a precoder. 

 

In order to calibrate the LBB step, a training phase is required. The method proposed in [LPY+22a] is 

used, with the different that here chart locations are taken as input instead of the true spatial locations. 

A database of chart locations and associated target channels is first built using classical channel 

estimation methods. Then a neural network comprising a random Fourier features layers is trained to 

minimize the misalignment of the predicted precoders with respect to the target channels according to 

the following cost function: 

Figure 3-22: Schematic view of the proposed method (the real dimension being shown below each 

variable). 
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The proposed method can be applied to several tasks, depending on the source and target channels. For 

example, if CC and LBB are done in the same base station (𝑖 = 𝑘) but the frequency bands are different 

for the uplink (source) and downlink (target) channels, then channel mapping in frequency is carried 

out. In the more general case where CC and LBB are done in two distinct base stations (𝑖 ≠ 𝑘), the 

proposed method allows to determine a precoder at one BS relying on a channel estimated at another 

BS (potentially in another frequency band), so that no channel estimation is required at the precoding 

BS. This is particularly interesting if the CC done at one BS is used to perform LBB at several other 

BSs (say 𝐵 − 1), since in that case channel estimation would be needed at only one BS to determine 

precoders at 𝐵 BSs. The overhead due to channel estimation would then be reduced by a factor of 𝐵. 

Moreover, the backhaul requirements are kept reasonable, since only 𝐷 real numbers (dimension of the 

channel chart which is much smaller than the dimension of the channel) have to be shared for each user. 

The model is evaluated on the DeepMIMO [ALK19] dataset on the ‘O1’ outdoor scenario where two 

BSs on opposite sides of a street communicate with UEs spread across the map. Its performance is 

evaluated in terms of the normalized correlation between the precoder and the target channel. It is 

expressed as 

𝜂 =
|𝑤𝐻𝑔|2

‖𝑔‖2
2 . 

The method is compared to the pure LBB one [LYP+22a] where the precoder is predicted based on 

the knowledge of the true locations. Figure 3-23: show the cumulative distribution function (CDF) of 

the correlations 𝜂–the closer to a Dirac at 𝑥 = 1 the better. The curves are almost identical meaning 

that both methods achieve similar performance. This indicates that, although lacking positional 

information about the UEs, the presented approach is capable of producing precoders of good quality.  

More details on this work are given in [LYP+22a]. 

 

Figure 3-23: CDF of the correlations. Blue curve corresponds to the original LBB at BS1. Orange 

curve corresponds to CC at BS1 and LBB at BS2 at different frequencies. 
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3.2 Improvements in E2E network operation & management 

It is beyond doubt that the inclusion of AI/ML techniques in management and orchestration operations 

for B5G and 6G networks will be a key enabler in order to support the new requirements associated to 

these networks i.e., network complexity, network heterogeneity, extreme-edge domain integration, etc. 

as described in [HEX-D42] and [HEX-D62].  

This sub-chapter presents two technical enablers for AI/ML-based solutions for network Management 

and Orchestration (M&O). The first enabler addresses scheduling of finite User Plane Function (UPF) 

resources in support of low latency communication services. This is done by introducing distributed 

AI/ML agents at the network edge. The agents are tasked to forecast traffic patterns, serving as input 

for decisions on adding or reducing local UPF instances. The second enabler presents a framework for 

predictive orchestration to enable M&O operations in terms of flexibility, dynamicity, resource 

placement etc. Performance gains are quantified in terms of inferencing accuracy, latency, network 

energy efficiency. 

3.2.1 Distributed AI for automated UPF scaling in low-latency network 

slices 

As explained in [HEX-D42] low-latency requirements relying on edge limited computational power not 

always be satisfied, because of the number finite resources provided by the data plane function, i.e., the 

UPF. One challenge addressed by the inclusion of AI in network management and orchestration is to 

avoid degradations in service caused by finite User Plane Function (UPF) resources while ensuring 

security, privacy and reducing data flow demands. The UPF has critical role in the data transfer within 

the 5G network, processing, routing and forwarding the packets from the UEs to the Internet.  In this 

way, an edge AI agent serves for the optimal auto-scaling of local UPFs placed at the network edge, in 

support of low latency communication services.  This solution is strongly applicable to all 6G use cases 

which depend on reliable low latencies including those under the umbrella of Massive Twinning and 

Robot to Cobot use case families described in [HEX-D12].  The agent is responsible for inferring traffic 

patterns associated with local UPFs and using this information to foresee opportunities for optimising 

resource allocations. The resources and scaling to be considered include additional or reduced local 

UPFs instances servicing a geographical area in a given time period. The logic behind the optimisation 

relies on AI functions, tuned for the capabilities of the servicing local UPFs. The pre-emptive scaling 

decisions are relayed to a Management and Orchestration (M&O) block responsible for the resource 

scaling. 

The architecture of the solution, shown in Figure 3-25: takes into account the security a privacy concerns 

associated with sensitive data transmission by keeping the monitoring data local at the edge. This results 

in no data transmission external to the edge at runtime. The data used for training/retraining and testing 

of the time forecasting ML models is transmitted to a cloud server only on an as-needed basis. Further 

precautions can be readily included in the solution, such as data encryption or pseudonymization.  

As the collection of UPF network data is in its early stages, limited availability, limited coverage, and 

limited historical readings curb the evaluation of appropriate time forecasting models under realistic 

runtime scenarios. For this reason, the proposed solution architecture has been designed to be suitable 

for a variety of time forecasting models. The model serving is done through the Tensorflow Serving 

framework TFS23] allowing the seamless adaptation of data transformations and dimensionality 

reductions required by different models. As a PoC ,  a Long Short-Term Memory (LSTM) flavour model 

was used, consisting of a graph convolution layer followed by LSTM and dense layers. The model used 

2 metrics available from the Monitoring Platform (a set of software components for retrieving, 

managing and storing information about the UPF computational and networking usage), available in 5 

minute timesteps:  

• ‘host:upd_pkts packets_sent’ - Total number of UDP packets sent 
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• ‘host:upd_pkts packets_rcvd’ - Total number of UDP packets received 

UDP traffic was chosen because of its role in time-sensitive communications, i.e industrial XR 

applications. The model was tuned to predict the system in the next consecutive 30 minutes given as 

input the previous hour’s measurements. 

Due to the lack of available data for the PoC, a simulation was performed to produce synthetic metric 

data over a span of 6 weeks to use for tuning, training, and testing the models, using as a baseline the 

known behaviour of the system inferred from UPF stress tests, as well as patterns in urban mobility 

taken from available UE datasets [NCS+19].  

The UPF stress tests consisted of the monitoring platform developed in WP6, UPF and 5GC Network 

functions provided by a third party, and the Spirent landslide tool. The number of UEs, the time window 

and the traffic amount are examples of the parameters that were configured from the landslide tool 

during the tests. The behaviour of the UPF under different input traffic inputs was used to simulate the 

metrics used for training. 

The simulation incorporated daily and hour fluctuations in the baseline signal, as well as noise, to better 

represent a real-life scenario. A sample week is shown in Figure 3-24:. Because the 2 signals are very 

similar to the naked eye, for visual clarity, the packets received, and the ratio of packets received over 

packets sent is shown. 

 

Figure 3-24: Synthetic network traffic in one UPF for 1 week. 

The M&O block responsible for the UPF scaling also orchestrates the deployment of the edge AI agent, 

as well as the update of the active ML models employed by the individual agents. A third component, 

the edge AI monitoring block, allows for continuous feedback on the validity of the inferred traffic 

patterns, and can trigger a retraining or model update through the M&O block. 
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Figure 3-25: Automated UPF scaling using AI block diagram. 

Runtime 

During runtime, the local UPF data is collected and stored in an instance of InfluxDB at the edge. The 

Data retrieval block queries for available data which it validates and passes to the Inference engine. The 

Inference engine requests an inference from the TensorFlow Serving block, which is then passed to the 

Scaling agent and Model monitoring blocks. The Scaling agent contains an AI-based decision algorithm 

for triggering an action request to the M&O for the scaling of local UPF resources. The Model 

monitoring block compares the previous inference to the current network traffic status, stores this 

information in a database for online viewing, and if the performance is below threshold, the Model 

monitoring triggers a retraining/model review to the M&O.  

Training 

The model training, achievable performance evaluation, tuning, and development are done on cloud, 

due to the high demand of resources these activities involve. When a new model, or a retrained model, 

are available, the M&O reconfigures Tensorflow Serving to use the appropriate model for a given 

instance of edge AI agent. 

For the PoC, the simulated input data described above was split by 50% train, 20% validation, 30% test 

samples. Normalization, and a sliding window average to increase the signal to noise ratio, were used 

as data pre-processing. The trained model achieved a Mean Absolute Error (MAE) of 0.003 (naive 

MAE of 0.051) and a systematic Mean Absolute Percentage Error (sMAPE) of 0.13 on test data, 

however the evaluation of the trained model for this scenario is directly tied to the functional 

requirements of the AI agent system which has a high tolerance due to the nature of the input data and 

the desired functionality of the agent using the model. 

Target Evaluation 

The distributed AI for automated UPF scaling in low-latency network slices technological enabler 

defined 3 KPIs related to fulfilment of the quantifiable target T3: 

• Inferencing latency with target of less than the half the timestep of the input data (< 30 seconds);  

• Training latency with target of time from AI M&O request of training to the instantiation of the 

ML training pipeline < 1 minute;  
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• Inferencing accuracy with target of LSTM 89% accuracy on training data, 83% accuracy on 

runtime data. 

The inferencing latency is defined as the time from when the inferencing agent requests an inference 

from the deployment of TF Serving to when the agent receives the inference, not considering the effects 

of network latency. To achieve this, both the agent and TF Serving were deployed on the same virtual 

machine. A sample size of 1000 requests was used with the resulting median time for latency being 6.8 

ms, with a distribution shown in Figure 3-26:. This is well within the target of half the size of the 

timestep of the input data (5 minutes for the PoC). 

 

 

Figure 3-26: Inferencing latency for the distributed AI for automated UPF scaling in low-latency 

network slices technological enabler. 

The training latency is defined as time from the AI M&O request of training to the instantiation of the 

ML training pipeline. The target of this latency is less than one minute, which is comparable to the time 

it would take to do the operation in a manual fashion. To measure this latency, 16 requests were sent to 

pipeline orchestrator, Kubeflow, and the time from the request to the instantiation of the first pod of the 

training pipeline was measured. The resulting latency was found to be less than one second, well below 

the one-minute target. 

The inferencing accuracy KPI has 2 targets. The first is the training accuracy, which for the PoC was 

measured as 83% with a validation accuracy at 81%. This falls around the target of 89% accuracy 

defined before the design of the model. The second, the runtime accuracy, looks at the performance of 

the model in the context of the overall solution. To perform this test, the deployed PoC was used, and 

the average accuracy over a 5-hour period was measured. The resulting performance of the PoC LSTM 

model in the solution was evaluated using the systematic Mean Absolute Percentage Error (sMAPE). 

The achieved accuracy was determined to be 86%, in-line with the 83% accuracy target.  

 

3.2.2 AI/ML-based predictive orchestration 

It is beyond doubt that the inclusion of AI/ML techniques in management and orchestration operations 

for B5G and 6G networks will be a key enabler in order to support the new requirements associated to 

these networks i.e., network complexity, network heterogeneity, extreme-edge domain integration, etc. 

as described in [HEX-D42] and [HEX-D62]. The majority of the SDOs, since 5G, have already started 

introducing AI/ML components or frameworks as part of their Management and Orchestration (M&O) 

stack, as a sort of “natural choice”, for being able to cope with the increasing complexity of automating 

and managing the network. One of the most commonly known efforts, in this regard, comes from the 

3GPP with the incorporation of two AI/ML-based modules to its standardized architecture: (i) the 

Network Data Analytics Function (NWDAF) [23.288]; and (ii) the Management Data Analytics 
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Function (MDAF) [28.533]. Many other global SDOs and industry alliances, such as the ISO/IEC, ITU-

T, IEEE, GSMA or the O-RAN alliance have a clear focus on involving AI/ML for future networks as 

reflected in [ETSI-34]. The majority of these proposals are evolving from the early stage where high-

level key building blocks were described to in-depth network data analytic frameworks. Therefore, once 

more, this remarks the paramount role that AI/ML will play in M&O procedures for efficient and 

optimal decision-making operations. 

AI/ML-driven orchestration offers a wide range of approaches in order to ease the M&O-related 

operations within the network [HEX-D62], being Predictive Orchestration one of those approaches. 

This method aims at foreseeing future states of the network, using prediction/forecast AI/ML-

techniques mainly based on time-series forecasting, to be able to maximize the output of M&O 

operations in terms of flexibility, dynamicity, real-time, or resource placement, among others. 

Predictive Orchestration might use legacy time series techniques such as Exponential Smoothing or 

Auto Regressive Integrated Moving Average (ARIMA) [SEV18] as they have already probed their 

effectiveness as time-series predictors. Besides, it is important to consider the volume of the dataset to 

be used and the forecast expected time because, in some cases, these legacy techniques may outperform 

AI/ML-based methods (e.g., Long-Short Term Memory (LSTM) and Recurrent Neural Networks 

(RNNs) [TSP19]), but although legacy time-series predictive techniques could be quickly implemented, 

they are sometimes not accurate nor flexible enough to adapt to complex datasets. On the other hand, 

AI/ML-based predictive techniques, such as LSTM, are able to face long and complex datasets 

achieving greater accuracy (although at the cost of being computationally expensive and requiring large 

amounts of data and having long training times). However, these techniques might be used to support 

existing M&O modules in every layer of the M&O architecture (e.g., service, network, infrastructure 

and design), as envisioned in [HEX-D62].  

Predictive Orchestration requires a process performing data collection in a similar fashion to the 

capabilities given by the 3GPP NWDAF, i.e., monitoring, data collection and storage. Hexa-X aims at 

integrating an advanced monitoring system which is able to provide monitoring and telemetry from all 

network segments, from infrastructure to applications. This requirement, allowing the overall 

monitoring system to collect and aggregate data from multiple domains and/or different architectural 

layers, is considered a key enabler to provide data-driven orchestration functionalities (i.e., advanced 

AI/ML functions such as cross-layer/cross-domain self-adaptation and self-optimization decisions 

required for Predictive orchestration) [HEX-D62]. Finally, as it can be extracted from the previous 

statements, it is critical to remark the importance of enabling the monitoring functions to exchange 

information between layers and external domains to achieve real E2E Predictive Orchestration.  

As suggested in [DMR+20], three categories of forecasting algorithms should be implemented for 

performing proper Predictive Orchestration: (i) Long-term Forecasting (LTF), operating on the larger 

timescale (e.g., hours) and in charge of predicting aggregated high-level KPI metrics across layers and 

domains, e.g., involving Network Slice migration from one operator‘s domain to other operator’s 

domain due to an expected peak on the Network Slice services aggregated load; (ii) Mid-term 

Forecasting (MTF), operating on the order of tens of minutes, and issued to make predictions across 

layers and domains for M&O operations requiring faster actions, e.g., scaling across the infrastructure 

layers, or update the weights of a RL model running within an operator’s domain, among others; (iii) 

Short-term Forecasting (STF), operating in the shortest scale (e.g., seconds or milliseconds) and 

carrying out local predictions within a layer or domain which may be sent as an input to the LTF and 

MTF algorithms, or for other M&O functions to suggest further actions, such as traffic load prediction 

within a VM in the Infrastructure layer, potential security breach on a Containerized Network Funciton 

(CNF), etc. These three algorithms can be encompassed within the Data-Driven M&O processes 

defined in [HEX-D62], more specifically, within the AI-Driven Orchestration M&O processes. 

Thereupon, they should be able to effectively perform: (i) Basic Orchestration Actions, comprise the 

baseline for more complex M&O processes, they can be understood as “atomic” M&O operations i.e., 

instantiating, scaling, updating, upgrading/downgrading, terminating, etc.; (ii) Orchestration processes, 

considered as complex M&O actions that are composed of two or more Basic Orchestration actions i.e., 

E2E, seamless integration processes, programmable processes, automation processes, etc. 
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Figure 3-27 depicts a potential mapping between the aforementioned Predictive Orchestration 

forecasting algorithms and the Hexa-X M&O architecture. It is important to remark that this is just an 

example of all the possible implementations that could be deployed aligned with this architecture. As it 

can be seen, the forecasting algorithms have been split between the Management Functions block and 

the AI/ML Functions block at the Network Layer. Although the three algorithms are AI/ML 

components, this implementation has been selected as an example to demonstrate that they can be 

allocated outside of the AI/ML Functions block if they help the respective M&O block to perform its 

M&O action. The Management Functions block enables the execution of basic management 

capabilities: (i) fulfilment capabilities, collection of capabilities that allow provisioning instances of any 

given resource; (ii) assurance capabilities, collection of capabilities that enable network monitoring 

and failure prediction; (iii) artifact management capabilities, set of assets that aid operators in their 

fulfilment and assurance capabilities (i.e., catalogues, inventories, etc.). Therefore, the LTF forecasting 

algorithm is allocated inside this block to ease all the operations related to fulfilment capabilities and 

give high-level support for those related to assurance capabilities. Besides, as it is depicted on Figure 

3-27, the Management Functions block uses (i.e., ingests data from, requests information to, etc.) the 

Monitoring Functions block and the AI/ML Functions block as complementary functions that give 

support to its basic functionalities. From the point of view of predictive orchestration, the Monitoring 

Functions block will provide the required capabilities for collecting and storing all the data-sets (e.g., 

time series) required to perform predictions and then, be consumed by the required elements, in this 

case by the three forecasting algorithms. Paraphrasing [HEX-D62] AI/ML Functions description:  

“AI/ML functions are intended to provide the mechanisms to build out the knowledge and the 

intelligence for controlling, managing and optimising the services deployed on the network, and to take 

decisions about the actions to be performed at the various architectural layers (…). Certain AI/ML 

functions would be specifically designed to support the activity of management functions (within the 

scope of M&O), while others could be deployed for other purposes”  

It can be concluded that the main idea behind this functions’ block is to give support to the Managing 

Functions block. Therefore, the MTF and STF algorithms have been allocated within the AI/ML 

Functions block. Once more, it is important to remark that, although for the sake of simplicity these 

elements have been represented inside the Network Layer, they should act upon all the layers of the 

M&O architecture.  



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 49 / 138 

 

 

Figure 3-27: Predictive orchestration components mapping to Hexa-X M&O architecture. 

 

4 AI/ML as enabler for 6G network sustainability 

AI/ML can serve in multiple ways to improve the sustainability of 6G networks, mostly in terms of 

energy efficiency. This chapter is dedicated to three main categories of ideas, in which we describe in 

the following. In the first application, the AI/ML universal functional approximation property is utilised 

to learn the relationship between the input condition and optimal values of a complex optimisation 

problem in the network. The optimisation problem is chosen such that heuristic methods are not close 

to optimal, while the optimal solution is very complex to implement in real time. Specifically, we 

investigate the optimisation problems that are impossible to solve in polynomial time (mixed-integer 

problems such as radio resource allocation). The second category of applications is to apply AI/ML 

well-known statistical problem, e.g., channel estimation, by using training on the relevant data. This 

allows to move large part of the computational complexity to the training phase, while keeping the 

inference computationally affordable. Since the inference phase is executed orders of magnitude more 

than training, the total computational complexity is reduced, thus the total energy footprint of the 

system. The last application that we investigate in this chapter is the use of AI/ML to acquire more 

meaningful data from the available network data, in order to facilitate further functions in the network 

to save energy. For instance, we study channel charting, where the output of the AI/ML operations 

could be used to enhance multiple network functionalities such as beamform tracking.   

Relevant KPIs applicable for these technical enablers can be summarised as throughput enhancements, 

reduced channel estimation error, and complexity gain. The complexity gain of the AI/ML algorithms 
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is evaluated by the reduced processing time/number of mathematical operations in the algorithm to 

produce the outputs while achieving other problem-specific metrices. The proposed AI/ML-based 

channel estimation algorithms also achieve improved channel estimation accuracy while reducing the 

resource overhead compared to the conventional approaches. Furthermore, the solutions are flexible 

and generalisable due to the inherent learning capability of AI/ML, which can thus quickly adapt to 

different system configurations and environments without much degradation in performance. Therefore, 

these low complexity, energy efficient, flexible and adaptable AI/ML-based solutions enable achieving 

the KVIs towards 6G sustainability and flexibility targets. 

4.1 Low complexity radio resource allocation in cell-free 

massive MIMO 

This enabler is an extension of the work in [HEX-D42] and the objective of the study is to investigate 

the potential of ML-based resource allocation algorithms for cell-free massive MIMO in overcoming 

algorithmic deficiencies associated with conventional resource allocation algorithms. Radio resource 

management (RRM) in communication networks enables improving the system performance by 

efficient utilisation of available resources. RRM is often done to achieve a desired objective (such as 

maximising the system sum rate or minimum user rate etc.) where optimisation-based or heuristic-based 

techniques are used to solve the optimisation problems. These conventional RRM methods face several 

challenges with the increased network and parameter complexity in modern communication networks, 

such as high computational complexity and requiring precise CSI, resulting in sub-optimal solutions in 

complex and non-convex problems, lack of flexibility and parameter sensitivity, and inaccuracy of the 

model-based resource allocation methods (due to channel modelling issues and hardware impairments). 

Recently, ML approaches are being used for resource allocation tasks to overcome the above-mentioned 

challenges using their data-driven learning capability. Specifically, there are several studies in literature 

for deep learning-based power control in cellular and cell-free massive MIMO systems [AZB+19, 

CCB+20, ZNG20]. In our previous work in [RSR+21] we proposed an unsupervised learning-based 

power control algorithm to maximise the minimum user rate in an uplink cell-free massive MIMO 

network.  

In [HEX-D42], we have shown that a similar ML-based approach could be used for the joint 

optimisation of user power and fronthaul capacity allocation for CSI and data in a cell-free network to 

maximise the system sum rate. There, we assume that the fronthaul links between the APs and the CPU 

have a limited capacity and it is needed to properly utilise those limited capacity fronthaul links to 

transmit CSI and actual uplink data signals to the CPU from the APs in order to improve the system 

sum rate performance. Furthermore, uplink power control is done in order to further improve the system 

sum rate. As it is explained in detail in [HEX-D42], a DNN (which is denoted as PowerNet in Figure 

4-1 and Figure 4-2 below is trained to directly optimise over the sum rate objective as a custom loss 

function to produce uplink user power allocations and fronthaul capacity allocations for CSI and data 

transmission between the APs and the CPU. There we presented simulation results showing that the 

ML-based RRM algorithm has a similar sum rate performance and a lower computational complexity 

compared to the optimisation-based algorithm. Here we present further results to show the flexibility of 

the ML-based approach which can provide expected performance under different system 

configurations. Figure 4-1 shows the average sum rate performance when different total fronthaul 

capacity values are allowed. There, we have used the model trained for total fronthaul capacity C = 1 

bits/s/Hz scenario to generate the results of other instances. From the plots, we can see that PowerNet 

produces similar results to the baseline solution and online learning slightly improves the average sum 

rate across the whole fronthaul capacity range considered. Furthermore, Figure 4-2 shows the 

cumulative distribution of the sum rate for when there are 5 users in the network where the pre-trained 

model with 10 users is used to obtain the user power allocations and fronthaul capacity allocations. This 

flexibility of the ML-based approach overcomes the challenge associated with conventional 

optimisation techniques for resource allocation where it is needed to reformulate and solve the problem 

when the network parameters or system parameters change. 
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Figure 4-1: Average sum rate performance with different power control and capacity allocation algorithms 

for 50 APs and 10 users in the cell-free massive MIMO network. The DNN results are obtained using the 

model trained with total capacity C = 1 bits/s/Hz. 

 

 

Figure 4-2: Cumulative distribution of the sum rate for 50 APs and 5 users in the cell-free massive MIMO 

network., obtained using the model trained with 10 users.  

 

Furthermore, in this work, we consider a different RRM problem relevant for cell-free massive MIMO 

networks. We extend the unsupervised learning concept in [RSR+21] for the pilot and data power 

control problem in uplink of a cell-free massive MIMO network. In cell-free massive MIMO, pilot 
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contamination resulting from using non-orthogonal pilots by the users in the network degrades the 

system performance, which could be reduced by proper pilot assignment and pilot power control. The 

system performance could be further increased by proper power control for data transmission. 

Therefore, in this work, we consider the joint pilot and data power control problem to maximise system 

sum rate, to which finding optimal solutions is difficult due to the non-convexity. We utilise a ML 

approach to solve the joint optimisation problem in a less computationally complex data-driven manner. 

A DNN is trained to directly optimise over the sum rate objective as a custom loss function producing 

pilot and data power outputs. The aim is to reduce the computational complexity of the resource 

allocation task, while achieving comparable performance with respect to the optimisation-based 

algorithm. The proposed unsupervised learning approach is illustrated in Figure 4-3. Then, Figure 4-4 

shows the results of the proposed method in comparison to fixed power allocations for pilots and uplink 

data transmission. It is visible that power control improves the system sum rate compared to the fixed 

power allocation. 

 

Figure 4-3: Unsupervised learning approach for solving the resource allocation problem.  

  

Figure 4-4: Sum rate performance comparison for fixed power transmission and pilot and data power 

control using the proposed unsupervised learning approach. 

The proposed ML-based resource allocation method would be applicable to "Interactive and cooperative 

mobile robots" use case where new cell-free massive MIMO architectures could be used to manage a 
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cluster of drones over a 6G network along with novel ML/AI-based resource management, link 

adaptation and AP selection algorithms for improved performance. The relevant target for this enabler 

is T2 - complexity gain which targets on reducing the processing time/number of operations in the 

relevant problem scenario where other problem-specific metrics (spectral efficiency/ BER etc.) are 

achieved. 

 

4.2 ML-based channel estimation for RIS-assisted systems with 

mobility 

AI-assisted V2X is a service discussed in D1.3, where focus is to enhance automotive services provided 

by future 6G networks. It can facilitate many applications such as autonomous driving and 

improvements of safety and comfort applications. All these applications depend on wireless 

communication technologies to provide connectivity between vehicles and various other devices. 

However, the connectivity is challenged by the inherent randomness in the wireless propagation 

environment. Recently, reconfigurable intelligent surfaces (RISs) have been introduced into the 

wireless communication landscape to control the wireless propagation environment with software-

controlled reflections [WZ20].  However, there are many challenges that we need to overcome to 

facilitate an RIS aided vehicular network (here we focus on an urban vehicular environment). One of 

the challenges is the channel estimation in an RIS aided network. Since RIS is a passive device, the 

channel estimation is performed using pilot signals received at the base station (BS), which requires 

more resources as an RIS consists of a large number of reflecting elements. The fast-changing wireless 

channel due to mobility requires frequent channel estimation, which results in prohibitive overhead for 

RIS aided systems. In Section 2.1.1, end-to-end optimisation of an RIS assisted system was considered, 

whereas here the focus is specifically on improving the channel estimation accuracy under mobility. 

In this work we propose a ML-based channel estimation scheme for RIS-aided systems, while 

considering mobility. We consider the uplink channel estimation of a mmWave vehicular network 

consisting of a BS with M antennas and a single antenna vehicular user, assisted by an RIS with N 

reflecting elements. Reflecting elements are arranged in G uniform groups to reduce the pilot overhead 

[DMR+21].  As illustrated in Figure 4-5, the channel consists of a direct link which is non-line-of-sight 

(NLoS), and a reflected link through RIS which is assumed to be consisting of line-of-sight (LoS) 

components. The sparsity of the mmWave scattering channel is used to represent the system in a 

compact notation which consists of the angle of arrivals (AoA) and Doppler shifts for different paths as 

parameters. The direct channel and the cascaded channel through RIS can be calculated separately using 

the estimated parameters. 

 

Figure 4-5: Scattering channel model of the RIS-aided system. 
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In order to estimate channel parameters, first the AoAs are estimated using a neural network, followed 

by complex path gain and Doppler shift estimation. The NN used for prediction of AoAs is shown in 

Figure 4-6, where received, pilot symbols are used as an input to the AoA prediction network, with real 

and imaginary parts are stacked together. At the output, two output layers with sigmoid and tanh 

activations are used. Output layer with sigmoid activation predicts the discrete grid point in the AoA 

grid, and the output layer with tanh activation predicts the residual error. Once the AoA are calculated, 

the problem reduces to complex path gain and Doppler shifts estimation, and no longer sparse since 

inactive paths can be just dropped. 

 

Figure 4-6: Neural network for predicting AoAs. 

Training loss is shown in Figure 4-7. We can see that the AoA prediction improves with training epochs, 

while overfitting is avoided by stopping the training at a suitably early point.  

 

Figure 4-7: Training and validation accuracy of AoA prediction. 

Preliminary results for the channel estimation procedure are shown in Figure 4-8, where the channel 

estimation accuracy (i.e., NMSE, normalized mean square error) is compared for known and predicted 

AoA cases, for both direct and RIS channels.  
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Figure 4-8: Variation of NMSE with SNR (dB) for direct and RIS channels. 

 

4.3 Generalizable low complexity channel estimation using 

neural networks 

A neural network (NN) based solution requires solid validation and proof before it is considered for as 

an option to replace signal processing solutions. In the case of channel estimation, generalizability with 

respect to different channel models is critical. Therefore, we dedicate the following part of our research 

on investigating the behaviour of our solution with respect to unknown channel models.  

As a brief overview, our solution is inspired by the MMSE estimator for the linear problem of noisy 

pilot observations: 𝑦 = ℎ + 𝑛. We propose an NN, which its formulation resembles the MMSE 

estimator, i.e. 𝒉̂ = (𝐶 + Σ)−1𝑦 , where 𝑪, Σ are the channel and noise covariance matrix. For wideband 

channel estimation, such as Sounding Reference Signal (SRS), 𝒚  has multiple dimensions with different 

physical meaning: frequency, time, spatial (number of antenna elements). This can increase the 

dimensions of 𝒚 and thus the resulting NN grows exponentially with it. We can use the Kronecker 

approximation model for the covariance matrix, which is  

𝐶 ≈ 𝐶𝑓 ⊗ 𝐶𝑡 ⊗ 𝐶𝑠, 

where, 𝑪𝒇, 𝑪𝒕, 𝑎𝑛𝑑 𝑪𝒔 are the frequency, time, and spatial domain covariance matrices. Using this 

approximation, we can treat the problem as three smaller problems and further even decompose the 

spatial domain as vertical and horizontal domain. This allows for smaller NNs that can be even trained 

separately, which roughly translates to smaller training sample complexity. This process is depicted in 

Figure 4-9. 
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We define generalizability of an NN as its performance on a dataset sample from a different probability 

distribution that the one which is used for training and testing of the NN. We train the NN with cluster 

delay line models, CDL-A, CDL-D, and CDL-E and test it over dataset produced from CDL-B and 

CDL-C model. This experiment allows us to understand the frequency in which a deployed NN requires 

retraining.    

In Figure 4-10 we demonstrate the generalizability of Turbo-AI [CMW+21a] on the trained channel 

distributions. We train the Turbo-AI on samples generated according to 3GPP numerology of channel 

models CDL-A, CDL-D and CDL-E. Then we test the performance by generating test datasets 

according to the same channel models. As it is observed in Figure 4-10 the performance is within ~3dB 

of the statistically optimal solution, i.e. MMSE.   

 

In practice, the training dataset and the onsite test pilots differ in distribution. This model gap mismatch  

 

can be negligible if we retrain our model using the onsite data. However, this is rather cumbersome due 

to many issues including online label production and the complexity of online training. To measure how 

well our channel estimator is prepared for channel model probability deviation, we test our model on 

Figure 4-9: Turbo-AI procedure. It is consisting of 4 different smaller independently trainable NNs 

and a feedback loop. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10: The comparison of Turbo-AI, Least squares (LS) , and MMSE are presented for the 

channel models CDL-D and CDL-E. The training data for Turbo-AI is also produced from mixed 

channel models of CDL-D & -E. 
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the dataset generated from distributions that are fundamentally different from our training dataset. This 

is beyond the common definition “generalizability”. To this end, we use the same model (trained merely 

on CDL-A,D, & E) to test on datasets generated according to CDL-B and CDL-C standards. The results 

are illustrated in Figure 4-11. The performance degradation at higher SNRs could be due to model 

distribution mismatch. 

To compare the complexity of Turbo-AI [CMW+21b] with the state of the art [NWU18], we assume 

that the input channel tensor is of 𝐲 ∈  ∁𝑁×𝑀 × 𝑇 × 𝐹  , where N and M are dimensions of the antenna 

panel, T is the number of time samples and F is the number of subcarriers. In [NWU18] the 

computational complexity becomes 𝑂((𝑀𝑁𝑇𝐹)4). The 4D Turbo-AI’s complexity for a similar 

performance is O(𝑁𝑇𝐹𝑀4 + 𝑀𝑇𝐹𝑁4 + 𝑀𝑁𝑇𝐹4 + 𝑀𝑁𝐹𝑇4).  

 

4.4 Deep unfolding for efficient channel estimation 

Channel estimation is a key step in any communication chain. It is also a challenging one, especially 

with the advent of massive MIMO systems and their induced complexity. In [HEX-D42], a deep 

unfolding approach for channel estimation [YL22] is explored in the context of MIMO channels with a 

single subcarrier. Building on that, we explore the use of the same technique for SISO-OFDM channels 

with multiple subcarriers. 

In particular, the proposed approach focuses on physical prior information about the system. In real 

case scenarios, this knowledge is often imperfect due to calibration errors and hardware imperfections. 

In the case of SISO-OFDM systems, these errors could result from the frequency generation/acquisition 

step and give rise to Carrier Frequency Offset (CFO) and/or Sampling Clock Offset (SCO) phenomena. 

With this in mind, the proposed approach tries to correct these errors and relies on deep unfolding 

[MLE21] to do that. Deep unfolding is a technique which considers an iterative algorithm as a NN by 

effectively “unfolding” it, meaning that each iteration is transposed into a layer with trainable weights. 

The depth of the resulting NN thus corresponds to the number of iterations of the original algorithm. Its 

parameters are then adapted to training data. More specifically, a sparse recovery method called 

matching pursuit [MZ93] is unfolded, resulting in a NN that can be initialised with an imperfect physical 

model that will be corrected by gradient descent, while the system encounters new channels to estimate. 

Figure 4-11: The NN is trained on CDL-A,-D & -E, while tested on dataset generated according 

to CDL-B and CDL-C, to show TurboAI’s generalizability beyond the definition. Obviously, the 

performance degradation appears when compared to the previous case in Figure 4-10. 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 58 / 138 

 

Similarly to the work presented in [HEX-D42], the proposed NN, called mpNet and adapted for SISO-

OFDM channels, takes as input noisy channel vectors denoted 𝒙 resulting from the least-squares 

channel estimation. The weight matrix 𝑾 of the network is initialized with a set of frequency response 

vectors (called a dictionary) according to the available physical model. The depth of the NN corresponds 

to the number of matching pursuit iterations that are unfolded and is allowed to vary to be SNR-

adaptive. Finally, the network is trained online in an unsupervised way, with a cost function of the form 
1

2
‖𝒙 − 𝒉̂‖

2

2
. 

To reduce the complexity of the model, two novel ideas are introduced, namely constrained dictionary 

and hierarchical search. In a nutshell, a constrained dictionary is a dictionary of frequency response 

vectors where only the parameters producing each vector (i.e., complex antenna gains and SCO 

frequency offset) are allowed to be learned, as opposed to learning every entry of the dictionary. On the 

other hand, hierarchical search is a way of finding the most correlated atom in the dictionary in a 

hierarchical way instead of the classical exhaustive way, reducing the number of operations to be carried 

out. More details about both ideas are given in [CLR22]. 

All in all, this work aims at providing a frugal channel estimation algorithm with reduced computational 

complexity when compared to generic deep learning-based approaches. In order to evaluate the 

performance of the model, we rely on the normalized channel estimation error (NMSE) as the main KPI 

and defined as 

NMSE =
‖𝒉̂ − 𝒉‖

2

2

‖𝒉‖2
2 . 

We consider the “O1” outdoor scenario of the DeepMIMO dataset [ALK19]. Transmission occurs over 

channels with a central frequency of 3.4GHz, a bandwidth of 50MHz and 256 subcarriers. The results 

are shown on Figure 4-12. The blue curve corresponds to mpNet initialized with a dictionary based on 

an imperfect knowledge of the underlying physical parameters (nominal dictionary), the orange one 

corresponds to using least squares estimation, the green one corresponds to using a physical model with 

the same imperfect knowledge as mpNet, and lastly the red one corresponds to using a physical model 

with a perfect knowledge of the physical parameters (ideal dictionary). Observe how mpNet quickly 

learns and perfects itself, and goes from performance equal to what the imperfect physical model 

achieves, to performance very close to what could be achieved had a perfect dictionary been available. 

Training is very fast as only approximately 400 channels are needed for the model to converge. 

More details can be found on the associated paper [CLR22]. 
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Figure 4-12: Comparison of mpNet to baselines throughout its training. 

 

4.5 Hybrid model for channel charting 

Channel charting is an unsupervised learning method that aims at mapping wireless channels to a so-

called chart, preserving as much as possible spatial neighborhoods. It falls within the realm of machine 

learning in general, and dimensionality reduction in particular. It aims at projecting high-dimensional 

channel observations into a low-dimensional space, typically of 2 or 3 dimensions, in order to learn a 

channel chart. In fact, physical channel models indicate that channel observations are subject to the 

manifold hypothesis, meaning that although their original space is of high dimension, they are, in reality, 

governed by a small set of parameters. Those parameters are directly related to the spatial locations, 

where the corresponding signals originate from. In this sense, a successfully learned chart is a map 

between channel measurements and low-dimensional representations that preserves the local geometry 

of the original transmit locations. 

In order to conceive a model capable of learning the charting function, we rely on deep learning methods 

for what they offer in terms of capacity and fast adaptation to data. In particular, we adopt the philosophy 

of model-based deep learning, where neural network structures are guided by physical principles 

yielding hybrid models more capable than generic multilayer perceptrons (MLPs) for a given task. 

The model relies on 3 components: 

- Distance measure: 

The first step in our approach is to compute the distance matrix of the collected channel vectors. 

The adopted distance measure needs to correctly reflect the local spatial neighborhoods of 

channel observations. The traditional Euclidean distance is inadequate to the task because of its 
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unusual behavior in high-dimensional spaces. A more adequate distance measure is the one 

introduced in [LEM21]. It is defined as follows: 

𝑑(𝒉𝑘 , 𝒉𝑙) = 2 − 2
|𝒉𝑘

𝐻𝒉𝑙|

∥ 𝒉𝑘 ∥∥ 𝒉𝒍 ∥
. 

Hybrid encoder: 

We begin by selecting a small subset of 𝑁init collected channel observations that we organize 

in a matrix 𝑫 ∈ ℂ𝑀×𝑁init as column vectors. The more representative it is of the data distribution 

the better. We then compute its distance matrix using and feed it to Isomap [TDL00] - a non-

linear dimensionality reduction algorithm - to produce an initial channel chart 𝒁 according to 

the method proposed in [LEM21]. For a given new observation 𝒉 that we would like to project, 

we compute the modulus of its correlation to each one of the channel vectors in 𝑫. We keep the 

𝑘 largest elements of the obtained vector using the hard thresholding nonlinear operator denoted 

HT𝑘(. ). We normalize the result using an 𝑙1-norm so that the vector elements sum up to 1. 

Finally, we multiply the normalized vector by the matrix 𝒁 which amounts to performing a 

weighted average of the projections of the 𝑘 most correlated channel vectors to the input vector 

𝒉. 

This strategy makes it possible to project individual channel observations independently of the 

rest of the dataset. Besides being initialized from a small dataset in conjunction with Isomap, it 

comprises two matrix multiplications separated by nonlinear operations, which makes it easily 

laid out as a neural network as depicted in Figure 4-13:. 

- Triplet loss: 

The main advantage of using neural networks is the ability to train and improve their 

performance through gradient descent with backpropagation. The main idea is to calculate a 

loss function that quantifies the error of the network's output and to iteratively “move” its 

weights in the opposite direction of the gradient of this loss function as to minimize it. In a 

supervised learning setting, this loss function takes as input both the output of the model and 

the target value that is ought to be achieved, hence the need of a training dataset of target values. 

However, in the context of channel charting, the objective is to rely solely on the channel 

observations themselves. As a consequence, it is necessary to make use of unsupervised 

learning methods. In particular, contrastive learning has been used extensively for various tasks. 

Simply put, it aims at teaching the network which samples are similar and which are different 

with the help of a specifically designed loss function 𝐿 . Triplet networks (Figure 4-14:) are an 

implementation of this framework, where triplets of three samples each are constructed and fed 

to a neural network. A single triplet comprises an anchor sample 𝒉, a close sample 𝒉+ and a far 

sample 𝒉−. The network produces their corresponding projections into the channel chart 𝒛, 𝒛+ 

and 𝒛− respectively. The loss function is defined as 

𝐿(𝒛,  𝒛+,  𝒛−) = max(0,  𝑑+ − 𝑑− + 𝑚) 

Figure 4-13: Hybrid encoder. 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 61 / 138 

 

where 𝑑+ = ‖𝒛 − 𝒛+‖2, 𝑑− = ‖𝒛 − 𝒛−‖2 and 𝑚 is a margin parameter. In essence, minimizing 

𝐿 amounts to maximizing the difference between 𝑑+ and 𝑑− by pulling the close sample closer 

and pushing the far sample farther until the difference is greater that 𝑚 and therefore 𝐿 = 0. 

Instead of using a generic MLP, we propose to use the hybrid encoder presented in above 

initialized with a small subset of channel observations following the proposed strategy. The 

parameters (i.e. weights) of the network 𝜽 = 𝑫, 𝒁 are then optimized through the training of 

the encoder in the triplet configuration. 

It is important to note that constructing triplets obviously requires knowledge of positive and 

negative samples for a given anchor sample. In the unsupervised setting, this knowledge has to 

come from the dataset of inputs itself. In fact, the time-correlated nature of channel observations 

can be exploited. Indeed, considering two observations close in time to correspond, with high 

probability, to transmit locations spatially close to each other is a reasonable assumption. Since 

each channel’s timestamp is readily available, it is straightforward to determine which channels 

are close together. From this knowledge, constructing a dataset remains a matter of determining, 

for each channel observation, a close (positive) sample and a far (negative) sample based on a 

temporal threshold. 

A channel chart on its own doesn’t serve much purpose, but it could be leveraged as a starting 

point to improve many downstream tasks where location knowledge is key, such as user 

localization, beam management, resource allocation, etc. For example, in section 3.1.6, a 

learned chart is used as the input to a location based beamforming model in order to predict the 

optimal precoder for a given user. Consequently, the quality of the chart heavily affects the 

performance of the subsequent task. However, channel charting being an unsupervised task, it 

is hard to assess the quality of a learned chart on its own. A combination of metrics, such as 

trustworthiness (TW) and continuity (CT) is thus used to gain insight on the produced chart. In 

short, TW measures whether nearby projections on the chart correspond to spatially close users, 

while CT measures whether nearby users correspond to close projections on the chart. They are 

measured for a given neighbourhood size K (given as % of the total number of data points N in 

Figure 4-15) and range from 0 (worst) to 1 (best). See [LEM21] and references therein for a 

formal definition. 

Figure 4-14: Triplet network structure. 𝜽 is the set of parameters (i.e. weights) that the neural 

network learns throughout training. 
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Figure 4-15: Comparison of the models in terms of TW and CT. 

We rely on the DeepMIMO dataset (‘O1’ scenario) [ALK19] to assess the performance of the proposed 

method. We simulate the trajectory of a pedestrian by collecting samples along a path on the map at a 

constant speed. We evaluate the performance of the model with regards to three aspects: initialization, 

structure and training. We compare the contribution of each aspect to the construction of the chart. 

Results in terms of TW and CT for different neighbourhood sizes 𝐾 are shown on Figure 4-15. 

 

5 6G network as an efficient AI platform 

It is well known and widely accepted that AI and ML will have a twofold role in future networks, both 

as enablers of flexible system optimisation (AI/ML for networks) and as a service efficiently enabled 

by 6G (networks for AI/ML). This chapter focuses on the second paradigm, with contributions 

exploring the tight integration of computing capabilities in wireless networks, thus calling for new 

optimisation strategies that involve heterogeneous resources (e.g., communication and computing). The 

integration of communication and computing capabilities at the edge opens the way for enabling several 

use cases, which require the transmission of data, and the management of workload in edge computing 

resources. Among the ones identified by the Hexa-X vision, the technical solutions proposed in this 

section cover several aspects. First, a use case of interest is AI-assisted vehicle-to-everything, with KPIs 

including AI agent availability, AI agent reliability, and mobility support, as well as energy 

consumption. Additionally, focusing on network impairment resilience, massive twinning and from 

robots to cobots use cases (including AI partners) are considered, with KPIs including latency, safety, 

maintainability, and security. Going beyond, and covering distributed scenarios, load balancing in 

federated learning settings is foreseen to further target KPIs in terms of latency, AI agent availability, 

and energy efficiency, thus also covering enabling sustainability use cases. Further technical solutions 
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on frugal federated learning are proposed to customise FL training to the available resources of the 

different devices, which can be very different in general. In this case, still envisioning use cases such 

as the interacting and cooperative mobile robots one, inference accuracy, latency, and E2E energy 

efficiency are the main target KPIs. Also focusing on distributed settings, scalable and resilient 

deployment of distributed AI is envisioned to address interacting and cooperative mobile robot use 

cases, in particular for real-time decision making through resource efficient data sharing. The latter also 

covers hyperconnected resilient network infrastructure, with KPIs including privacy and complexity. 

Furthermore, the chapter focuses on the Compute-as-a-Service concept, with flexible workload 

assignment, targeting low latency. Finally, when optimizing workload assignment, it is also 

fundamental to consider the joint optimisation of wireless and computing resources. To this end, and 

with possible implications on cooperative mobile robots, a method for DNN splitting at the edge with 

end device energy frugality and controlled latency is proposed, while the concept of communication-

computation co-design is further extended to the arising paradigm of goal-oriented communications for 

edge inference, thus considering inference accuracy as additional KPI. However, going further, optimal 

workload placement is also exploited to minimise energy and traffic, and to maximise trust level, thus 

again addressing sustainability targets. Overall, the solutions proposed in this chapter can contribute to 

the sustainability key value, with key value indicators including energy consumption during operation, 

for both communication and computing, and overhead.  

 

5.1 Network services and data structures for AI applications 

Edge AI/ML workload management is the first key technical enabler for the Communication to Learn 

paradigm, which targets the KPIs of energy efficiency and E2E application delay, by accounting for 

both communication and computing components in the processing chain. These performance metrics 

contribute to the KVIs of Sustainability. AI agent availability and inferencing accuracy are also shown 

to be supported in high-mobility environments involving safety-critical communications. In AI 

workload placement, multiple KPIs are considered, including AI agent availability, network energy 

efficiency (by targeting reduced energy consumption), as well as trustworthiness (by prioritizing 

trustworthy physical nodes). 

In Section 5.1.1, we describe our protocol framework for AI-as-a-Service (AIaaS) by providing a set of 

data structures to support scenarios calling for frequent inferencing-based decisions. In Section 5.1.2, 

we describe the Compute-as-a-Service (CaaS) concept that allows to make a multitude of nodes with 

heterogeneous computational capabilities available to other users. Finally, in Section 5.1.3, we address 

the close to optimal placement of AI workloads to the various physical network nodes by minimising 

the energy consumption of the overall network towards sustainability, minimising traffic, and 

maximising the trust level. 

5.1.1 AIaaS - seamless exploitation of network knowledge 

In this section, following the overall initial solution proposal documented in [Section 3.1.1, HEX-D42] 

and a proposed protocol framework for AI-as-a-Service (AIaaS) in [Section 6.3.2, HEX-D51], we 

provide more details and propose a set of data structures to support a proposed method, applicable to 

scenarios calling for frequent inferencing-based decisions, that allows a User Equipment (UE, or other 

equipment/ machine) to: (i) define and communicate a specific problem statement (e.g., inferencing 

task) and its performance requirements to the network exploiting the AI Service (AIS) and accompanied 

Learning Application Programming Interface (API); (ii) receive the connection endpoint details of the 

available and relevant (with regards to the focused inferencing task) AI agents it can attach to - such 

connectivity will abide by performance requirements set by the AIS consumer (e.g., the requesting UE) 

and, (iii) either receive model update notifications from the AI agent it is subscribed to in order to then 

conduct inferencing locally at the device (e.g., in case the inferencing input data set is large) or post 

new data to the data management entity of the AI agent the UE is subscribed to. Consequently, by 

subscribing to the appropriate in-network AI agent(s), the UE (or other equipment) is able to fully 
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exploit the knowledge of a large part of the network, without individually communicating with each 

and every AI agent, as this is a functionality of the AIS service.  

 

A typical example relates to prediction of detailed communication parameters in a mobility scenario – 

far exceeding the information provided by existing navigation tools. Let us assume that a vehicle plans 

to move from location A (e.g., Munich, Germany) to location B (e.g., Stuttgart, Germany). The vehicle 

trajectory and journey starting time are a-priori known and considered as input features for inferencing. 

As an example, the vehicle intends to use the Highway “A8” in Germany as illustrated in Figure 5-1. 

 

 

Figure 5-1: Planned vehicle trajectory - client input to an AI agent for issuing journey-relevant 

recommendations (source: Google maps). 

Let us, furthermore, assume that the concerned vehicle requires a local AI/ML model  (e.g., a Neural 

Network - NN, a regression model for classification, a Support Vector Machine - SVM, etc.) providing 

recommendations on the following tasks en route to the final destination: (i) optimised switch of access 

technologies (e.g., when to switch from Frequency Range 1 - FR1 to Frequency Range 2 - FR2 access 

anticipating loss of coverage, when to switch from 3GPP to public WiFi, etc.), (ii) optimised choice of 

initial communication parameter values when switching access technologies (e.g., optimised 

Modulation & Coding Scheme - MCS selection, anticipation of antenna beam selection, etc.), (iii) 

detection of dangerous traffic situations (e.g., obstacles on the road, etc.). Note that this scenario allows 

for different approaches to managing AI agents: A network based AI agent may provide a specific 

AI/ML model to a local UE, the network based AI agent may be duplicated in the target UE or a network 

based AI agent may interact with a UE level AI agent.  

5.1.1.1 Relevant data structures for AIS-assisted inferencing 

The concerned vehicle (e.g., through a Multi-access Edge Computing - MEC application instantiated at 

the network's edge corresponding to a client application instantiated at the vehicle) communicates the 

task description/ problem statement to the AIS with the ultimate goal to obtain a fully trained ML model, 

as instantiated at one or more available AI agents in the network and customised to address the specific 

inferencing task with high accuracy. When an AIS consumer requests to the AIS to receive an ML 

model configuration by an available AI agent, a data structure is contained in the message body of the 

request (assuming the AI API is a Representational State Transfer - RESTful API) that may include the 

following information elements (considered as filtering criteria of the AIS consumer to be implemented 

for AI agent selection):  

a. Description of a Use Case. Example: We indicate that a user is moving from point A to point 

B in a geographic area (e.g., by car on a road, by bike on a bike track, walking anywhere, etc.) 

and we need the ML model to be optimised for this specific trajectory in this specific geographic 

area. 

b. Required input features to the trained (NN, etc.) ML model in the UE. Example: The UE may 

indicate to the network the input data attributes, e.g., available sensors, e.g., Global Navigation 

Satellite System (GNSS), video, etc. After obtaining the trained model, the UE will apply these 
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inferencing inputs to the NN in order to obtain an action recommendation (e.g., change of MCS 

scheme etc.). 

c. Required output features to the (NN, etc.) ML model in the UE. Example: The UE may indicate 

to the network the required output features, e.g., warning about obstacles, predictive 

configuration of the modem (best configuration), etc.  

d. Required characteristics of the (NN, etc.) ML model in the UE. Example: Number of NN layers, 

NN nodes per layer, number of NN inputs, number of outputs, size per input/ output data point 

(in bits), maximum latency, etc.  

Then, the AIS provides a data structure to the AIS consumer (e.g., UE), as part of its response containing 

the following information elements: 

a. (for direct communication between UE and AI agent - need to both follow the same application 

layer protocol): the AIS provides the connection information of the selected AI agent satisfying 

the selection filtering criteria provided by the AIS consumer (e.g., the UE). Then, the AIS 

consumer can subscribe to that specific AI agent. After subscription, the AI agent can provide 

a data structure consisting of the following exemplary attributes: 

▪ Type of model, e.g., NN, Tree based estimation, Bayesian estimator, etc.;  

▪ characteristics of the model, e.g., number of layers of the NN, number of 

nodes per layer, etc.;  

▪ number of inputs (plus bits per input data point), number of outputs (plus bits 

per output); 

▪ maximum latency to obtain inferencing result, etc.;  

▪ requirements on inferencing (prediction, estimation etc.) accuracy, 

trustworthiness etc. 

b. (for indirect communication between the UE and the AI agent via the AIS): The AIS provides 

the latest update of the selected ML model satisfying the AIS consumer's AI agent filtering 

criteria to the UE. The UE will thus be able to implement a model containing a broader 

knowledge of the network without exchanging raw data and without reaching out to all 

available AI agents individually.  

5.1.1.2 Data structures relevant to AIS discovery to be used for service interoperability 

In terms of AIS discovery by potential consumers (i.e., UE, machine or other) and for interoperability 

purposes, the network (i.e., a Radio Access Network - RAN, overlaid by a MEC deployment) will 

advertise the offered AIS to any attached equipment. Since the AIS is assumed aware of the registered 

AI agents' characteristics (e.g., focused task, I/O inferencing features etc.), as part of service 

advertisement, it will communicate to potential service consumers the following (empty) data 

structures: 

A data structure describing valid geographic target areas and user movement as well as applicable 

limitations, for example: 

• Eventual limitations of the geographic validity area, for example to a country or parts of a 

country (for example to the areas where a network operator has deployed its network and thus 

has knowledge to be shared); 

• aaccepted ways of describing the geographic validity area, for example start-point A, end-point 

B GNSS information, a rectangular shape as a validity area, etc.; 

• description of valid trajectories, for example it may be indicated whether certain public 

highways or other official roads are being used (typically by vehicles); other possibilities 

include the indication of cycling tracks, pedestrian walkways, hiking trails, off-road tracks, etc. 

As an extreme case, it may be indicated that the user may move randomly in the assigned 

geographic area (i.e., the user may not use any official road/path/trail). 

A data structure describing the anticipated time period for the movement, for example: 

• Exact day and time, for example is it a week-end day, a public holiday, a day during vacation 

time, a normal working day, etc.; 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 66 / 138 

 

• concerning the time, it may be indicated a specific period (e.g., anticipated start time is xx:xx 

hours and anticipated arrival time is yy:yy hours) or a rough indication of the period, e.g., 

morning, noon, afternoon, evening, night, morning/evening rushhour time, etc.  

A data structure describing the inferencing task input attributes, data points of which are locally 

available to the UE, for example: 

• GNSS based positioning information; 

• video information (vehicle cameras) 

• Light Detection and Ranging (LiDAR) information (vehicle LiDAR); 

• radar information (vehicle Radar); 

• information obtained wirelessly from neighboring vehicles (co-operative perception based data 

sharing); 

• accelerometer information; 

• network based equipment tracking information (e.g., triangulation-based positioning). 

A data structure describing the inferencing output features to be locally used by the UE, for example 

• "handover" information (e.g., when to switch from 3GPP to public WiFi or vice versa, etc.) 

• anticipated best configuration for network switch (e.g., anticipated MCS, anticipated best 

frequency band (e.g., FR1 or FR2), anticipated best antenna beam configuration, etc.) 

• anticipated danger ahead (e.g., obstacle on the road, etc.). 

It should be noted that inferencing requests related to new applications' tasks, so far unknown to the 

network (the AIS), may create the need to specify new data structures. However, in general, 

communication of invalid data structures by the AIS consumer (or incorrect parameters of known data 

structures) will trigger a "400 Bad Request" response message in case the AI API is structured as a 

RESTful API based on Hypertext Transfer Protocol Secure (HTTPS) requests. 

The proposed AIaaS concept is envisioned to apply to high-mobility environments involving safety-

critical communications; an exemplary use case is the one of AI-assisted Vehicle-to-Everything (V2X) 

[Section 2.1.4, HEX-D13]. 6G KPIs of relevance are the ones of AI agent availability, AI agent 

reliability and mobility support. The proposed solution is expected to enhance system robustness to 

mobility events and concurrently reduce energy consumption as compared to peer-to-peer AI agent 

discovery. 

Overall, the AIaaS paradigm is addressing multiple objectives of future 6G systems including i) it leads 

to an increased availability by improved mobility solutions, ii) an increased reliability by accounting 

for low-quality connections, iii) mitigating latency due to radio handovers, association to different AI 

agents in mobility events, iv) AI models can rely on a substantial information pool, possibly the entire 

knowledge of the NW. This substantially improves inferencing accuracy, v) a model is requested to be 

derived by the NW which is substantially reducing power consumption in the UE and vi) the knowledge 

of the NW can be exploited through providing AI models to the UE without exposing the actual 

underlying information. This protects the information source. 

5.1.2 Flexible compute workload assignment, CaaS 

A future generation communications system is expected to be comprised of a multitude of nodes with 

heterogeneous computational capabilities, including computational elements such as general purpose 

microprocessors, digital signal processors, field programmable gate arrays, etc. The Compute-as-a-

Service (CaaS) concept allows to make such computational elements available to other users. A related 

API is proposed to provide the following services, as it was originally discussed in [HEX-D42]:  

 

1. Pre-installed services: A Service Provider (SP) offers pre-installed services. The user is able to 

access pre-installed applications which are, thus, under full control of the SP. The SP can 

choose those applications which are suitable to be executed on its platform and will provide an 

optimum configuration exploiting the available resources to the maximum extent possible. 

Typically, one of the following code types is applied in this case: 
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• Executable Code: The code is optimised and compiled for a specific target platform. 

For any additional target platform, additional optimisation steps may need to be 

performed.  

• Source Code: The source code is provided to the operator of the target platform and 

needs to be processed further. In case of a general-purpose compute platform, the 

compilation may be straightforward. In case of a heterogeneous platform, typically 

consisting of different computational element of different kind (such as general-

purpose microprocessors, digital signal processors, field programmable gate arrays, 

etc.), typically the Virtual Machine (VM) based approach is preferred. Such a platform 

requires a suitable allocation of code components and corresponding optimisation 

steps.  

 

2. VM based resources: in this case, a SP offers VM services, relying on so-called ConfigCodes. 

i.e., the API provides access to an abstracted computational platform, which is independent of 

the underlying hardware and available physical resources. Thus, code developed for such a 

unified architectureis then mapped onto the target platform by the SP. 

Depending on the target scenario and inherent platform characteristics (such as highly heterogeneous 

platforms employing distinct types of computational elements versus homogeneous platforms relying 

on a single family of microprocessors), the most suitable Code type should be selected. We now 

consider the optimum code type selection for the Hexa-X (updated) Use Case Families (UCFs) and 

individual use cases thereof as summarised in [Figure 2-2, HEX-D13]. An analysis for suitable mapping 

of Hexa-X UCFs to specific types of code is given in Table 5-1 below: 
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Hexa-X Use 

Case Family 

Proposed suitable 

Code type 

Comments 

Telepresence Executable Code Telepresence products are expected to be highly optimized mass market 

solutions. Also, the variety of products (by a specific vendor) is expected to be 

limited. It thus seems preferable to provide highly optimized executable code.  

Robots to 

Cobots 

Source Code or 

ConfigCode 

In the context of Roborts, Cobots and Industrial IoT in general, performance 

targets may change over time and for different locations a robot/ cobot may visit 

as part of its task (e.g., packet pick-and-place). Therefore, it is expected that a 

multitude of distinct platforms will be used during the lifecycle of a robot task 

calling for workload offloading. Also, various platforms typically consist of very 

specific designs providing diverse components (general purpose 

microprocessors, Field-Programmable Gate Arrays - FPGAs, Digital Signal 

Processors - DSPs, etc.). It is, therefore, preferable to use highly portable 

processing task instruction code as provided by Source Code or ConfigCodes 

optimised for a VM approach. Regarding this UCF, we would highlight the 

"Situation-aware device reconfiguration" use case calling for platform flexibility 

in workload offloading, as a device may repurpose itself when located at 

different deployment instances (e.g., on the road, then inside a factory floor etc.). 

Massive 

Twinning 

Source Code or 

Executable Code 

Massive Twinning applications relying on a digital representation of a real-world 

environment (the recent, so-called Digital Twin or Metaverse concepts) are 

expected to be executed on large scale platforms, such as data centers or similar. 

Generic Source Code (typically not relying on some specific hardware) may thus 

be a preferred Code type that can be compiled for the target compute platform 

(typically relying on General Purpose Microprocessors as used in Data Centers). 

In case that some specialized hardware is being used, optimized executable code 

(or ConfigCodes) can be used, depending on the case.  

Trusted 

embedded 

networks 

 & 

Hyperconnected 

resilient network 

infrastructures 

Source Code or 

ConfigCode or 

Executable Code 

There is a broad variety of products to be deployed in local trust zones for human 

and machines, ranging from low-cost sensors to localised (secure) networks and 

similar. In this field, the specific product family needs to considered and the most 

efficient Code type is selected for the specific target.   

Enabling 

sustainability 

Source Code or 

ConfigCode or 

Executable Code 

Sustainable development consists of a multitude of specific Use Cases, including 

E-Health for all, Earth monitor, etc. which all rely on platforms serving very 

distinct needs. The most efficient Code type is selected for the specific target.   

Table 5-1: Preferred Code Types for Hexa-X Use Cases. 

Typically, it is the system manufacturer, integrator or any other suitable organization is finally 

coordinating that the code is transported to the target platform through a so-called “Radio Application 

Package (RAP)”: 

 

 

Figure 5-2: Top Level tree structure as defined by ETSI TS 103 850 [103 850] 

As further detailed in Annex A, we propose an extension of the “Reserve” field (as introduced in Figure 

5-2) in order to accommodate for two additional requirements in the context of Hexa-X applications: 

 

1) It is proposed to indicate the suitability of the RAP for usage in specific Hexa-X use cases. 

There are indeed different requirements depending on the target application – for example, code 

Header Security URACodeList Manufacturer Profile Reserve

RAP
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may require specific conformity checks prior to usage in an industrial environment where any 

malfunctioning may cause harm to persons.  

 

2) We furthermore consider the specific case that the RAP contains code the is considered to 

enable a “High Risk” application as defined by the draft AI Act [AIA]. We introduce the 

propose of RAP containing a specific bit which indicates that the manufacturers guarantees 

compliance for specific AI “High Risk” categories. Only if the corresponding bit is set, the 

software component may be used in this specific context.  

The proposed framework on flexible compute workload assignment aims to enable intelligent and 

flexible workload delegation, factoring in 6G use case's requirements as well as end user/ developer 

capabilities. The proposed solution may be relevant to all Hexa-X 6G UCFs, as described in [HEX-

D13].  

The CaaS approach thus address multiple objectives of future 6G networks including i) latency can be 

reduced by choosing computational resources such that delays for forwarding of information are 

minimized, for example locally co-located computational resources and ii) Flexible compute workload 

assignment (CaaS) accounting for network and device energy consumption. 

5.1.3 AI workload placement for energy, knowledge sharing and trust 

optimisation 

Several modern information and communication technology systems are gradually including AI 

enablers, which can potentially have great benefits on economies and society by supporting a more fair, 

inclusive, and safe decision-making. This decision-making must be operated by nodes in a trustworthy 

and sustainable manner, at the same time. Therefore, managing the AI operations is crucial, especially 

in decentralised scenarios. This can be accomplished by designing a novel AI management system, 

applicable in B5G/6G architectures. This section describes the close to optimal placement of AI 

workloads to the various network’s physical nodes by minimising the energy consumption of the overall 

network towards sustainability, minimising traffic, and maximising the trust level. The AI workloads 

are assumed to be mostly inferencing related. It is assumed that CPUs/GPUs/NPUs account for most to 

energy consumption of nodes compared to memory, disk storage and bandwidth. It is also assumed for 

now that each physical node is characterised by a given trust level index and finally for this problem it 

is taken into consideration transmission and processing delay aiming to minimise their sum. 

The input to the optimisation algorithm is the set of AI workloads characterised by their computational 

requirements (CPU/GPU, RAM, etc.), the data size to be processed by each AI workload, and the 

location of the data, i.e., the network node where data is produced. Additional input to the algorithm is 

the set of physical nodes with their capabilities (available CPU/GPU, RAM, etc.), their power 

consumption when idle and when fully loaded, their trust level index and the network topology graph 

with the maximum bandwidth capacity of each link.  

The objective is the allocation of AI workloads to the available physical nodes by minimising the 

objective function that satisfies a set of performance constraints. The objective function is the following: 

 

The notation can be found in Table 5-2. The first term of the function is related to power consumption 

where it is assumed that CPU utilisation rate accounts for most compared to memory, disk storage and 

bandwidth as was proposed in [AAR22]. CPU is referred for the sake of simplicity, the computing 

capacity on node can be a function of CPU, GPU, and NPU. The second term is related to trust level 
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and the last one refers to processing and transmission delay (no processing queues assumed). All terms 

are normalised and weighted depending on the use case. 

The set of constraints utilised are: 

• ∑ 𝑥𝑖,𝑗
𝑚
𝑗=1 = 1 ∀ 𝑖 ∈ {1,   … ,  𝑛}, each AI workload is allocated to only one physical node, 

• ∑ 𝑥𝑖,𝑗
𝑛
𝑖=1 𝑐𝑝𝑢𝐴𝐼𝑖 ≤ 𝑐𝑝𝑢𝑃𝑁𝑗  ∀ 𝑗 ∈ {1,   … ,  𝑚} and ∑ 𝑥𝑖,𝑗

𝑛
𝑖=1 𝑚𝑒𝑚𝐴𝐼𝑖 ≤ 𝑚𝑒𝑚𝑃𝑁𝑗 ∀ 𝑗 ∈

{1,   … ,  𝑚}, the maximum computational load of each physical node is respected, 

𝑧𝑖,𝑗,𝑗′ ≤ 𝑤𝑖,𝑗,  𝑧𝑖,𝑗,𝑗′ ≤ 𝑥𝑖,𝑗′ ,  𝑧𝑖,𝑗,𝑗′ ≥ 𝑤𝑖,𝑗 + 𝑥𝑖,𝑗′ − 1, ∀ 𝑖 ∈ {1,   … ,  𝑛},  𝑗, 𝑗′ ∈ {1,   … ,  𝑚} the 

communication is among physical nodes where at least one has the data needed for the AI workload. 

 

Notation  Definition  Notation  Definition  

𝑛,  𝑚  Total number of AI 

workloads and physical 

nodes, respectively  

𝑊𝑚𝑎𝑥
𝑗

,  𝑊𝑖𝑑𝑙𝑒
𝑗

 Power consumption when physical node 𝑗  is 
fully loaded and idle, respectively 

𝑖  Index of AI workloads 𝑤𝑖,𝑗 Binary constant (0,1) showing where each AI 

workload’s data is generated 

𝑗,  𝑗′ Indexes of physical nodes 𝑡𝑟𝑢𝑠𝑡𝑃𝑁𝑗 Trust level index of physical node 𝑗  

𝑐𝑝𝑢𝐴𝐼𝑖 ,  𝑚𝑒𝑚𝐴𝐼𝑖 CPU and memory 

requirements of AI workloads 

𝑎1,  𝑎2,  𝑎3 Weights to prioritise the energy consumption, 

trust level or E2E latency depending on the use 

case 

𝑐𝑝𝑢𝑃𝑁𝑗 ,  𝑚𝑒𝑚𝑃𝑁𝑗 CPU and memory resources of 

physical nodes 

𝑥𝑖,𝑗 Binary decision variable depending on 

whether AI workload 𝑖  is (is not) assigned to 

physical node 𝑗  

𝑑𝑠𝑖 Data size of AI workload  𝑖  𝑧𝑖,𝑗,𝑗′ Binary decision variable depending on 

whether AI workload 𝑖  is assigned to physical 

node 𝑗′  taking the data produced on physical 

node 𝑗  

𝐵𝑗,𝑗′ Maximum capacity of the 

links among physical nodes 

𝑗  and 𝑗′ 

Table 5-2: AI workload placement notations. 

The above problem was initially solved with the use of a Mixed Integer Programming (MIP) python 

solver called Python MIP [ST20]. MIP solvers are known to provide the optimal solution but are 

computationally intractable, especially for large experimentation. For this reason, a meta-heuristic 

algorithm was developed building upon the Genetic Algorithm paradigm [MBS+21]. 

In general, genetic algorithm considers a population of individuals, known as “chromosomes”, to 

encode a solution of a problem each. The “chromosome”, in turn, is a series of predetermined number 

of “genes”, and each “gene” stands for a parameter that defines the solution for that individual. In this 

problem, each “chromosome” is a series of physical nodes, where each one represents the “proposed” 

physical node for each AI workload and the length of each “chromosome” equals to the number of AI 

workloads. The algorithm firstly generates randomly a population of “chromosomes” and then a fitness 

function is applied to each “chromosome”. The fitness function corresponds to the objective function 

described above and provides a fitness score. Over the course of a defined number of generations, a 

population of chromosomes evolves, and some operators (parent selection, crossover, mutation) are 

used to improve the population’s overall fitness.  

Parent selection operator is the process of selecting chromosomes in one generation to pass them to the 

next generation, these chromosomes are known as “parents”. In this case the tournament selection was 

utilised where each “parent” is the fittest out of a predetermined number of randomly chosen 

chromosomes of the population. Crossover operator is used for creating two “children” candidate 

solutions (new solutions) from two “parents”. In this solution one random split point is utilised. Finally, 

mutation is the procedure of a random change in a single gene of a “child’s” chromosome or in a group 

of genes for exploring new areas of the solution space. The number of generations was determined by 
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a dynamic stopping criterion in order to achieve a satisfactory execution time-convergence trade-off. 

Crossover and mutation operators occur with a predefined probability (crossover and mutation rate). 

Additional steps were introduced related to efficient initialization of “chromosomes” among others. 

Figure 5-3 shows the flowchart of the algorithm.  

 

Figure 5-3: Flowchart of AI workload placement algorithm based on genetic algorithm. 

Performance testing of the proposed genetic algorithm with the MIP python solver is shown in Figure 

5-4. A set of fixed 43 physical nodes is assumed for these measurements with {2000, 2600, 3000} MIPs 

levels of available CPU, {2048, 4096, 8192} MB levels of available memory, {260, 360, 460} W levels 

of power consumption when fully loaded and {70, 100, 170} W when idle. The trust level index of 

these nodes is assumed to be within 0 to 1 range where the most trustful node has trust level of 1. The 

links between physical nodes have capacity 3.3–- 20 Mbps. The AI workloads have {250, 300} MIPS 

levels of required CPU, {256, 512} MB levels of required memory, {10, 40} MB levels of data 

transferred. In these measurements/experiments we used an initial population of 150 chromosomes, 0.8 

crossover rate and 0.15 mutation rate. 

As it is mentioned above, MIP solvers are computationally intractable in large experimentation, hence 

an execution time limit of 400 s was applied to the solver. Thus, the solver is terminated when it exceeds 

this time limit, and the respective best (i.e., lowest value calculated from objective function) score 

obtained up to that point is selected. The dashed blue line in Figure 5-4 shows the best scores obtained 
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till that threshold. As it is shown, the proposed genetic algorithm has close to optimum scores within 

significantly less time than MIP solver as the number of AI workloads increases.  

 

 

 

Figure 5-4: Performance testing of proposed genetic algorithm and MIP solver with increasing number of 

AI workloads (score and time execution measurements). 

The described mechanism/algorithm is related to several of the Hexa-X use cases including interacting 

and cooperative mobile robots, and digital twins for manufacturing. Hence, E2E latency and power 

consumption was measured for targeting these KPIs. Figure 5-5 shows the reduction of E2E latency 

and power consumption with increasing number of AI workloads when the number of physical nodes 

is 43. For these measurements, the baseline model utilised was the random but feasible placement of 

the AI workloads to the available physical nodes. In each graph there are three curves72odelled72tnding 

to different levels of a3 weight for E2E latency and a1 for power consumption.  As the number of AI 

workloads increases, the E2E latency gains decrease. Similarly, as the number of AI workloads increase, 

the gains in power consumption increase, until a critical point, at which the physical nodes/number of 

AI workloads becomes considerably smaller than 1. In other words, the described solution provides 

higher gains when there is sufficient availability of physical resources, thus solution space and 

optimisation potential. The scarcer those resources become, the lower gain potential is observed. 

  

Figure 5-5: Reduction of E2E latency (left) and power consumption (right) with increasing number of AI 

workloads for different weight levels a3 and a1, respectively.  

 

5.2 Efficient inference for distributed AI 

In the Communication to Learn paradigm, there is an increasing adoption of intelligent components 

among higher-layer in-network functions and external applications. For instance, for use cases such as 
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interacting and cooperative mobile robots or digital twins in manufacturing require real-time intelligent 

decisions based on distributed and resource efficient data and model sharing. These use cases require 

hyperconnected resilient network infrastructures, in which a huge amount of data will be distributed on 

thousands or millions of devices, all of which is not feasible to be shared due to communication, 

capacity, privacy, complexity, and other reasons.  These requirements call for a joint communication 

and computation co-design, leading to network services and APIs with seamless exploitation of network 

knowledge for both in-network and external applications. The challenges of the wireless environment, 

energy efficiency, device capabilities and data handling constraints require 6G networks to provide 

efficient platform support for distributed AI learning and inference functions.  

Section 5.2.1 focuses on distributed sensing and communication scenarios where the applications 

benefit from tight integration of sensors and communications. Section 5.2.2 provides a neural network 

splitting solution for cooperative edge inference, building on the fact that portions of (deep, 

convolutional) neural networks can be computed at different locations of the network in a mix of local 

resource poor devices and cloud servers. Section 5.2.3 addresses the goal-oriented communication, in 

which the actual performance of communication is measured not by bit rate but by its effectiveness at 

higher layers by measuring the inference reliability, accuracy, or confidence. Finally, Section 5.2.4 

describes experiments for a proactive edge application that predicts network impairment and allows the 

edge device to prepare for a temporal networkless operation. 

 

5.2.1 Scalable and resilient deployment of distributed AI 

Hexa-X envisions several use case families with large application systems distributed on a massive 

number of devices and network components. The interacting and cooperative mobile robot use case 

requires real-time intelligent decisions based on distributed and resource efficient data and model 

sharing. Similarly, in applications of hyperconnected resilient network infrastructures a huge amount 

of data will be distributed on thousands or millions of devices, and all this raw data is not feasible to be 

shared due to communication, capacity, privacy, complexity, and other reasons. Between the two 

extreme solutions, i.e., all raw data is communicated among devices and the cloud, and the fully 

autonomous devices using local AI algorithms only, it is more feasible to realize a heterogeneous AI 

and data sharing landscape. Some application elements will be loosely coupled and just sharing small, 

maybe delay-tolerant messages, other ones require real-time sensor sharing, yet another type will 

distribute the AI processing, not just the learning but also inference. The shared information can also 

be explicitly defined, and AI components use it as independent inputs, but it can also be implicit model 

state information or internal (latent) states during inference in model split architectures. In the latter 

case the shared data is typically a result of jointly trained models. 

This study focuses on distributed sensing and communication scenarios where the applications benefit 

from tight integration of sensors and communications. Cooperative perception in is one of the advanced 

vehicular use cases in [5GAA20], which involves sharing sensor information about the current driving 

environment among the vehicles and other roadside stations. Using sensor data from nearby objects 

allows the participating vehicles to increase accuracy of the estimated parameters and form a more 

complete state of environment, including e.g., visually blocked objects. However, this shared sensor 

data can be highly redundant and the added value of a given sensor stream for a joint inference task in 

an AI component depends on the input quality (noise, environmental effects, etc), communication link 

quality and the level of redundancy compared to other sensor sources, as depicted in Figure 5-6:.  

Distributed sensing and communication scenarios can involve hundreds or thousands of collaborating 

AI components in close proximity to be served by the wireless network. Conventional implementation 

of these systems imposes extremely high wireless traffic load and massive number of connections with 

the contradicting requirements of low-latency joint inference. This problem is also formulated in the 

connecting intelligence target T3 (Resilient communication and compute network services for 

distributed AI applications in large scales), which is addressed by this study. 
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In an AI-based cooperative perception application, e.g., in visual analysis (object identification) either 

raw sensor data or locally processed data about the same objects can be made available from multiple 

sources. For instance, in this vehicular application where visibility in a road junction is limited, a car 

may receive relevant but highly overlapping information from other vehicles, from external sensors, 

pedestrian wearables, city infrastructure sensors, traffic control systems, etc. This system of AI 

components will constitute a redundant and, therefore, more resilient mesh of raw and AI-processed 

information. The resulting application-level resilience would also be able to serve latency critical use 

cases without requiring ultra-reliable and ultra-low latency communication layers. Apart from 

redundance, AI-type data itself have unique requirements, like high tolerance for lost data or similarly 

high tolerance for added noise, which allows new technical enablers in communication and AI compute 

co-design. 

This aspect was studied in [BCDH+22] in the context of Distributed Wireless Spiking Neural Network 

(SNN), which proved to be highly resilient to data (spike) losses, while further benefits were shown if 

wireless networks can support such AI applications to differentiate the treatment of SNN internal traffic 

with respect to input spikes. Application-level latency can also be addressed efficiently with such a 

redundant mesh of AI components by cutting the long tails caused by individual elements with low 

connection quality or local computing latencies. An interesting enabler for such operation is compressed 

sensing based multiple access [CSD+17], which provides means for lightweight communication for 

large number of users if the average activity level is low and the system is tolerant for loss, which fits 

very well to sparse and redundant AI architectures. 

 

 

Figure 5-6: Sensor sharing system with distributed AI components. 

The system model consists of sensors distributed on multiple wireless devices generating the input data 

and a model-split distributed AI inference system, with local processing in the devices and a central 

component aggregating all the device streams with AI-type traffic for a joint inference task (Figure 

5-6:). The sensor inputs are assumed to experience a certain level of noise each, therefore resulting in 

low accuracy, but the combination of multiple streams increases joint accuracy and confidence. The 

inputs are also assumed to be overlapping in information content. The baseline system is a model-split 

Neural Network for visual object detection, where each sensor input is partially processed in the 

wireless device and the latent neural layers are sent to an edge cloud processing function, hosting the 

combiner and probabilistic layers on the NN, and performing the joint inference for the object 

identification. With many contributing devices this setup requires high over-the-air traffic, which is also 

delay-sensitive. Designing this AI system for a required level of accuracy is hard due to unpredictable 

input sensor and communication quality levels. 

To solve the above problems an AI application and communication system architecture is proposed as 

described below. The aim is to reduce both the overall inference latency and communication load by 

relying on an incremental evaluation framework. Incremental inference can be used in several AI 

models. One example is the family of ANN-to-SNN converted neural networks [RSP+20]. These 

frameworks are built and trained on the principles of spiking neural networks, but they can also be 

implemented on traditional compute architectures. The neurons are stateful and it can run in a 
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discretized manner (time slots) and produce spike sequences in a spatio-temporal encoding fashion. The 

accuracy and reliability of the inference increases with each simulated timeslot, even in the presence of 

high sensor noise or high communication loss. This incremental inference enables the application to 

evaluate the utility of sources and prioritize the individual streams during the inference process to obtain 

the required accuracy level. This can be done on a (sub-)millisecond level, which requires fast feedback 

from the application and quick reaction from the communication layer. 

A specific scenario was simulated to assess the potential traffic load and latency savings with a suitable 

joint communication-compute designed system. The inference task is object identification based on 

visual input (camera or ultra-low latency event camera). 50 input sensors are distributed over multiple 

devices. The image quality from each camera suffers a certain degree of quality degradation, (due to 

blur, rain, light conditions, partial blockages, etc.), which is simulated with pixel noise and masks. A 

spatio-temporally trained ANN-SNN converted neural network was used for inference (based on the 

model from [HWD+20]), which is distributed over the input sources and a central combiner performing 

the aggregation in both time and device dimensions. It means that the data processing starts separately 

at the input sources and the final neural layers are done jointly in the central unit (e.g., in edge cloud). 

Note that, due to the applied neural architecture, the communication between neural layers is spikes (or 

bits), as opposed to traditional NN, where activation levels are communicated in a split model over the 

air. The communicated spikes are very small data packages, typically sparse and tolerant to losses. 

(These aspects and their implications are not discussed here, for more details see [BCDH+22].) It also 

means that a time step can be well below millisecond timescale, supporting ultra-low latency use cases. 

It is also assumed that there is an Inference Control Function in the application to prioritize between 

different input streams. This partial evaluation is performed after each time step. An input stream utility 

assessment is made, which may stop a device sending a stream or adjust communication bandwidth 

among the live streams according to data utility to increase inference accuracy. The increasing accuracy 

in the simulated system is shown in Figure 5-7/a, for both the baseline system and the one with 

application and communication control. It can be seen that early inference with lower precision is 

possible (which can be very useful depending on use case, e.g., prepare for breaking/slowing down), 

but higher accuracy requirements can also be fulfilled with more delay. Application control can further 

increase the accuracy by filtering out noisy and misleading input streams.  

Further significant gains can be observed in the wireless communication load, both in terms of traffic 

level and number of active connections (Figure 5-7/b). By gradually eliminating redundant input 

streams, the average traffic load decreases to less than 20% compared to the baseline case and the 

average number of required connections is also in this range. 

   a )      b ) 

 

Figure 5-7: Incremental inference for an ANN-SNN converted image recognition neural network. 

a) Accuracy-latency trade-off can be controlled. b) Load reduction due to the joint application-network 

control is significant, less than 20% compared to baseline. 
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Further simulations of the scenario with more devices (with 500-1000 input sensors) results even higher 

relative gains, which is explained by the observation that the inferencing accuracy curve depends more 

on the absolute number of high-utility inputs (with low sensor noise and good connection quality), 

regardless of the number of the remaining lower-utility inputs, which are filtered out early by the 

incremental inference mechanisms. The device density requirements for the demanding 6G use cases 

in D1.3 (collaborating mobile robots, smart cities) are up to 5-10 devices/m2, which is 5-10 times higher 

than 5G requirements. Obviously, the number of supported devices depends on many technical 

components in the E2E path, but the above method with joint fine-grained control from the application 

layer and millisecond level traffic control by the networking layers has a significant contribution to 

reach the targeted numbers in a distributed sensing and communication scenario with ~1000 

collaborating AI components (also contributing to the connecting intelligence target T3). 

The proposed joint compute and communication system has several advantages over the traditional 

approaches. With the option of accuracy-latency trade-off, it is possible to do both early phase ultra-

low latency inference, as well as higher accuracy at the cost of higher delay. In use cases like above, 

where multiple inputs provide overlapping information for the inference task, over-the-air 

communication can be significantly reduced with the help of application domain functions (the 

assessment of input stream quality and utility) interfacing with network layers on a fast and high data 

granularity level, which may require per packet control on millisecond timescale. The benefits, 

however, are a reduction of traffic and connection load down to 20% compared to the baseline system, 

which can also be translated to higher device density for distributed AI.  

 

5.2.2 Joint communication and computation orchestration for edge 

inference 

Learning and inferencing at the edge require to collect, pre-process (e.g., extract features), transmit, and 

process data (or features) remotely in a continuous fashion. Then, intermediate computation results or 

raw data need to be continuously and periodically exchanged among heterogeneous intelligent agents 

to perform complex tasks in a collaborative way (e.g. federated learning or cooperative inference) with 

an energy frugality perspective, and with target levels of dependability, entailing accuracy, latency, 

inference confidence, etc. In this section, going beyond the results presented in [HEX-D42] on edge 

inference, the concept of cooperative inference via DNN splitting is introduced, building on the fact 

that portions of (deep, convolutional) neural networks can be computed at different locations of the 

network (e.g., a part locally at a resource poor end device, and part of it in the edge cloud), in order to 

reduce the communication overhead, but also to smartly exploit current availability of (possibly 

volatile) radio and computing resources, both at user and network side. This concept is known in the 

literature as DNN splitting [MLR22], and is foreseen to be one of the enablers of edge machine learning, 

thanks to its flexibility in distributing workload across different agents in a system. The proposed 

contribution is related to the orchestration of resources in the presence of DNN splitting. Namely, going 

beyond the state of the art, it is proposed to jointly optimise the splitting point choice and the transmit 

power in a dynamic and adaptive way. 

In particular, it is well known that some DNN architectures, such as Convolutional NN (CNN), have 

natural bottleneck, i.e. layers that extremely reduce the input size. This can help in reducing the 

communication overhead of such partial offloading services, while still guaranteeing end-to-end latency 

constraints involving communication and computing. Also, edge computing resources are generally 

volatile and less reliable, in terms of availability, than central cloud resources. This means that, when 

accommodating several services with different priorities, computing resource shortages can occur and 

force end devices to perform part of the computation on-board. To efficiently exploit edge resources, 

the decision on local and remote workload, as well as on radio and computing resources, should be 

optimised dynamically, and adapted to current connect-compute (i.e., wireless and computation) 

resources. An exemplary scenario in which edge inference is performed is depicted in Figure 5-8, where 

a user equipment, embarked with a pretrained DNN model, uploads extracted features (or raw data 

depending on the splitting point choice) to a Mobile Edge Host (MEH) through the wireless connection 
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with an AP. The DNN can be split at different points, Local computing delay, communication, and 

remote computing delay are considered in the overall estimation of the end-to-end inference latency. 

 

Figure 5-8: Cooperative edge inference via DNN splitting. 

In this case, several KPIs/KVIs are considered, including energy efficiency (in terms of energy per 

task), E2E latency (in terms of communication and computing), and inference accuracy. Potentially, in 

this context, privacy arguments can be considered, but this goes beyond the framework proposed in this 

section. The goal is to obtain accurate inference results on time, with the least energy consumption. As 

quantified target, energy reduction at the device side thanks to workload offloading play a key role. 

Also, among the others, cooperative mobile robots (cobots) is a typical use case in which radio (to 

communicate and exchange information) and computing (to perform complex cooperative inference 

and control) are exploited, and their joint optimisation is beneficial to achieve target effectiveness 

(based on, e.g., inference accuracy levels) with increase efficiency. Then, building on the concept of 

splitting point, the proposed solution aims at jointly optimising the splitting point selection and device 

transmit power, under time-varying wireless channel conditions and Mobile Edge Host (MEH) 

availability. The goal is to minimize device energy consumption (including transmission and 

computation) under end-to-end service delay constraints of the edge inference service (both in average 

and probabilistic sense), which involves: i) local computation delay, ii) wireless uplink delay, and iii) 

remote computation delay. While the average delay constraint only considers the expectation, the 

probabilistic delay focuses on outages, defined as the probability that the E2E delay exceeds a threshold. 

A predefined target is set for the outage probability. The system involves one end user, which generates, 

pre-processes, and transmits data, and one MEH, which remotely performs the remaining computations, 

based on the selected splitting point. An adaptive algorithm based on stochastic optimisation is used to 

dynamically optimize the splitting point selection and the end user transmit power, in a per-slot basis, 

based only on instantaneous observations of: i) wireless channels, iii) data arrivals, and iii) currently 

available remote computing resources, supposed to be dynamically assigned by the MEH, based on the 

current computational traffic (assumed to be an exogenous variable here). Technical details can be 

found in [LMA+23].  

The algorithm is tested in the context of edge image classification. The end user aims to classify images 

from the Imagenet data set [DDS+09]. The state-of-the-art MobileNetv2 CNN [San18] is exploited to 

classify data, and assumed to be pre-trained and pre-uploaded at the device and the MEH. Among the 

53 convolutional layers of MobileNetv2, 20 possible splitting points are considered, including splitting 

point “0” (i.e., full offloading), and splitting point “19” (i.e., full local computation). Current input size 

and cumulative number of computations (in terms of Multiply and Cumulate – MAC operations) are 

shown in Figure 5-8, and are based on formulas available in [LMA+23], [LKR+22].  
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Figure 5-9: Number of local MAC operations and output size as functions of the splitting point. 

The end device energy consumption is computed through a recently developed empirical model 

[LKR+22], which considers NVIDIA edge boards, and provides a model based on the MAC operations, 

with different parameters that depend on the exploited hardware. At the end device, the edge board 

NVIDIA board Jetson TX2 is assumed, while at the MEH, the edge board Jetson Xavier NX is assumed. 

The total computing power of these edge boards is 1.3 TFLOPS and 21 TFLOPS, respectively. Also, 

different computing resource availabilities are considered at the MEH. Namely, by considering a 

parameter 𝛼𝑟,𝑚𝑎𝑥 , i.e., the total computing power 21 TFLOPS is multiplied by a random variable 

uniformly distributed in [0, 𝛼𝑟,𝑚𝑎𝑥] and changing over time without a priori knowledge of its statistics, 

with 𝛼𝑟,𝑚𝑎𝑥 ∈ [0,1]. The AP operates at 3.5 GHz, with 200 MHz bandwidth, and noise power spectral 

density -174 dBm/Hz. The device is placed 30 m away from the AP, path loss exponent 3 is used to 

generate the path loss, and Rayleigh fading with unit variance is assumed. The maximum and minimum 

transmit power of the device are 100 mW and 10 mW, respectively, while the number of newly 

generated patterns at each time instant follows a Poisson distribution with parameter 12. 

Numerical results are shown in Figure 5-10:. In particular, Figure 5-10:a shows the trade-off between 

the average E2E delay and the average energy saving with respect to the full local computation, for 

different MEH’s CPU availability conditions. Thus, these results inherently show the comparison 

between the proposed splitting point selection method, and the full local computation. As it can be 

noticed, the average E2E delay increases as the energy gain increases, until reaching a predefined 

threshold of 50 ms, set a priori as average delay requirement. The curves clearly show that higher energy 

saving requires higher delay (going through the curves from left to right). Nevertheless, the method is 

able to always guarantee the delay constraint (black horizontal dashed line).   

Moreover, while the higher CPU availability leads to up to 90% energy savings (rightest point of the 

blue curve), the reduction of MEH’s CPU availability incurs in lower savings, as more and more 

computations need to be pushed locally at the device.  As a further comparison, Figure 5-10:a shows 

the average E2E delay obtained by fixing the splitting point to “19”, i.e., always full offloading. . 

Although the full offloading solution is the best in terms of energy saving, it does not guarantee the 

end-to-end delay constraints. This is due to the higher computation time at the MEH, and it shows the 

intrinsic relation between remote computing and wireless resources. For 𝛼𝑟,𝑚𝑎𝑥 = 1, solutions are 

comparable due to the fact that the MEH’s CPU is highly available, i.e., full offloading is convenient. 

To complement the results, Figure 5-10:b shows the complementary cumulative distribution function 
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of the E2E delay. Again, our method is able to keep the outage (delay higher than a threshold) under 

the predefined target, while this is not the case for the full offloading strategy, which experiences long 

distribution tails due to unexpected MEH’s CPU unavailability. 

The maximum energy saving of each curve is represented by the rightest points of the curves (i.e., the 

ones that exactly attain the E2E delay requirement). Looking at these points for the three curves (blue, 

orange, and yellow), it is possible to notice that a lower energy saving is obtained in case of reduce 

MEC resources availability. This is mainly due to the fact that, as the availability reduces, more and 

more computations are pushed locally at the device.  

To further validate this statement and the proposed method, Figure 5-10:c shows the average splitting 

point selection, as a function of the MEH’s CPU availability, for different channel conditions, i.e., 

different path loss exponent, which we denote a 𝛽.This can be interpreted as the average depth of local 

computations. As it can be easily notice, highly available remote computing resources result in less 

local computational burden, i.e., the method choses to often offload data without pre-processing. 

However, when reducing the MEH’s CPU availability, computations are more and more pushed locally, 

as the device needs to make it up with remote CPU power volatility, to attain the desired end-to-end 

delay constraints. This shows that the method is able to autonomously select the right splitting point to 

minimize the energy consumption under delay constraints. Also, the standard deviation experiences an 

interesting behaviour, which depends on the path loss exponent as well. Namely, for favourable 

propagation conditions, it is possible to observe the following: for low availability, full local inference 

is preferred most of the time (high average and low standard deviation). Then, increasing MEH’s 

computing availability, the mean decreases (i.e., more computations are pushed remotely on average), 

while the standard deviation increases, as the method has more degrees of freedom in selecting the best 

SP, based on current connect-compute resources. By further increasing the MEH’s availability, the 

mean and the standard deviation decrease again, due to the fact that full offloading decisions become 

more frequent and mostly preferred, although not always possible due to channel fluctuations.  

Finally, the fact that the method is able to make it up with remote CPU unavailability, suggests that 

future work could take into account the optimisation of remote computing resources to save energy at 

the network side, as additional quantifiable target. 
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a) trade-off between average E2E delay and 

energy saving for different MEH’s computing 

resource availabilities 

 

b) Empirical complementary cumulative 

distribution function of E2E delay 

 

c) average splitting point selection (i.e., depth of local computations) for different MEH’s 

computing resource availabilities and path loss exponents 

Figure 5-10: Trade-off between energy and delay, as a result of splitting point selection through proposed 

method, and average splitting point selection as a function of MEH’s CPU availability and path loss 

exponent β. 

 

Conclusions 

This section proposed an online adaptive method to split computational workload for an edge inference 

service. In particular, an end devices collects data and dynamically decides whether to fully offload 

inference computations, or perform some computations locally, depending on wireless channels, data 

arrivals, and remote CPU availability. The proposed method, whose technical details can be found in 

[LMA+23], is able to autonomously adapt the splitting point selection, to always attain the minimum 

energy consumption under a predefined average E2E delay constraint. The comparison with the full 

offloading and the full local computation settings show the superiority of the method and its degrees of 
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freedom in selecting the optimal CNN splitting point. Future works involve the optimisation of remote 

computing resources to accommodate different type of traffic, and the use of realistic model of user 

transmit energy, taking into account the end-to-end system energy consumption. Finally, the concept of 

goal-oriented communications is a further direction to be explored, with a possible merge of the 

proposed framework, with the one presented in the next section. 

5.2.3 Goal-oriented communication approach for edge inference 

Building on the concept of the previous section and on [HEX-D42], this section aims to introduce a 

novel communication paradigm, which is receiving considerable attention due to its potential to achieve 

desired application performance, without necessarily pushing communication KPIs to their limits. The 

results of this section and the technical details can also be found in [MFB+22]. Indeed, while the 

classical (data-oriented) communication paradigm is to reliably transmit bits (i.e., it focuses on bit-

quality oriented metrics), goal-oriented communications measure the actual performance of 

communication by its effectiveness at higher layers, e.g., by measuring the inference reliability 

(accuracy, confidence, etc.). The idea is to potentially accept a certain level of “bit-level” errors (or 

packet losses), without necessarily focusing on communication reliability, as far as the application 

performs as needed, a concept that one can refer to as goal-effectiveness. Also, from an operational 

perspective, the challenge is to not define, a priori, a set of communication KPIs for a given service, but 

rather adapt such parameters to current connect-compute network states, based on application 

measurements and responses. In particular, for the goal-oriented approach to be successfully applied, 

the following definitions are required [MFB+22]: i) goal value, i.e., a measure of how close is a user to 

achieving the goal or, also, a measure able to determine if the goal has been achieved; ii) goal-

effectiveness, i.e., the probability of the goal value being above a threshold; iii) goal cost, i.e., the price 

to pay to achieve the goal in terms of, e.g., wireless resources or energy consumption. 

Although in this section the goal-oriented communication paradigm is applied to an edge inference 

scenario, the concept is more general and can be applied to several use cases involving communication 

and computing, but also control. As such, the Hexa-X interactive and cooperative mobile robots use 

case is the most relevant one to the proposed technical enabler, with KPIs involving energy efficiency, 

E2E latency and, at the application layer, inference reliability.  

However, in this section, focus is on an edge inference service, comprising an end device (e.g., a user 

equipment or a sensor) continuously generating data and uploading them to an MEH, through the 

wireless connection with an AP. In this case, with focus on a classification task, the goal value can be 

related to the classification accuracy. The goal-effectiveness is defined as the probability that a pattern 

is correctly classified within a target E2E deadline, comprising communication and computing 

[MFB+22REF]. Also, at the network side (i.e., at the edge cloud) it is assumed the possibility to perform 

computations in multiple MEHs (ensemble inference), to increase the reliability of computation in case 

of server failures due unpredictable compute resource shortages, typical of resource limited edge 

computing scenarios. The system scenario under investigation is depicted in Figure 5-11, with an end 

device (e.g., a sensor) uploading, through the wireless connection to an AP, input data to nearby MEHs 

hosting intelligent agents, which are on-boarded with pre-trained ML models (e.g., neural networks). 

The intelligent agents, in their turn, produce inferencing outputs (e.g., predictions or recommendations). 

Differently from the previous section, no computations are performed locally. The general assumed 

MEC infrastructure deployment consists of multiple MEHs deployed across a network coverage area. 

The first one is a primary MEH, which is collocated to the AP. Also, device requests can be further 

possibly treated by another MEH, interfaced with the primary MEH via wired (e.g., fibre) backhaul 

connection; this is termed after as a helper MEH. The aim of the helper is to improve performance, e.g., 

in terms of goal accomplishment, i.e., inference effectiveness, thanks to offering single point of failure 

avoidance, as well as through inference diversity gains (ensemble inference). It is assumed that bit error 

rate on transmitted data is the cause of inference accuracy degradation, and the aim is to explore the 

trade-off between energy consumption (at both user and edge cloud server side) and goal-effectiveness. 

Technical details can be found in [MFB+22]. Next, numerical results involving goal-effectiveness, 

energy consumption (goal cost) and communication KPIs (BER) are presented, to link goal-
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effectiveness to classical communication performance. Details on simulation parameters can be also 

found in [MFB+22].  

  

 

Figure 5-11: Network scenario [MFB+22]. 

As a first performance evaluation Figure 5-12:a shows the goal-effectiveness as a function of the device 

transmit energy, obtained by varying the BER requirements during transmission. Also, to have a 

complete view of system performance, Figure 5-12:b and Figure 5-12:c show, respectively, the goal-

effectiveness and the device energy consumption as functions of the same BER requirements used to 

obtain Figure 5-12:a. In these figures, the different colours encode different values of MEH’s CPU 

average availability. At the same time, solid lines represent standalone inference (i.e., only the primary 

MEH participates, while the helper is not implicated in the inference process. 
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a) Goal effectiveness vs. device energy 

consumption 

 

b) Goal effectiveness vs. BER 

 

c) Device energy consumption vs. BER  

d) MEC system energy consumption 

Figure 5-12: Goal-effectiveness, wireless reliability, user and servers energy consumption 

 

The effect of BER on goal effectiveness: We recall that the goal-effectiveness is defined as the 

probability that a pattern is correctly classified within a target E2E deadline First of all, the effectiveness 

increases, as the device transmit energy consumption increases, as expected, with different performance 

depending on MEH’s availability levels. However, above a given threshold, BER requirements do not 

strongly affect goal effectiveness, meaning that a slightly increased BER leads to similar performance 

in terms of the effectiveness, in all network conditions (obviously with different values according to 

MEH availability). It is noteworthy that effectiveness is invariant to communication reliability changes 

in the range BER = [10−4, 10−3] (see Figure 5-12:b). This first observation suggests that classical 

communication related reliability performance can be relaxed almost without any impact on goal-

effectiveness, thus non-negligible gains in terms of device energy consumption are expected, as visible 

from Figure 5-12:c, where the device energy consumption is plotted as a function of the BER. 

The effect of ensemble inference: Now, an analysis of the beneficial effect of the helper MEH presence 

into the system is provided. In particular, from the dashed dotted lines in Figure 5-12:a and b (i.e., the 

curves on the top of the figure), it can be noticed how goal-effectiveness experiences a great 

improvement, if compared to the standalone inference case, on the basis of the same device energy 

consumption cost (i.e., the same BER requirements). Equivalently, the same effectiveness can be 

achieved at a lower goal cost, by further relaxing the BER requirements (e.g., see the 80 % effectiveness 

case). Of course, the lower energy consumption at the device side translates into a higher energy 
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consumption of the MEHs, as visible from Figure 5-12:d, where the energy consumption of the MEC 

system for a single inference request is shown, as a function of MEHs’ CPU availability, in case of 

standalone (first bar) and ensemble inference (second bar), both of the same colour to represent the 

same MEHs’ CPU availability. By comparing standalone and ensemble performance for the same MEH 

availability, an approximately doubled energy consumption at the MEC infrastructure level for the 

ensemble case, as visible from Figure 5-12:d, due to the obvious fact that, on average, the two MEHs 

address requests at the same CPU speed. Nevertheless, an interesting outcome can be noted: by 

comparing the ensemble inference at half maximum available MEH CPU (red dashed dotted line), with 

the standalone inference at full maximum available CPU availability (blue solid line), better 

performance in terms of effectiveness against device energy consumption is guaranteed for the prior 

case, while also achieving a lower energy consumption at the MEC network infrastructure level. This 

result is due to a quadratic law of the dynamic CPU energy consumption with respect to the CPU cycle 

frequency, and it shows that better performance in terms of goal achievement can be obtained without 

paying any price (but actually experiencing a gain), in terms of network energy consumption. In 

particular, this behavior suggests that, in the case of ensemble inference, it is convenient to have two 

available CPUs at half availability, rather than one CPU at full availability (on average), for a twofold 

reason: i) the total MEC energy consumption decreases; ii) the reliability improves, since single point 

of failure issues are counteracted. Also, for the deterministic, the full CPU, and the half CPU availability 

cases, ensemble inference outperforms the deterministic standalone method, due to the fact that the two 

classifiers cooperate to improve their standalone capabilities. Also, the ensemble inference at 25% CPU 

availability outperforms the deterministic standalone classifier, with a greatly decreased energy 

consumption (around 20 times) at the MEC infrastructure level.  

Conclusions 

A performance evaluation of a goal-oriented communication system has been proposed, to show the 

difference and the links between communication reliability and KPIs (e.g., BER) and certain application 

performance, a concept that can be referred to as goal-effectiveness. Through numerical simulations, it 

has been shown how the effectiveness can achieve good performance also in the presence of relaxed 

BER requirements, suggesting that high communication reliability is not necessarily needed, as far as 

inference performance reaches target levels. Furthermore, the power of ensemble inference 

(implemented thanks to MEHs’ cooperation) in improving goal performance has been shown. This 

depends on specific deployment characteristics, such as the availability of MEHs. More numerical 

results can be found in [MFB+22]. Future directions involve goal-oriented optimization strategies 

aiming at dynamically adapt communication KPIs to the actual goal-effectiveness [MFB+23]. 

 

5.2.4 Network impairment resilience of autonomous agents 

Our goal is to increase resilience towards connection problems on the AI agent side. Abnormal bearer 

session release (i.e., bearer session drop) in cellular telecommunication networks may seriously impact 

the QoS of mobile users. Even worse, autonomous devices, vehicles and robots can critically depend 

on radio communication and it can be necessary to prepare edge devices for periods with reduced 

connectivity. The latest ML technologies based on high granularity, real-time reporting of all conditions 

of individual sessions, give rise to data analytics methods to predict quality issues ahead of time. 

Connection quality can drop due to fading phenomena or due to congestion events at higher layers. For 

example, time series analysis combined with ML can be used to predict session drops well before the 

end of session.  

Towards this end, we collected labelled training data from developer mobile applications and build 

predictive ML models by using the data rate and network measurement time series. The problem was 

solved by a combination of neural networks and gradient boosting based on data collected at the edge 

devices and uploaded to a server. As a key new idea, gradient boosting was deployed for explainable 

AI to guide the feature engineering procedure. New features involved time series similarity with respect 
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to preselected normal and abnormal release time series. The final model was extracted from the Python 

modelling tool as Java code for the edge device. 

As a special case then the agent contributes to a FL model, a separate low resource ML component 

located at the edge device is responsible for the prediction of network impairment. Since this component 

only performs prediction and not learning, it can issue a warning to the agent with sub-millisecond 

latency. (Note that model training is performed centrally in a server, based on data collected at the edge 

and uploaded to a sever.) In case of a warning, the FL component (1) first sends out a (very small size) 

message to its peers to inform them the potential disruption, thus avoiding unnecessary delays due to 

waiting for timeout, and (2) as long as sufficient bandwidth is available, transmits its state so that the 

FL system can redistribute the tasks of the agent. 

 

Figure 5-13: Session abnormal release prediction performance of different methods. 

 

As a continuation of our preliminary experiments in Deliverable D4.2, we use generated data to predict 

interference caused by a moving obstacle. In our experiment, we generated UE sessions and built 

prediction models on the normal vs. abnormal release. We generated time series of signal strength, 

signal to noise ratio and uplink, downlink network performance. As the function of the seconds before 

session termination, we compared the performance of the following four methods, as seen in Figure 

5-13:: 

• Gradient boosted trees over statistics (mean, median, minimum, maximum for the time series 

values and their change); 

• Gradient boosted trees over the Dynamic Time Warping similarity of the time series; 

• Neural networks over the time series statistics; 

• Convolutional neural networks over the raw time series, the best performing method.  

We target the Massive twinning and Robots to Cobots Hexa-X Use cases, both in which real-time 

intelligent decisions have to be made based on distributed data available partly locally and partly from 

the network.  We also target AI partners, agents that can be much more general-purpose and act as a 

partner which autonomously and adaptively interacts with other agents (humans/machines), by 

interpreting intents and surroundings, performing challenging and risky tasks. Finally, AI-assisted V2X 

rely on data gathered through the automotive services offered by communications networks with low 

latency essential for the AI algorithms that control the traffic. We address latency in conjunction with 

network impairment, which means very fast implementation of the available offline backup control 

mechanisms. 

Primarily, we address the AI and computation family KPIs, including dependability attributes, including 

safety (constraints for human-machine co-working guarantees, in case of network connectivity 

impairment) and maintainability (recovery of network failures by preparing for the offline optimisation 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 86 / 138 

 

of the processes at the agent). We also address the security KPI of AI and computation by signalling of 

incidents in network operation ahead in time. 

 

5.3 Efficient training for distributed AI 

During AI workload placement, the specific requirements of distributed AI deployments should be 

taken into account considering among others data and resource availability as well as trust levels. In 

Section 5.3.1, optimization problems in a multi-cell multi-user MIMO system are considered as a case 

of decentralized execution of ML models. In Section 5.3.2, an algorithm is provided for load balancing 

in hyperconnected infrastructures. In cases when data is distributed on thousands or millions of devices, 

we achieve low latency and high quality distributed ML service by providing load balancing to remedy 

potential hot spots and ensure data type diversity. Finally, in Section 5.3.3, a technique is presented to 

achieve communication and storage-efficient FL training by customising FL tasks to the available 

compute, communication and energy resources of the contributing network entities. 

 

5.3.1 Centralized training and decentralized execution (CTDE) approach 

to multi-cell multi-user MIMO 

In wireless access networks, data are inherently distributed due to geographic distribution of cells. 

Ideally, the contextual information on state of network and channel at one site can be collected across 

sites for a globally optimal solution to many optimization problems in such cellular networks. However, 

the centralized approach poses difficult challenges due to the dynamic nature of cellular networks. 

Centralized training and decentralized execution (CTDE) is a promising in-network ML framework for 

future cellular networks, allowing to evolve towards more intelligent and scalable architectures. An 

example of CTDE is illustrated in Figure 5-14:. This subsection considers a CTDE approach to 

precoding/beamforming problem for multi-cell multi-user MIMO systems. 

 

Downlink multi-cell multi-user MIMO is a promising technique to achieve higher throughput in a multi-

cell environment. However, in general, the optimization problems in a multi-cell multi-user MIMO 

system are difficult to solve in practice. For instance, coordinated multi-point (CoMP) with joint 

transmission (JT) is a cellular data transmission technique involving simultaneous transmission from 

multiple base stations (BSs) to the same user. However, potential solutions to the JT scheme require 

significant amounts of global channel state information (CSI) and data sharing between the base 

stations, which is not only expensive but also difficult in real-world cellular systems. The optimal JT 

scheme can be reduced to coordinated beamforming (CB) schemes based on the transmission of the 

signal by a single base station that require local CSI and no inter-cell data sharing. In this case, each BS 

operates independently by treating the interference as background noise and the multi-cell multi-user 

setup can be modelled as MIMO interference channel (IFC). Compared to a single-cell system, the 

performance of MIMO IFC can be severely impacted by inter-cell interference, which becomes a crucial 

limiting factor. 

 

Multi-cell, multi-user precoding problems can be seen as a multi-agent system that learns to coordinate 

transmission schemes (or action policies) in interaction with other base stations (or other agents). The 

multi-agent problem requires complex inter-cell interference coordination in the sense that each BS 

should exhibit cooperative behaviour to maximize the signal power to a desired user, while minimizing 

the interference power to other users in the multi-cell environment. This problem poses two main 

challenges: i) multiple actors (or agents) with partial observability and ii) multi-dimensional continuous 

action space. To address the two main challenges, we adopt a CTDE framework based on a multi-agent 

deep deterministic policy gradient (MA-DDPG) . The basic idea is illustrated in Figure 5-14:, where 

decentralized actors with partial observability can learn a multi-dimensional continuous policy in a 

centralized manner with the aid of shared critic with global information.  
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Figure 5-14: CTDE approach to precoding/beamforming problem for multi-cell multi-user MIMO 

systems 

To address the multi-cell multi-user MIMO precoding problem, we use a MA-DDPG algorithm to train 

decentralized actors and share critic in multi-cell multi-user MIMO systems under the assumptions of 

local CSI and no inter-cell data sharing. This allows for non-real-time training based on global 

information and real-time execution based on local information. More precisely, MA-DDPG algorithm 

comprises decentralized agents (i.e., actors) with partial observability (e.g., local CSI) to learn a multi-

dimensional continuous policy and one shared critic which has access to global information (e.g., global 

CSI and precoding vectors of every cell) that trains actors to collaborate to optimize the global objective. 

To fulfil the real-time requirement of beamforming schemes, each actor 𝑖 ∈ {1,2} chooses a unit 

Frobenius norm precoding vector 𝑤𝑖 based on the local CSI information ℎ𝑖 = [ℎ𝑖,1, … , ℎ𝑖,𝑛𝑡
] and 𝑔𝑖 =

[𝑔𝑖,1, … , 𝑔𝑖,𝑛𝑡
] at its associated BS, where the 𝑗-th elements ℎ𝑖,𝑗 and 𝑔𝑖,𝑗 denote the path gain from the 

𝑗-th antenna of BS 𝑖 to the desired UE 𝑖 and the other UE, respectively. The shared critic learns an 

action-value function in a centralized manner based on the global information about the channel states 

and the actors’ policies and uses it to learn the action policies that maximize the expected collective 

reward based on achievable rate pairs 𝑟1 = log2 (1 +
|ℎ1𝑤1|2

𝜎𝑛
2+|𝑔2𝑤2|

) and 𝑟2 = log2 (1 +
|ℎ2𝑤2|2

𝜎𝑛
2+|𝑔1𝑤1|

).  

 

Figure 5-15 presents a numerical example with two BSs, where each BS equipped with four antennas 

is serving a single-antenna user. For benchmark purposes, we plot the maximum single-user and sum 

rate points along with the time-sharing inner bound on the pareto-boundary of achievable rate region 

that is defined as the set of achievable rate pairs. Then, we plot a performance trajectory of MA-DDPG 

during training with two actors and one critic. The critic aims to achieve a Pareto-optimal beamforming 

strategy by maximizing the collective reward, defined as a weighted sum of the achieved rates of the 

two users. We denote by α (a value between 0 and 1) the weighting scalar for the rates of the two users. 

The dashed lines in Figure 5-15 depict the corresponding learning behaviours under different weighting 

scalars. We can see a performance gap between the rate pairs achieved by the naïve learning 

implementation and the Pareto-optimal rate pairs. To close the gap, we propose a feature engineering 

method, called phase ambiguity elimination (PAE), as a pre-processing step on the input of channel 

states to improve the learning performance. As shown by the solid lines in Figure 5-15, the improved 

implementation with PAE can learn a Pareto-optimal beamforming strategy. The takeaway from 

addressing the phase ambiguity issue in this case study is that applying AI with deep domain knowledge 

of the underlying communication technology is crucial for achieving optimal performance in AI-

enabled RAN. 

 

In summary, the CTDE framework enables centralized learning with decentralized execution, providing 

a practical and realistic approach for real-world cellular environments that require varying levels of 
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observability and time constraints. As one of the use cases that can benefit from this framework, the 

multi-cell multi-user MIMO problem was addressed. The targeted KPIs in this use case are maximizing 

the sum-rate for multi-cell multi-user MIMO and scalability to accommodate the increasing number of 

users and cells, while ensuring real-time fulfilment of beamforming schemes. 

 

Figure 5-15: Convergence of two user performance in two-cell two-user multi-antenna system,. 

 

5.3.2 Federated ML model load balancing at the edge 

Given a large number of heterogeneous sensors connected to FL nodes at the edge, the goal is to provide 

a low latency and high quality distributed ML service. Massive twinning relies on a fully synchronized 

and accurate digital representation of the physical and human worlds based on a wide variety of sensor 

information., To enable more efficient interaction of production for digital twins in manufacturing, we 

have to encompass a larger extent of the respective processes, and also to achieve the transfer of massive 

volumes of data from a wider range of sensors and actuators within the factory, including the 

cooperation among multiple digital twins in a flexible production process. In an immersive smart city, 

effective management of all factors of persons, vehicles, infrastructure, weather, pollution etc, on 

various time scales require a large number of heterogeneous sensors to be connected.  

In the use case scenario of Figure 5-16 a variety of sensors are connected to AI compute nodes through 

radio BSs. For accurate and low latency operation, each AI node needs access to sensors of most types, 

and the connection load needs to be balanced. Based on the Timing Advance (TA) information, the 

connection of sensors to AI nodes can be reconfigured; however, in addition to handover costs, the state 

of a sensor may also need to be migrated to the new AI node. In our experiment, we propose a method 

to dynamically rearrange the connection structure. 

 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 89 / 138 

 

Our implementation relies on a central server that collects data type histograms from the FL nodes and 

makes reconnection decisions by using our algorithm based on the [ZSBB21]. Each FL node runs a 

module responsible for collecting local histograms and executing the reconnection requests from the 

server. 

Our architecture shown in Figure 5-16 is based on the Dynamic Reconnection Master (DRM) central 

authority. Dynamic Reconnection Workers (DRW) are assigned to each FL node. The roles of DRM 

are 

• Collecting local histograms from the DRWs; 

• Executing the partitioner algorithm described next to reach balance; 

• Sending reconnection commands to DRWs, including both the original and the new DRW 

corresponding to each ML edge device that needs to be reconnected. 

The roles of DRW are 

• Computing the local histogram of data volume by data type using sampling; 

• Periodically submitting the histogram to DRM; 

• Executing the migration step, ordering the ML edge device to reconnect to another FL node, 

including necessary state migration to the new FL node. 
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Figure 5-16 Left: a FL hot spot with too much data (top) and an insufficient data with one type (camera) 

missing (bottom). Right: a reconnection decision causes state migration between the bottom AI agents. 

 

In our proposed dynamic reconnection solution, our goal is to provide load balancing to remedy 

potential hot spots and data type diversity to ensure quality balance for the federated learners. Load and 

diversity balance is necessary to make sure each node can equally contribute to the FL task dynamic 

load rebalancing by reconnecting sensors to nodes in the radio network if (i) load is uneven or (ii) some 

nodes receive insufficient variety of data for serving local models, for example when certain crucial 

type of sensor is not connected to a FL node.  

The dynamic reconnection method is based on our Key Isolator Partitioner (KIP) [ZSBB21], which is 

a heuristic combination of explicit placement and weighted hash partitioning to improve balance in 

cases of heavy data skew. KIP involves a distributed top-k histogram computation, where locations with 

heaviest load are ordered by decreasing frequency in a histogram object. The ideal maximal load of the 

partitions is calculated using a soft threshold to guarantee a good balance. In KIP, first the highest load 

is arranged greedily by considering radio accessibility. KIP attempts to keep UEs in their current 

connection to minimize migration costs, and non-heavy keys are handled by the weighted hash 

partitioner. The average load of a node is computed, and the uEs are rerouted as necessary by greedy 
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bin packing. KIP prepares for potential reconnection by making minimal modifications to the existing 

network state. 

In our experiments following up work in Deliverable D4.2, we rely on the Simulation of Urban Mobility 

(SUMO) generator [http://sumo.dlr.de/index.html]. In our experiment, we generated 10,000 

collaborating AI components (sensors and actuators) connected to 1-50 AI nodes. We compared the 

performance of KIP against random partitioning, Readj [G14] and Mixed [F+16]. We concluded that 

KIP gains 10-20% improvement over balance compared to the existing best method. 

 

Figure 5-17: Performance of different rebalancing methods over simulation data. 

We provide a mechanism for orchestration of edge AI by a dynamic and automated adjustment of 

distributed AI/ML system.  We target the KPI family regarding the optimal assignment of resources 

(network and production) for training/inference time in a distributed AI system. By load balancing, we 

decrease latency while increasing AI agent density. Balanced connection structure improves both 

network energy efficiency and AI agent availability, thus also contributing to enabling Sustainability 

by energy-optimised services.  

 

5.3.3 Frugal Federated Learning 

Federated Learning (FL) is a popular technique for collaborative, multi-device over-the-air ML. Its 

main feature is that training data locally available at a contributing device are not centrally collected at 

a network node (e.g., an edge cloud server) for ML training purposes. There are several technical 

challenges when it comes to state-of-the-art FL implementations. Firstly, the FL training scheme takes 

place iteratively over-the-air, thereby resulting into increased communication signaling in each training 

round, both in uplink (for the upload of updated local ML models) and in downlink (for the broadcasting 

of the updated aggregated ML model). Such radio resource occupation may become extremely intensive 

in the case where the involved ML models consist of large model parameter sets (e.g., weights and bias 

values for a NN). Additionally, the exchange of large ML model parameter sets during FL training 

precludes that there is considerable processing, memory, storage and energy resources available both at 

the aggregator side and at the contributing devices themselves during the whole FL training procedure 

and also after it for inferencing purposes. This is, however, a non-realistic assumption, especially when 

the contributing devices are Internet-of-Things (IoT)-like ones with very limited compute platform 

capabilities. Even for more compute and energy capable devices, availability of computing and 

communication resources may significantly fluctuate, due to incoming workloads different from ones 

relating to FL training.  

 

There are several state-of-the-art techniques proposed to achieve communication and storage-efficient 

FL training. One technique is ML model dropout, which consists in randomly dropping out a (fixed) 

fraction of model neurons before model transfer (e.g., for FL training or for transfer learning purposes) 

[SRI13]. A second technique is ML model sparsity-based compression. According to this technique, 

http://sumo.dlr.de/index.html
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(updated) neuron weights which are below a threshold (e.g., close to zero) are not communicated at all 

to the recipient (i.e., to the aggregator in case of FL model training). Such compression can be applied, 

e.g., in combination with model dropout or as standalone [ZS17]. A third technique is ML model 

parameter quantisation. For example, 8-bit representations are used instead of higher-resolution ones. 

This technique can be possibly applied also in combination with model dropout and model sparsity-

based compression (for the“"survivin”" model parameters) [YBM20].  

 

The state-of-the-art techniques, although, when applied, generally result to lower communication 

overheads and small inferencing accuracy loss, as compared to the case where no model pruning/ 

compression etc. is applied during FL model training, are generally applied uniformly (i.e., applying the 

same dropout rate and/or sparsity criterion and model parameter quantisation scheme) across all 

contributing devices. This way, several per-device characteristics are overlooked, therefore, limiting 

th92odelled92al of FL model training in terms of inferencing accuracy, model training time and End-

to-End (E2E) energy efficiency. Examples of such per-contributor characteristics are: (i) availability of: 

computational/memory/ storage/ networking resources and connectivity options, energy resources (e.g., 

connected to the power grid or not, battery lifetime); (ii) prior experience in the specific task, e.g., 

prediction, classification, clustering, etc.–- availability of a relevant local ML model at the start of FL 

model training procedure and (iii) level of significance of training data, measured by the 

model“"concept drif”" during local ML model updating and/or by the change of -empirical- statistical 

distribution of learning data over time. In addition, another caveat of present solutions is that, when ML 

model pruning, sparsity-based compression and/or model parameter quantisation is applied, still quite 

a significant number of bits needs to be transmitted over-the-air during the whole FL model training 

phase. How to exchange local and aggregated ML model updates using only a few bits for (most of) 

training iterations is still an open issue, to the best of our knowledge. 

 

In this section, the aim is to propose a solution framework for customising FL training to each 

contributing network entit’'s (e.g., device, edge cloud server) available compute, communication and 

energy resources. Another aim is to minimise bi-directional communication signaling during FL 

training, as well as the risk of model theft over-the-air (e.g., by eavesdropping), while, at the same time 

achieving high accuracy of the resulting FL model during (local) inferencing. 6G use cases that may 

benefit from the proposed approach are those involving several devices of limited available radio/ 

storage resources (e.g., interacting and cooperative mobile robots). 6G KPIs of relevance are the ones 

of inferencing accuracy, latency, and E2E energy efficiency. The proposed solution aims at enhancing 

FL system scalability and also reducing energy consumption via more lightweight uplink/ downlink 

signaling during FL training stage. 

5.3.3.1 Device capability-adaptive and low overhead over-the-air FL 

Our proposed method for device capability-adaptive and low overhead over-the-air FL consists of the 

following solution components:  

• A data structure (at application level) containing as attributes the characteristics (e.g., 

hardware, energy autonomy, software–- including available ML model- both static and 

dynamic) of a device contributing to FL model training that is periodically communicated to 

the FL aggregator (e.g., during each training iteration or on an event basis). 

• A base“"codeboo”" of ML models initialised at the FL model aggregator, the cardinality of 

which can increase/decrease online and the members of which can be adaptively replaced, 

averaged, compressed, or decompressed per device capability changes and model training 

feedback per contributing device during FL model training. Basis model codebook adaptation 

results to per-device ML model codebooks maintained at the FL model aggregator side.  

• A ML model codebook lifecycle manager entity instantiated both at each contributing device 

and at the FL model aggregator performing ML model codebook lifecycle operations. 

• A model similarity score evaluating concept drift/ divergence between a ML model codebook 

member and a newly updated ML model, the latter issued either: i) on-device, based on local 

training data or ii) at the FL aggregator, based on ML model aggregation (e.g., averaging). 
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• FL training methods implementing the proposed device capability-adaptive ML model 

codebook-based FL training framework. 

In the next subsections, more details of each of the proposed solution components are provided. 

5.3.3.2 FL contributing device reporting to FL aggregator of its capabilities and 

learning status during FL training  

 

During FL training, each contributing device provides a device capability and learning status report to 

the FL aggregator, e.g., by means of uplink transmission to a radio Access Point (AP) collocated with 

an Edge Server hosting the FL aggregator. The payload of this report message includes two parts. A 

first information element is a FL device capability status report containing information about the 

devic’'s current computing availability and energy autonomy. For example, attributes of this message 

may include: current device availability of computational resources (Central Processing Unit–- CPU/ 

Graphics Processing Unit–- GPU/ Neural Processing Unit–- NPU/ FPGA etc.) and hardware 

acceleration capabilities, device memory resources, device storage resources, device energy resources 

(e.g., indicator showing whether the device is connected to the power grid or not, current expected 

battery lifetime), and device connectivity capabilities (e.g., multi- RAN connection capability).  

 

A second information element, assuming an ML codebook-based approach for FL (to be later 

introduced in this section), is a FL device learning status report containing information relating to the 

FL training process, from the perspective of the contributing device. For example, attributes of this 

message may include: (i) For a given FL training round, indices of the FL device model codebook 

member of highest and possibly lowest similarity to a ML model updated by consuming local learning 

data, the latter ML model being updated asynchronously with respect to the FL learning process. 

Alternatively, in the lack of a local device ML model trained in standalone fashion (different from FL 

training procedure), these indices correspond to the FL device model codebook members that, after 

using -recently generated- local device data as a ML model testing set, showcase the smallest and 

possibly also largest testing error; (ii) For a given FL training round, degree of similarity between the 

indicated FL device model codebook member of highest and possibly lowest similarity to a ML model 

updated by consuming local learning data. Alternatively, in the lack of a local device model trained in 

standalone fashion (different from FL training procedure), value of this model distance can be replaced 

by the testing error based on using -recently generated- local device data. 

 

The proposed device capability and learning status report may be provided by a FL device during FL 

model training, either: (i) in each FL training round, until FL model convergence, or, till a stopping 

criterion is met (e.g., maximum number of training rounds) or (ii) only on an event-based fashion until 

FL model convergence, e.g., only when the device capability changes significantly and/or when the 

index of the“"bes”"/“"wors”" member of the ML model codebook maintained at the device changes, as 

compared to the previous FL training round. Figure 5-18 below illustrates a possible implementation of 

the (uplink)“mess”ge“conta”ning the FL device capability and learning status reports to the FL 

aggregator for a given “L tr”in“ng ro”nd. 

 

 

Figure 5-18: Proposed status report by each FL device–- for upload to the FL aggregator in each FL 

training round. 
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5.3.3.3 ML model codebook–- construction & maintenance operations 

 

With the aim of reducing the bi-directional communication overhead in each FL training round, which 

involves exchanges of whole ML models (i.e., uploading locally updated ML models from contributing 

devices to the FL aggregator and the latter broadcasting the -current- aggregated ML model to all 

contributing devices) we propose a ML model codebook-based approach for FL model training. 

According to this approach, a ML model codebook is a set of ML models -the members of the ML 

model codebook-, all focused on the same task the FL model would address itself to (e.g., Quality-of-

Service–- QoS prediction, image classification, etc.) and distinguished by their different parameter sets 

and, therefore, generalisation capabilities during inferencing. Members of an ML model codebook can 

be sourced in different possible ways. For instance, the FL aggregator and/ or (some or all) devices 

joining the FL setup may already have ML model codebooks available from previous FL training 

procedures on the same (or a very similar) task or host a single relevant ML model that has been locally 

instantiated and trained. Synchronisation in local and FL training procedures is not required. 

Regardless of how a ML model codebook is sourced, either entity (FL aggregator or contributing 

device) may join (e.g., by means of subscription using a RESTful API) a FL setup offering its available 

-and, relevant to the task- ML model or its whole ML model codebook. This can be thought of as 

a“"bring your own ML mode”" (BYOM) criterion for admission to a FL setup by a FL manager or FL 

controller entity. From an ML capability monetisation standpoint, a network entity (e.g., a device user 

or an ML service provider) requesting subscription to a FL setup, may be incentivised to join when 

bringing a local ML model (or, a whole set of ML models), relevant to the task the FL setup aims to 

address. Means of incentive may e.g., be priority in compute resource usage, shared by other available 

network entities and/or a discounted fee to join the FL setup. 

Since FL training is an iterative procedure during which: (i) the compute, communication, energy etc. 

capabilities of the contributing device, (ii) the amount and/or statistical distribution of learning data, 

(iii) the availability of a local ML model, relevant to the task, albeit trained asynchronously with the FL 

training procedure, may change significantly across FL training rounds, ML model codebooks should 

be also flexibly manipulated (i.e., compressed/ decompressed and/or increased/ reduced in the number 

of their members) in order to be customised to the capabilities of each contributing device during the 

FL training procedure. For this reason, two types of ML model codebooks are proposed: (a) a“"bas”" 

ML model codebook representing a specific training round, constructed by and maintained at the FL 

aggregator, based on feedback provided by a ML model codebook Lifecycle Manager (LCM), the latter 

instantiated e.g., at the same Edge Server as the FL aggregator or in a different entity. This ML model 

codebook represents a specific FL training round; (b) a device-specific ML model codebook for each FL 

training round (or, for each significant device capability change over time during FL training) which is 

constructed by a ML model codebook LCM instantiated in proximity to the FL aggregator and also 

transferred to the corresponding contributing FL device using periodic unicast/ multicast transmissions. 

Such a ML model codebook is a processed (i.e., compressed, encoded, reduced in size) version of the 

base ML model codebook, adapted to the capabilities of a specific contributing device. It is noted that, 

to produce a device-specific ML model codebook, state-of-the-art techniques can be applied for ML 

model compression/ encoding (e.g., ML model dropout, ML model sparsity-based compression, ML 

model parameter quantisation etc.). 

 

Figure 5-19 shows an example focusing on the initialisation of a FL training procedure. For ease of 

exposition, two devices are involved in FL training, Device 1 with a local ML model and Device 2 

without any local ML model available. In this example, the assumption is that the FL model aggregator 

already has a base ML model codebook available before the FL training procedure starts (e.g., carried 

over from another FL setup on the same or a similar task). Then, the steps to follow for the FL setup 

initialisation phase are the following: 

 

Step 1: each of the joining devices sends its device capability status report and Device 1 also uploads 

its local ML model.  
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Step 2: The ML model codebook LCM at the FL aggregator side produces an updated version of the 

base ML model codebook, e.g., by replacing the ML model codebook member of highest age by the 

ML model shared by Device 1.  

Step 3: The ML model codebook LCM at the FL aggregator side issues two compressed versions of the 

(updated) base ML model codebook, with compression factors tailored to the communicated processing, 

storage, memory and networking capabilities of Device 1 and Device 2. 

Step 4: The compressed (device capability-adapted) ML model codebooks are transferred to Devices 1 

and 2 by e.g., unicast downlink transmissions. 

 

Figure 5-19: Example of producing different device-specific ML model codebooks, derived by a base ML 

model codebook and tailored to device capabilities–- FL initialisation/ establishment stage. 

 

5.3.3.4 ML model codebook LCM and model similarity score 

 

ML model codebook LCM: The ML model codebook LCM is an entity responsible for lifecycle 

operations of ML model codebooks during the FL training procedure. Such operations include, for 

example: ML model codebook member replacement, addition, removal, compression and 

decompression. This entity can be instantiated both at FL aggregator and FL device side. Figure 5-20 

shows how this entity operates when deployed at FL aggregator side.  

 

 

Figure 5-20: Exemplary operation of ML model codebook LCM at FL aggregator side. 

Model similarity score: A model similarity score is a numerical value (e.g., a number between 0 and 

1, or a percentage value) indicating the degree of concept drift/ divergence between a ML model 

codebook member and a newly updated ML model. An ML model codebook LCM can decide to 

perform ML codebook member LCM operations based on this score. Depending on where the ML 

model codebook LCM is instantiated, the updated ML model compared to the ML model codebook 
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members can be either obtained: i) on-device, based on local training data or ii) at the FL aggregator, 

based on ML model aggregation (e.g., averaging). 

 

5.3.3.5 FL training methods applying the proposed device capability-adaptive ML 

model codebook-based FL training 

 

Two methods for FL training can be implemented, based on the proposed device capability-adaptive 

ML model codebook-based FL training.  

 

Method 1–-“"average best-scoring ML models and replac”": According to this method, after base ML 

model codebook initialisation at the FL aggregator side and transfer of device capability-adapted copies 

of it in the beginning of FL training, in each subsequent FL training round, only the index of each 

device-side ML model codebook member of highest similarity score (or of lowest testing error) is 

provided back to the FL aggregator side using uplink transmissions. Then, to produce an updated base 

ML model codebook for the next training round, the FL aggregator averages these“"best scorin”" ML 

models (using the FedAvg procedure of FL literature)–- which are already stored at the ML model 

codebook LCM from the previous round. Then, the ML model codebook LCM, in its turn, replaces a 

member of the current ML model codebook (e.g., the one of highest age) by the obtained average of 

best scoring ML models. The updated base ML model codebook is then distributed to the contributing 

FL devices leading to the next training round. FL model convergence is declared when e.g., two 

consecutive models obtained by the FedAvg operation have a similarity degree lower than a pre-defined 

threshold, or when a maximum number of iterations is reached. The advantage of this method is that 

FL device communication in the uplink will be of minimal payload (only a few bits representing the 

index of the best-scoring ML model codebook member). 

 

Method 2–-“"score-based successive codebook size reductio”": This method differs from Method 1 in 

that the base ML model codebook size is not kept fixed during the whole FL training procedure, but it 

is successively reduced, based on a similarity score (or, testing error) performance criterion. According 

to this method, in each FL training round (after initialisation), each FL contributing device 

communicates to the FL aggregator the indices of the worst-scoring ML model codebook members. 

Then, at FL aggregator side, the ML model codebook LCM counts how many times, each ML model 

codebook member has been classified as worst (score-based) performing. The one of highest such count 

is removed from the updated base ML model codebook and the FL aggregator communicates the index 

of the removed ML model codebook member to the FL contributing devices; then, the ML model 

codebook LCM entities at the FL device side produce updated (and reduced in size) device ML model 

codebooks. This procedure keeps up until either the base ML model codebook is composed of a single 

member, or by a small number of members which can then be averaged to produce the FL model. The 

benefit of this method is that in both communication directions only ML model codebook member 

indices are exchanged. ML model parameters need only to be communicated over-the-air at the FL 

training initialisation stage. 

 

6 Security, privacy, and trust in AI-enabled 6G 

AI and ML will have distinct impact on future networks. They will be used as technical enablers to 

enhance the performance of the 6G networks and provide efficient services.  Massive volumes of data 

will be processed by the network and its services in the 6G era. Thus, not only the AI/ML-based services 

themselves have to be safe and secure, but also the sensitive data of users that is used in these services 

have to be kept private. In this chapter, we focus on three aspects of trustworthy AI: security, privacy, 

and explainability. The security of AI/ML focus on identification and mitigation of attacks including 

poisoning, model evasion, and model extraction attacks targeted at the weaknesses of AI/ML-based 
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procedures in the networks to degrade the performance of the model causing it to behave unexpectedly. 

To this end, the AI system should be secure, robust, and safe throughout its entire life cycle. For privacy 

aspect, to have fully AI-aided digitalized world without data being compromised, anonymization and 

privacy protection technologies that achieve a balance between limited data exposure and legitimate 

analytics will be necessary. These technologies include homomorphic encryption, secure multi-party 

computation, federated learning, differential privacy, etc. For explainability aspect, it is important to 

understand and interpret predictions which are provided by machine learning models. To this end, AI 

explainability refers to the specifics and justifications a model provides to make its functioning 

trustable, clear and simple to comprehend [BLSS+20].  

The concepts and technical enablers described in this chapter address the Trustworthiness KVI by 

providing security, privacy and explainability solutions. From security aspects, a use case scenario with 

adversarial evasion attack is shown to mislead the machine learning model into producing an incorrect 

output. The provided defence mechanism increases the robustness of the machine learning model 

against such attack. From privacy perspective, the privacy enhancing methods such as federated 

learning can already provide some level of privacy because the data remains on the individual devices 

or servers. However, these model update parameters can still disclose sensitive information. Privacy 

can be strengthened by using privacy enhancing methods for each individual device. 

6.1 Security for AI-enabled 6G Networks 

In order to provide a fully automated network, 6G rely on AI/ML technologies. Although AI/ML 

systems have a track record of success in wireless applications, they raise security challenges. 

According to recent studies [BNHGT+21], numerous adversarial attacks can be successfully conducted 

against DNN-based wireless systems. When compared to traditional wireless attacks like jamming 

[SRBE+11], adversarial ML-based attacks are more covert and difficult to spot because of their small 

footprints The two main categories of adversarial attacks against AI systems are evasion attacks and 

poisoning attacks, with the former occurring during the inference phase and the latter occurring during 

the learning phase. In the following, we will investigate the potential effects of adversarial evasion 

attacks targeting AI-driven power control systems in D-MIMO (distributed multiple-input multiple-

output). 

6.1.1 Adversarial evasion attacks in AI-driven power allocation 

In D-MIMO, power control is crucial to optimize the spectral efficiencies of users and Max-Min 

Fairness (MMF) power control is a commonly used strategy as it satisfies uniform quality-of-service to 

all users. The optimal solution of MMF power control requires high complexity operations and hence 

deep neural network (DNN) based AI solutions are proposed to decrease the complexity. Although quite 

accurate models can be achieved by using AI, these models have some intrinsic vulnerabilities against 

adversarial attacks, where carefully crafted perturbations are applied to the input of the AI model. In 

this study, we planned to assess the degree of threats against targeted AI model, which might be 

originated from malicious users or radio units and observe the network performance by applying a 

successful adversarial sample even in the most constrained circumstances. For instance, we evaluate 

the success of the adversary under both white-box and black-box setting on spectral efficiency in the 

network. 

For the system model, M single antenna RUs (Radio Units) are considered for a D-MIMO network 

which are connected to a central processor (CP) via wired fronthaul links. In a specific time/frequency 

resource block, we assume that K single antenna UEs are jointly served by all RUs. In Figure 6-1, we 

present an example D-MIMO network with potential attack resources where the network includes 16 

RUs, 4 UEs, and a CP. 
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Figure 6-1: D-MIMO network with potential attack. 

In D-MIMO network, we consider two source of adversarial attack scenarios, the first related to 

malicious rUs or fronthaul links, the second related to malicious UE. In the first scenario, a malicious 

RU can apply a man-in-the-middle (MITM) type attack to modify the channel related data transmitted 

from RUs to CP. In the second scenario, there may be some malicious UEs in the network that have 

modified RF and baseband components, causing them to apply some perturbation to pilot signals in 

order to change their related channel information. In TDD (time-division duplex) systems, uplink pilots 

that are received from uEs are used to gather channel information at the RU side. Consequently, a 

change in pilot signaling may result in incorrect channel knowledge at RU side. The effects of both 

these attack scenarios are analysed in this section using several simulations. 

From the adversary’s perspective, there are three important constraints which limits the success of the 

adversarial attack in a D-MIMO network. Firstly, the adversary mostly does not have access to the 

details (architecture and weights) of the original AI model, therefore cannot use it in a white-box setting 

for crafting adversarial samples. Secondly, the adversary may not have complete knowledge of the input 

features of the AI model. Because it is almost impossible for the adversary to know the channel 

information of each UE. Lastly, in a practical scenario, the adversary does not have the capability to 

introduce perturbations to all parts of the input vector, even if the channel information is known 

beforehand. However, despite all these limitations, there are proven ways in literature which increase 

the success of the attacker. Regarding the first limitation, it has been shown that a surrogate AI model 

might be sufficient to launch an effective attack due to the transferability nature of the adversarial 

samples [PMGJCS+17]. Regarding the other limitation, the universal adversarial perturbation (UAP) 

method is proposed for cases where the complete input knowledge is not available. 

To craft a perturbation when there is partial input knowledge, we proposed a modified UAP (m-UAP) 

method [FKK+2023] which is based on the version suggested by Santos et al. [SMSL+22] where 

principal component analysis (PCA) is applied to a set of output vectors obtained by the attack method. 

In this study, we used Basic Iterative Method (BIM) [KGB+17] as the base attack algorithm when 

crafting the final perturbations within m-UAP method (Figure 6-2).  
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Figure 6-2: PCA-based modified UAP (m-UAP) method. 

We perform several simulations to see the effects of adversarial attacks under several constraints. We 

begin our simulations by firstly showing the extreme scenario with the most devastating consequence 

where the adversary has access (read/modify) to all the parts of input vector fed to the AI model in CP. 

We set maximum allowed perturbation amount in channel information input vector as ϵ = 8 dB which 

is equal to the standard deviation of the shadowing in the system. In Figure 6-3, we show the CDFs 

(cumulative distribution functions) of per-user SEs (Spectral efficiency) under different attack types. It 

is clear that our proposed m-UAP attack results in much more devastating consequences than standard 

Gaussian perturbation. Under the attack, the performance of the analytical solution also degrades 

showing that adversarial training is not suitable for this regression task. Because applying adversarial 

training will degrade the natural (clean) performance of the system. This shows the necessity of 

developing new defence solutions for such kind of smart attack threats. Finally, we observe that 

surrogate model (indicated as blackbox) has slightly less disruptive performance than the original model 

(indicated as whitebox). This result proves that the adversary does not need to have access to the original 

AI model for crafting effective adversarial samples. 
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Figure 6-3: Comparison of effect of different attack types on SE (ϵ = 8 dB). 

To cover more practical cases which might be seen in a real-world scenario, we assume that the 

adversary might have a partial channel knowledge and partial perturbation capability on the input. In 

below figures, we present the median (the SE value corresponding to CDF = 0.5) and the 5th percentile 

(the SE value corresponding to CDF = 0.05) per-user sEs for various levels of input information and 

perturbation capability. Figure 6-4 shows the results of the first type of attack scenario which might be 

originated by malicious RUs. Figure 6-5 shows the results of the second type of attack which might be 

launched by malicious UEs. In each of these cases, we assume that some portion of the uEs or rUs are 

malicious and only their channel information can be known and perturbed by these adversaries. In both 

scenarios, the adversary uses the surrogate model with ϵ = 8 dB. 

 

 

Figure 6-4: The effect of attack on RUs (ϵ = 8 dB). 
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Figure 6-5: The effect of attack on UEs (ϵ = 8 dB). 

According to the results obtained in above figures, we conclude that m-UAP attack outperforms 

conventional approach of applying standard Gaussian noise in all cases. The gap gets larger when the 

ratio of involved malicious actors in the network increases. When the level of information and 

perturbation capability about the input become larger, the adversary can degrade the performance more, 

as expected. In all these adversarial attack cases, we observe a significant decrease in the user SE 

performance of the D-MIMO network. 

The results obtained so far assume max. Perturbation amount ϵ = 8 dB. Considering the shadowing 

standard deviation (which is equal to 8 dB), it is theoretically very hard for the system to detect an attack 

with ϵ = 8 dB as the probability of observing that much variation in large-scale fading coefficients is 

roughly 32%, which is not negligible. On the other hand, for ϵ > 16 dB, the same probability decreases 

down to 5% making the detection possible. In Figure 6-6, we observe the effect of ϵ for values up to 16 

dB. We consider the scenario where half of the rUs are malicious and employ m-UAP method using a 

surrogate model. 

 

 

Figure 6-6: The effect of different ϵ values. 

 

The results show that adversarial attacks are more effective than standard Gaussian noise, and the attack 

becomes more disruptive as ϵ increases. 

Lastly, we consider the impacts of the adversarial attacks on the energy efficiency (EE) in the network 

as sustainability is one of the important concerns in 6G. The power consumption may differ under 

attack, so we need to analyze the EE separately. The average EE for various ϵ are analyzed for the case 

where half of the rUs are malicious and we employ m-UAP method using a surrogate model. In Figure 

6-7, we see the comparison of no attack, adversarial attack and standard Gaussian noise attack cases. 

The adversary can decrease EE more than 8 percent in ϵ = 8 dB case and the effect becomes more severe 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 102 / 138 

 

with increasing ϵ values. We conclude that adversarial attacks can also degrade the energy efficiency 

of the system. 

 

 

Figure 6-7: The effect on energy efficiency for various ϵ values. 

In 6G era, we believe that use cases related to usage of AI/ML in wireless tasks such as beam forming 

and power allocation in D-MIMO may be more adversary-sensitive. The use cases under use case 

families of “Enabling sustainability“and “immersive telepresence for enhanced interactions“  in the 

Hexa-x can be considered more adversary-sensitive use cases. 

Defining a KPI to measure how much a system is secure or how much the security of the system is 

improved is quite hard. However, we can define some metrics to measure the adversarial attack success 

rate. The more the success rate, the more vulnerable the model against adversarial attacks. Thus, any 

proposed defence mechanism must reduce the success rate of such adversarial attacks. In the following, 

we suggest two KPIs for AI-driven D-MIMO task from both attacker’s and defender’s perspective. 

 

𝐴𝑑𝑣𝑡𝑎𝑐𝑘𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑟𝑎𝑡𝑒 =
𝑆𝐸𝑜𝑟𝑖𝑔 − 𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘

𝑆𝐸𝑜𝑟𝑖𝑔
∗ 100 

where, 

𝑆𝐸𝑜𝑟𝑖𝑔 is the spectral efficiency without any attack or defence (for ML), 𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘 is the spectral 

efficiency without any defence (for ML), and 𝑆𝐸 is the spectral efficiency obtained after defence. 

In Figure 6-3, we present the 95%-likely per-user spectral efficiencies of users for various cases. 

Considering the values measured by the points corresponding to the 0.05 value of the CDF curves, when 

perturbation amount ϵ = 8 dB, the approximate success rate of adversarial attack is estimated as:  

𝐴𝑑𝑣𝑎𝑡𝑡𝑎𝑐𝑘𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑟𝑎𝑡𝑒 =
1.95 − 0.77

1.95
∗ 100 = 60.51% 

 

6.1.2 Defence mechanism to increase robustness of AI-driven power 

allocation against adversarial attacks 

Adversarial attacks have the potential to seriously comprise the security of AI-powered systems and 

pose significant risks, particularly in fields like communications where security is of utmost importance. 

A number of defence strategies have been put forth in the literature to mitigate adversarial attacks, with 

adversarial training being one of the most popular ones. Yet, defensive strategies involving adversarial 

training are ineffective for the majority of regression problems and models. AI-driven power allocation 

for D-MIMO is one of these tasks where it is not possible to employ adversarial training to increase 

robustness of AI-driven systems. The reason behind is that applying perturbation to the channel 

information vector will lead to different optimum power allocation values in comparison to no attacks 

case, thus leading to poor performing models in normal conditions. In a numerical regression task which 
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is modelled by the analytical function f(.), mapping input vector β to output vector η, the perturbation 

applied to input β to get β’ will not lead with the same result (i.e. f(β) ≠ f(β’)) as in the case of image 

classification tasks for example. 

To mitigate the effects of adversarial attacks, we suggest a proactive defence approach. We propose a 

method in which we try to find an imaginary perturbation δ which yields a better power allocation 

output by maximizing the user SEs. By injecting a virtual perturbation, the method improves the output 

user SEs of the AI solution by optimizing the sum of the user SEs. Instead of using channel information 

vector (β′) to predict the output, we propose to iteratively compute the derivative of our objective 

function with respect to β′ and add the resulting accumulated gradient vector δ to β′ to predict the output. 

We compute the virtual perturbation vector δ iteratively. At each iteration, we compute the gradient 

∂SEAI, sum/∂β′ via the AI model and update the virtual perturbation vector considering the direction of 

the gradient so that the SEAI, sum increases. After a finite number of steps, the algorithm converges, and 

we find the final δ vector. The details of our proposed defence algorithm is given in Figure 6-8. 

 

Figure 6-8: The proposed defence algorithm. 

The effectiveness of the proposed defence technique is verified through experimental results. Figure 

6-9, involves CDF under different attack scenarios for ϵ = 4 dB with and without our proposed defence 

solution. We observe that the proposed defence technique significantly enhances the performance for 

UEs with low SE values. With the proposed technique, 0.28 bps/Hz enhancement on 5th percentile per-

user SEs is obtained. Considering that the remaining gap to AI solution without any attack is equal to 

0.19 bps/Hz, it can be concluded that more than half of the performance loss due to adversarial attack 

can be regained by the proposed defence method. When there is no attack or there exists a WGN attack, 

a slight improvement is obtained over AI solution without any defence. This shows that the proposed 

method can be used without any performance loss regardless of the attack situation. The proposed 

defence method is effective against adversarial attacks which are the most disruptive ones for AI-based 

power allocation methods 
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Figure 6-9: CDF of oer-user Ses for various cases (ϵ = 4 dB).  

To measure the robustness of the proposed defence method, we define a metric rrobustness as: 

𝑟𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝑆𝐸𝑑𝑒𝑓𝑒𝑛𝑠𝑒 − 𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘

𝑆𝐸𝑛𝑜𝑎𝑡𝑡𝑎𝑐𝑘 − 𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘
 

where 𝑆𝐸𝑛𝑜𝑎𝑡𝑡𝑎𝑐𝑘, 𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘 , 𝑆𝐸𝑑𝑒𝑓𝑒𝑛𝑠𝑒 indicates 5th percentile per user sEs of AI solution without 

attack and defence, under adversarial attack without defence, and under adversarial attack with the 

proposed defence method, respectively. 𝑟𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 shows the ratio of performance that can be 

regained by the defence method for UEs with low SE values. 

 

 

Figure 6-10: 𝒓𝒓𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔 for various ϵ values. 

In Figure 6-10, we illustrate the robustness ratios for various ϵ values. We can observe that for all  ϵ ≤ 

8 dB, the robustness ratio values are greater than 40%. The robustness ratio is a decreasing function of 

ϵ, because as the perturbation size rises, it gets harder to offset the effects of adversarial attacks. It is 

important to note that at ϵ values greater than 8 dB, which is the shadowing standard deviation, the 

system may be able to identify an attack by spotting irregular changes in the channel coefficients and 

take appropriate action.  

Applying defence method, we expect increase in robustness of the system and decrease in adversarial 

success rate. According to Figure 6-10, the robustness of the proposed defence method, when 

perturbation amount ϵ = 8 dB, is estimated as: 

𝑟𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝑆𝐸𝑑𝑒𝑓𝑒𝑛𝑠𝑒−𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘

𝑆𝐸𝑛𝑜𝑎𝑡𝑡𝑎𝑐𝑘−𝑆𝐸𝑎𝑡𝑡𝑎𝑐𝑘
= 

1.21−0.77

1.95−0.77
= 37.29 

 

 And the adversarial success rate is estimated as: 
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𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑎𝑡𝑡𝑎𝑐𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
1.95 − 1.21

1.95
∗ 100 = 37.94% 

We can observe that attack success rate is decreased from 60.51% to 37.94%, which mean (60.51–- 

37.94) / 60.51= 37.29% drop in success rate of attacker. 

 

Figure 6-11: Comparison of runtimes of AI, proposed defence, and analytical solutions. 

In Figure 6-11, we compare the average computational cost of the proposed defence method with 

analytical, and AI solutions. As expected, the proposed defence technique is slower that the AI solution, 

but it is roughly 6 times faster than the analytical solution. 

 

6.2 Privacy for AI-enabled 6G Networks 

As network complexity keeps expanding, the reliance on artificial intelligence (AI) and automation 

solutions is growing quickly in the telecom sector. The machine learning (ML) models that many mobile 

network operators (MNOs) use to forecast and address problems before they have an impact on user 

QoE are one example [VIDBA+19]. To create an ML model, data from different sources is transferred 

to a central server which can be problematic from a data security perspective. Thus, solutions be able 

to create an ML model without needing to transfer voluminous amounts of data, perform centralized 

computation and/or risk exposing sensitive information are needed. Federated learning (FL), with its 

ability to do ML in a decentralized manner, is a promising approach. In FL setting, only the local model 

updates are shared with the server to create a global model which help users to keep their local data 

private. Although this technique increases the privacy of user data, the local model updates may still 

leak information about each client. Bellow, we explain in more detail about the problem and the 

alternative solution.  

 

6.2.1 Security mechanism friendly privacy solutions for federated learning 

Although FL enhances the privacy of clients by enabling each client to train its own local data, there is 

still a possibility of information leakage when clients send local model updates to server to aggregate 

to a global model. Generally, secure aggregation techniques are used to prevent this kind of data leaking 

so that the server can only get the aggregated result rather than the individual local model updates. 

However, using such mechanism may prevent server to analyse clients local model updates to detect 

security attacks to model training such as poisoning and backdoor attacks. Thus, there is trade-off 

between providing privacy and security in FL setting, and solutions which provide privacy and allow 

server to detect anomalies resulted from security attacks are demanding. The 6G use cases in Hexa-X 

which expected to be benefited from this solution include any use case where multi agents using ML/AI 

try to learn a model or cooperatively operate in a private manner. Some of such use cases can be 

“interacting and cooperative mobile robots”, “flexible manufacturing”, “fully merged cyber physical 

systems”, and “immersive smart cities”. In [HEX-D42], we provided a security-friendly privacy 

solution for federated learning, which was based on multi-hop communication to hide identities of 

clients but ensured that the forwardee clients in the path between the source client and the server could 
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not execute malicious activities such as altering model updates and sending more than one model 

update. In this deliverable we provide two new enhancements on top of the previous solution to make 

it robust against possible malicious packet drop behaviours by the forwardee clients. 

In order to detect malicious forwardee clients who drop packets, we introduce and utilize a detector 

entity to the network which monitors packet exchanging procedure between a sender and a forwardee 

to find whether the process is fully accomplished or not (Figure 6-12). In this solution, when a sender 

client sends a packet including a local model update to a forwardee client, it also sends a message to 

the detector. The message contains sender client ID, forwardee client ID and hash of the packet sent to 

the forwardee client. By this way, the detector tracks the information attached to the message to ensure 

there’s no packet drop. Accordingly, whenever a forwardee client receives a packet, it sends a message 

to the detector with the same information, forwardee and sender client IDs and hash of the packet, to 

inform a packet has been received. Then the detector checks the messages and if they match, it sends 

an ACK packet to the sender client which means the packet transmission has been completed 

successfully. Otherwise, if sender client doesn’t get an ACK message from the detector, sender client 

executes same steps for a randomly chosen forwardee client. The Figure show example interactions 

between server, one client, and detector. 

 

 

Figure 6-12: Example interactions between server, clients and detector. Note that only the packet flow for 

client1 data is shown as an example. 

Note that in the solution it is assumed that the detector and the server do not collude. The detector does 

not get the local model update packets however knows all the traffic by observing the messages from 

forwardee and receiver clients. Other clients and the server are not aware of this traffic since detector 

would not share this information. 

Defining a KPI to measure how the privacy of data in the provided solution is improved is difficult. 

However, we can define KPIs to measure the utility of the provided solution in term of accuracy. This 

measure demonstrates how much the defence mechanism disrupts the normal behaviour of the model 

in term of accuracy. We can also measure the total overhead of the defence mechanism from 

communication and computation point of view with respect to the mechanism without defence.  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑜𝐷𝑒𝑓𝑒𝑛𝑠𝑒
∗ 100 > 90% 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝐶𝑜𝑚𝑝 =  
𝐷𝑒𝑙𝑎𝑦 − 𝐷𝑒𝑙𝑎𝑦𝑛𝑜𝐷𝑒𝑓𝑒𝑛𝑠𝑒

𝐷𝑒𝑙𝑎𝑦𝑛𝑜𝐷𝑒𝑓𝑒𝑛𝑠𝑒
∗ 100 < 30% 

To assess the computation overhead our approach adds to the FL, we used a common user laptop 

equipped with an Intel Core i5 CPU and 32 GB RAM to implement our protocol using Python. We used 
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the Python implementation2 of Abe and Okamot’'s partially blind signature scheme, which was first 

described in [[AO+00]]. We preferred (2048-bit, 224-bit) as the DSA parameter lengths for 112-bit 

security and modelled the clients and the server as sequentially called functions. In typical FL with 20 

clients, the local model update size is roughly 4 MB, and local model training for each client takes an 

average of 7 seconds. We assessed the computation time of our approach, excluding the local training 

part, while taking the local model size into consideration. One partially blind signature procedure takes 

90 ms to complete on the client and server sides when our protocol is used. The signature operation 

performed by each client is the other significant activity in terms of calculation time. This signature 

operation took 10 milliseconds. The final significant operation, performed by the server, took 25 

milliseconds to validate the signatures on the local model updates and the client’' public keys. As a 

result, the overall computation overhead of our protocol for client and server operations is 125 ms. 

Given that each clien’'s local model training requires 7 seconds (7000 ms), our protoco’'s overhead is 

minimal (1.8% longer execution time).  

We also consider the communication cost overhead of sending extra messages for the execution of 

proposed protocol. It takes 61 ms in a network with a throughput of 524.29 Mb/s when we just consider 

delivering local model updates from the client to the server that are 4 MB in size. Local model update 

transmission takes 6100 ms when we have network throughput of 5.24 Mb/s. Given that local model 

training takes 7 seconds, it is clear that communication time with a not good throughput becomes a 

significant time factor. Fortunately, when the client and server have greater connection capabilities, the 

communication time is much shorter than the computation time. Although multi-hop communication 

requirements result in significant communication delays in case the network have low bandwidth and 

high RTT, these can be ignored in the better network setting. Figure 6-13 illustrates this conclusion 

where the increase in communication speeds, decrease the overhead of our method 

 

  

Figure 6-13: Overhead of our solution depending on the communication speed. 

For the KPI/KVI, the utility of the proposed method in term of accuracy will not change with respect 

to the typical FL. In case of overhead, the proposed method has 10.76 % increase in comparison with 

typical FL when communication speed is 504 Mb/sec. 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝐶𝑜𝑚𝑝 =
7824.067 − 7063.552

7063.552
∗ 100 = 10.76 

 

 
2 https://github.com/cowlicks/partially/blob/master/partially.py 
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6.3 Explainable AI 

Transparency of ML models is one of the fundamental requirements towards trustworthiness and is at 

the core of the explainable AI (XAI). In this section, the trade-off between accuracy and interpretability 

of inherently interpretable models is discussed, and an approach for FL of such models is introduced. 

6.3.1 XAI models: Fuzzy regression trees and TSK Fuzzy Rule Based 

Systems 

Rule Based Systems (RBSs) and Decision Trees (DTs) are generally considered more inherently 

interpretable than other popular “opaque” models (e.g., Neural Networks and Random Forest) and still 

able to achieve competitive performance, especially when data comes in tabular form. 

Among the ML-based approaches commonly employed to solve regression problems, Takagi-Sugeno-

Kang Fuzzy RBSs (TSK-FRBSs) and Fuzzy Regression Trees (FRTs) are particularly relevant in the 

XAI domain, as they feature both high modelling capability and interpretability. As per the latter, the 

inference process of TSK-FRBSs and FRTs, is in fact equivalent to the application of simple if-then 

rules, that can be regarded as very much akin to human reasoning. Furthermore, the adoption of 

linguistic representation of numerical variables allows a direct human interaction, further enhancing the 

model interpretability. 

However, accuracy and interpretability are two conflicting objectives and investigating the trade-off 

between them becomes crucial even with respect to model configuration choices. In the following, an 

overview of the two models is provided along with some empirical results on benchmark datasets. 

FRTs are the regression counterpart of Fuzzy DTs for classification, described in a previous deliverable 

[HEX-D42, Section 5.2.1]. The sequence of tests (modeled by inner nodes) partitions the input space 

into subspaces that contain subsets of training set. In regression problems, the rationale is to obtain 

subsets in which instances have output values as close as possible to each other. Since the goal is the 

prediction of a real value, leaf nodes are characterized by a regression model defined on the input 

variables. 

Notably, two configuration parameters deeply affect interpretability and accuracy of FRTs: 

• The inference strategy, namely maximum matching (MM) (among the multiple paths activated 

by an input pattern, consider only the one with the highest strength of activation) or weighted 

average (WA) (average the output produced by multiple paths, weighted based on their strength 

of activation). Notably, MM ensures a higher level of local interpretability [HEX-D42, Section 

5.2.1]. 

• The order of the polynomial model used in the leaves, namely zero-order (0) (constant value) 

or first-order (1) (linear model).  

An experimental analysis has been carried out to evaluate the performance obtained with the possible 

combination of these parameters, which lead to four variants of FRT, namely FRT-MM-0, FRT-MM-

1, FRT-WA-0, FRT-WA-1. [BCD+22]. They have been tested on several regression dataset using 5-

fold cross-validation. Table 6-1: summarizes the results. 
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FRT- MSE 

Train 

STD 

Train 

MSE 

Test 

STD 

Test 

MSE 

Train 

STD 

Train 

MSE 

Test 

STD 

Test 

 Weather Izimir [WI]  

(Features: 9 – Samples: 1461) 
Mortgage (× 𝟏𝟎−𝟑) [MO]  

(Features: 15 – Samples: 1049) 

-MM-0 27.56 6.83 27.98 6.31 635.03 71.88 620.32 125.12 

-WA-0 14.55 0.29 14.89 1.14 303.06 1.05 310.16 24.13 

-MM-1 1.31 0.07 1.40 0.30 5.90 0.32 8.31 1.84 

-WA-1 1.22 0.07 1.32 0.28 5.12 0.20 6.90 1.36 

 Treasury (× 𝟏𝟎−𝟑) [TR]  

(Features: 15 – Samples: 1049) 

California (× 𝟏𝟎𝟗) [CA]  

(Features: 8 – Samples: 20460) 

-MM-0 789.32 66.74 844.54 91.02 8.56 0.08 8.57 0.16 

-WA-0 398.72 6.31 407.18 73.62 9.54 0.03 9.54 0.14 

-MM-1 31.49 4.29 43.03 19.13 4.25 0.06 4.28 0.19 

-WA-1 30.45 4.14 39.05 19.67 4.11 0.03 4.15 0.14 

Table 6-1: Average MSE and standard deviation over cross-validation for each dataset and for each 

variant. 

It can be observed that the adoption of a first-order polynomial model in the leaves leads to better results 

than the constant models. Furthermore, the adoption of a maximum matching approach does not 

particularly degrade the accuracy of FRTs compared to the weighted average strategy. The proposed 

FRT variant with first-order polynomial model in the leaves and maximum matching as inference 

strategy (indicated as FRT-MM-1 in Table 6-1) represents an effective solution for applications in 

which high accuracy and high explainability are required.  

An example of rule, extracted from an FRT induced on California benchmark dataset, is reported in the 

following: IF MedianIncome is Low AND Latitude is Low AND Longitude is Medium THEN :  

MedianHouseV alue = 0.89–− 1.10 · Longitude–− 1.03 · Latitude + 0.10 · HousingMedianAge–− 1.56 

· TotalRooms + 2.08 · TotalBedrooms–− 2.33 · Population + 0.41 · Households + 1.27 ·MedianIncome. 

Notably, we can characterize the impact of each attribute on the output value produced by the local 

linear model. 

As for FRTs with first-order polynomial models, in a TSK model the antecedent of a rule identifies a 

specific region of the attribute space, whereas the corresponding consequent evaluates the output within 

such a region as a linear combination of the input variables. The rule base, however, is generated in a 

different manner: first the number of rules and the conditional part of the rules are determined; this is 

typically done either with grid-partitioning of the input space or exploiting fuzzy clustering methods. 

Then, local linear models are fitted on data by pseudo-inversion or by a least square method. 

Our approach to enforce interpretability in TSK-FRBSs [CDE+22] differs from state of art approach 

for building TSK-FRBSs [FSN+20] in two aspects:  

- inference process is based on maximum matching, instead of weighted average, 

- rule antecedent parameters based on a priori grid partitioning, instead of exploiting a data-

driven methodology based on clustering over the input-output product space. 

The impact of these design choices is evaluated on several benchmark datasets, by comparing the state 

of art approach [FSN+20] with the proposed model in case of MM (TSK-MM) and WA (TSK-WA). 

Table 6-2 summarizes the results. 
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 TSK-MM TSK-WA TSK [FSN+20] 

 Train Test Train Test Train Test 

WI 1.28 1.38 1.28 1.37 1.48 1.52 

TR 24.06 40.30 24.42 39.18 32.07 62.93 

MO 3.99 6.36 4.29 6.14 4.49 8.22 

CA 4.78 4.81 4.82 4.85 4.62 4.64 

Table 6-2 Comparison of our approach (TSK-MM = maximum matching, TSK-WA = Weighted Average) 

and a state of art approach [FSN+20] for building TSK-FRBSs, in terms of MSE. 

Results suggest that the performance of the proposed approach is comparable to, or even better than, 

the one obtained in [FSN+20]. Furthermore, as observed in the context of FRTs, the inference process 

based on WA only slightly outperforms the one based on MM, but at the cost of a lower semantic 

interpretability. 

The analysis of the trade-off between accuracy and interpretability of the XAI models (FRT and TSK) 

supports the Fed-XAI technical enabler (See Section 5.3.2), which, in turn, can be regarded as an enabler 

for several families of use cases envisioned for 6G. Notably, inferencing accuracy represents the most 

relevant KPI, which must be pursued together with the KVI of explainability, deemed as a crucial 

requirement for trustworthiness. Model complexity can be considered as a proxy for the interpretability 

level. 

6.3.2 Fed-XAI: Federated Learning of Explainable AI models 

An approach for Federated Learning of TSK-FRBSs is proposed [CDE+22]. It involves multiple parties 

that collaboratively learn a model under the orchestration of a central server and without exposing their 

private data to others. It encompasses the following steps (an overview is reported in Figure 6-14): 

- Communication step A: configuration of the learning process; 

- Step 1: local learning of TSK-FRBSs. Each client trains a model based on its local data; 

- Communication step B: transmission of local models to the central server; 

- Step 2: federated learning of the global TSK-FRBS: aggregation of the models; 

- Communication step C: transmission of the aggregated model to the clients; 

The aggregation step is detailed in the following: first, the server generates a rough global model (i.e., 

a global rule base), as the juxtaposition of the rules collected from the clients. Since this global rule 

base aggregates knowledge from different sources, the rule base must be refined by resolving conflicting 

rules, namely rules with the same antecedent but different consequents. 

Let CR be the set of conflicting rules for a specific antecedent. Moreover, each rule as an associated 

rule weight, computed as the harmonic mean of the rule support (i.e., how much a rule is activated), 

and rule confidence (i.e., average quality of the prediction of the rule) as measured on the training set. 

A single rule is obtained from CR as follows:  

- the new antecedent is the same of the rules in CR; 

- the coefficients of the new consequent are estimated as the weighted average of the coefficients 

of the consequents in CR, each weighted by the respective rule weight; 

- the rule weight associated with the rule is computed as the average of the rule weights in CR. 
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-  

Figure 6-14. Overview of the proposed approach. Squared markers (A, B, C) denote communication 

steps. Circle markers denote local learning (1) and model aggregation (2) steps. Figure from [CDE+22] 

The proposed approach for federated learning of TSK-FRBSs is experimentally evaluated on 

benchmark datasets by considering data scattered over 5 clients and is based on the comparison between 

three scenarios (schematized in Figure 6-15): The federated one is compared with the centralized and 

the local setting. In the centralized setting each participant shares its training data with the central server 

for building an FRBS based on the overall training set. In the local setting each client learns and tests 

the local model locally, thus ruling out any form of collaboration.  

 

Figure 6-15. Three learning scenarios: (left) Centralized. (center) Local. (right) Federated. 

Table 6-3 reports the experimental results. 

Results suggest that federated scenario always outperforms, on average, the local one. This is 

particularly relevant as it demonstrates the benefit of the FL process for participating clients. On the 

other hand, the centralized scenario achieves comparable or better performance than the federated one, 

but it is typically not viable due to privacy issues and/or communication constraints. 
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 Local Federated Centralized Local Federated Centralized 

Client 

ID 
Train Test Train Test Train Test Train Test Train Test Train Test 

Weather Izimir Mortgage (× 𝟏𝟎−𝟑) 

1 1.33 2.02 1.44 1.57 1.40 1.54 2.29 78.08 9.70 15.96 5.20 7.55 

2 1.09 1.62 1.25 1.41 1.22 1.34 1.44 15.08 9.14 7.35 3.47 5.22 

3 0.96 1.40 1.25 1.32 1.22 1.29 1.22 38.18 14.61 9.52 3.31 5.22 

4 1.07 7.10 1.23 1.30 1.20 1.28 1.54 53.84 9.38 35.90 4.24 8.83 

5 1.19 1.64 1.41 1.51 1.38 1.46 1.09 43.36 14.78 5.14 3.74 4.98 

Avg. 1.13 2.76 1.32 1.42 1.28 1.38 1.52 45.71 11.52 14.77 3.99 6.36 

Treasury (× 𝟏𝟎−𝟑) California (× 𝟏𝟎𝟗) 

1 7.11 377.40 82.20 112.72 21.97 46.13 4.73 4.87 4.75 4.86 4.77 4.78 

2 19.28 192.70 53.64 79.41 37.69 51.355 4.62 4.73 4.57 4.58 4.60 4.62 

3 7.72 337.25 429.38 174.18 26.86 41.97 4.71 4.89 4.71 4.74 4.72 4.75 

4 9.31 110.47 72.86 378.61 20.51 41.69 4.77 5.10 5.23 5.34 5.18 5.24 

5 10.37 133.83 57.04 40.85 13.24 20.37 4.70 4.82 4.63 4.64 4.65 4.68 

Avg. 10.76 230.33 139.02 157.15 24.06 40.30 4.71 4.88 4.78 4.83 4.78 4.81 

Table 6-3: Experimental results: for each dataset and scenario, the average MSE over cross-validation is 

reported for each client, along with the overall average values. 

As for 6G KPIs and KVIs, the proposed solution targets inferencing accuracy and explainability, 

respectively, and it can be considered as an enabler for several use cases families. As an example, it has 

recently been proposed as an enabling technology in 6G systems for an automated vehicle networking 

use case [RDM+22]. 

7 Demonstration activities–- Federated eXplainable AI 

(FED-XAI) demo 

The Fed-XAI Demo#2 activity is carried out jointly in Work Packages 4 and 5. The main modules of a 

UE application with Fed-XAI capability and its functional requirements have been described in [HEX-

D42]. The considered automotive scenario and the simulation testbed have been described in [HEX-

D51] and [HEX-D52]: several instances of vehicular User Equipment (UE), connected to a B5G/6G 

network, receive (or send) a video stream, whose perceived quality is crucial for the availability of 

advanced driving assistance systems, such as see-through (or tele-operated driving). The Fed-XAI 

model aims at forecasting the perceived video quality based on the available contextual, QoS and QoE 

metrics; furthermore, the Fed-XAI model is learned in a collaborative fashion and is highly interpretable 

by design. In this section we first describe the implementation details of the proposed framework and 

then discuss the results obtained on the above-mentioned simulated scenario. 

The experimentation described in this deliverable concerns a scenario compatible with a see-through 

service. The investigation of a scenario compatible with tele-operated driving, in which the mobile 

network simulation is dimensioned according to data gathered from a live RAN, is currently under 

development.  
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7.1 Fed-XAI framework: implementation details 

The Fed-XAI framework allows multiple users to collaboratively train an XAI model, under the 

orchestration of a server in a centralized communication topology, and then to perform inference over 

local data. The system also provides a dashboard to enable users, upon authentication, to visualize the 

model prediction and uncover the reason behind the model decision. The framework is compliant with 

an edge computing environment and exploits a fully virtualized architecture: each module is deployed 

inside a docker container, to allow portability of each module regardless the underlying hardware and 

software infrastructure. Communication among the different modules is implemented through messages 

exchanged via RESTful APIs over Secure HTTP protocol (HTTPS) as a security mechanism. 

The actual FL process exploits the Intel OpenFL library [FSE+2022], which has been extended to 

support FL of inherently interpretable models, such as FRT and TSK FRBS (as discussed in Section 

5.3.2). A Repository module, which manages the storing of users’ information and trained global 

models, has been implemented as an instance of MongoDB in a docker container. 

 

 

 

Figure 7-1: Overall workflow of the framework. 

Figure 7-1: schematizes the overall workflow of the framework. In a nutshell, once a user applies for a 

framework service, such as QoS/QoE prediction, an instance of Fed-XAI LocalManager (LM) is created 

and possibly becomes available to participate in the federation. When enough users are available to 

participate to the FL process, the Fed-XAI Controller initializes the federation, instantiates the Fed-XAI 

Computation Engine (CE), generates the OpenFL workspace and shares it with the Fed-XAI LMs 

participating to FL. Each Fed-XAI LM instantiates a Fed-XAI Learner component, which takes part to 

the OpenFL learning process as client-side collaborator. The final federated model, aggregated by the 

FED-XAI CE using the strategy discussed in [CDE+22], is sent to the Fed-XAI Controller to be stored 

persistently. Once the FL process terminates, all the OpenFL containers can terminate their execution. 

A client aiming at making predictions requests a trained model to the FED-XAI controller through its 

FED-XAI local manager. Then, a container for making inference with the requested model is 

instantiated. The inference container receives the stream of data from the UE and from the network and 

leverages the trained model for making predictions.  
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Figure 7-2 shows the dashboard window during the inference phase, w.r.t. a QoE forecasting case study 

(further details provided in Section 7.2). The high interpretability of FRBS can be appreciated:  the 

“Prediction” tab shows to the user the value of the prediction (in the example we show the predicted 

video quality as a percentage) for a pre-fixed horizon window, given a tuple of input statistics calculated 

on QoS metrics. Due to the maximum matching strategy, the prediction depends on a single rule (the 

most activated by the input statistics): the “Antecedents” tab shows the linguistic value (“low”, 

“medium” or “high”) of each feature in the antecedent part of the rule. For instance, 

end2endDelay_mean_W represents the average value of the end-to-end-delay metric over the past time 

window of size W. The “Consequent” tab shows the weights, namely the importance level, of each 

feature for current prediction, whereas the “History” tab tracks the most recent prediction values. 

 

Figure 7-2: Snapshot of the Fed-XAI dashboard during inference. 

 

7.2 Quality of Experience forecasting case study 

A realistic dataset for Quality of Experience (QoE) forecasting has been generated through Simu5G, an 

open-source model library for the OMNeT++ framework. The dataset entails seven gNBs and 15 UEs, 

each moving around in the floorplan and experiencing a video stream. 24 independent replicas of a 120-

second simulation are produced, leading to the generation of time-tagged for each UE. The collected 

metrics are reported in Table 7-1. 
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Name Level Description 

UE position Application (x, y, z) coordinates of the UE in the floorplan 

UE speed Application Speed of the UE in $\frac{m}{s}$ 

avgServedBlocksDl Network Number of Resource Blocks occupied in downlink 

averageCqiDl Network CQI values reported in DL 

rcvdSinrDl Network SINR value measured at packet reception 

servingCell Network ID of the new serving cell after the handover 

frameSize Application Size of the displayed frame (Byte) 

rtpPacketSize Application Size of the RTP packet (Byte) 

end2EndDelay Application Time between transmission and reception of an RTP packet 

interArrivalTimeRtp Application Interarrival time between two RTP packets 

rtpLoss Application RTP packets of frame lost 

framesDisplayed Application Frame percentage arrived at the time of its display 

playoutBufferLength Application Frame buffer size 

firstFrameElapsedTime Application 
3 values: 1) timestamp of the UE request, 2) timestamp of the sender ACK, 3) 

time between the request and the first frame displayed 

Table 7-1: Description of the metrics included in the dataset. 

The QoE forecasting problem is formulated as a regression problem, specifically aimed at predicting 

the value of the framesDisplayed metric. Details about dataset generation, feature extraction and 

preprocessing steps are available in [CDM+22]. 

The approach for FL of TSK-FRBS (described in Section 5.3.2) is exploited to build the Fed-XAI 

model. Each UE involved in the simulation acts as a registered client in our FL framework, available 

for participating to the FL process. To assess the performance of the proposed approach, the FL setting 

is compared to two alternative learning settings: 

• Local Learning (LL): each UE locally learns its own TSK-FRBS. This setting is privacy 

preserving, but it rules out any form of collaboration among Ues. 

• Centralized Learning (CL): the local training sets are merged in a global training set, which is 

used to train a global TSK-FRBS. This setting violates the privacy of data owners (as local data 

are gathered to a central location), but represents the utmost form of collaboration, albeit often 

unviable. 

We train our models on a training set composed of 20 out of the 24 replicas of the simulated scenario. 

The remaining replicas are used as test set (each UE uses a model for making prediction on its own test 

set portion). The quality of prediction is evaluated in terms of MSE and coefficient of determination 

(𝑅2). 

Figure 7-3 (a) shows the empirical cumulative distribution function (ECDF) of the difference between 

the MSE score of FL setting and the MSE score of LL setting, and between the MSE score of FL setting 

and the MSE score of CL setting for each of the 60 video sessions, i.e., 4 test replicas for each of the 15 

Ues). The plot can be interpreted as follows: a curve lies in the negative half-plane if and only if the 

MSE values of the FL model are lower than those of the model with which it is compared. Figure 7-3 

(b) reports analogous evaluation on the 𝑅2 score: in this case a curve lies in the positive half-plane if 

and only if the 𝑅2 values of the FL model are higher than those of the model with which it is compared. 

It can thus be noticed that in  the 80% of the cases the FL setting obtains better performance compared 

to the relevant local model, thus demonstrating the benefit of the federation. 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 116 / 138 

 

 

Figure 7-3: Empirical cumulative distribution function (ECDF) of the differences of MSE scores (a) and 

𝐑𝟐 scores (b) between FL and LL  (dark blue circles) and between FL and CL (light blue diamonds). 

Table 7-2 shows the average values of MSE and 𝑅2 obtained with the three learning settings on the test 

set. Results confirm that the federated TSK model outperforms the locally learned models, on average. 

Furthermore, under the optimistic assumption that privacy preservation is not a concern, the ability to 

train the model on the whole training set leads to the best average results.  

The interpretable by design TSK model is compared with an opaque model (MLP with 2 hidden layers 

with 64 neurons each). For the FL setting, we set the number of rounds to 10, the number of local epochs 

to 5 and the local batch size to 64. 

 

 

  FL LL CL 

TSK 
MSE 0.066 0.094 0.057 

𝑹𝟐 0.559 0.376 0.617 

NN 
MSE 0.059 0.061 0.056 

𝑹𝟐 0.606 0.590 0.611 

 Table 7-2: Average values of MSE scores and 𝐑𝟐 scores on the test set obtained with the three learning 

settings by the TSK and NN models. 

In the centralized setting, the performance obtained by the TSK and by the NN models are comparable: 

this suggests that, upon large data availability, both XAI and black-box models are suitable for tackling 

the task. In our specific scenario, the NN achieves higher modelling capability in the local learning (LL) 

setting and slightly higher also in the FL setting, as evidenced by the MSE values (the lower the better) 

and 𝑅2 values (the higher the better) reported in Table 7-2. However, the gain in inference accuracy is 

limited (𝑅2 from 0.559 to 0.606), i.e., within 10%, and is counterbalanced by a gain in terms of 

interpretability. 

8 Hexa-X quantified targets in Connecting intelligence 

towards 6G 

8.1 AI for BER/BLER improvements (T1) 

Target T1 is defined as the increased AI algorithm robustness to system parameter volatility, lower 

complexity and significant BER/BLER gain, as compared to classical approaches. The goal is to design 

and implement AI/ML-based solutions which provide BER/BLER gains for the identified use cases, 



Hexa-X                                                                                                                            Deliverable D4.3 

 

Dissemination level: public Page 117 / 138 

 

and KPIs are thus BER/BLER gain, NMSE in channel estimation error, complexity gain, and flexibility. 

The proposed technical enablers under the AI driven air interface design mainly cater for the 

“Interacting and cooperative mobile robots”, “Merged reality game/work” use cases, and the “AI-

assisted Vehicle-to-Everything” service. Interacting and cooperative mobile robots use case would 

utilise novel system architectures such as D-MIMO, cell-free massive MIMO and RIS-assisted 

communications which could be used to manage a cluster of drones over a 6G network for improved 

end-to-end performance. The technical enablers ML-based end-to-end learning of RIS-assisted 

communication systems and ML-based channel estimation for RIS-assisted systems with mobility in 

Section 3.1.1 and Section 4.2 specifically target improving the BER and the NMSE in channel 

estimation in RIS-assisted systems, respectively. 

Furthermore, the NN/ML aided channel (de)coding for constrained devices proposed in Section 3.1.2 

provides improved end-to-end BER/BLER and complexity gain. The low complexity channel 

estimation using neural networks presented in Section 4.3 provides improved BER by reducing the 

NMSE in channel estimation error. Finally, the AI-empowered receiver for PA non-linearity 

compensation solution and the end-to-end learning solution presented in AI-based enhancements for 

sub-THz are applicable for all the relevant use cases in general which have shown to provide 

BER/BLER improvements.  

In Table 8-1 the technical enablers under the AI driven air interface design relevant to Target T1 are 

listed, along with the targeted 6G KPIs/ KVIs for each technical enabler. 
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Technical Enablers Quantifiable Targets Targeted 6G KPIs/KVIs 

ML-based end-to-end learning 

of RIS-assisted communication 

systems 

(Section 3.1.1) 

Improved end-to-end 

BER/BLER  

BPSK: BER < 0.001, QPSK: 

BER<0.01 for 16-element RIS and 

SNR > 15dB (for the full-CSI case) 

NN/ML aided channel 

(de)coding for constrained 

devices  

(Section 3.1.2) 

Improved end-to-end 

BER/BLER 

BLER ~ CCSDS /w n=128 

(3iterations/) 

AI-empowered receiver for PA 

non-linearity compensation 

(Section 3.1.4) 

Improved BER/BLER BLER gain: ~1 dB gain @ 10% 

BLER 

AI-based enhancements for 

sub-THz  

(Section 3.1.5) 

Improved BLER BLER gain: 1-2 dB 

Channel charting based 

beamforming  

(Section 3.1.6) 

Normalized correlation 

between the precoder and the 

target channel 

n.a. 

ML-based channel estimation 

for RIS-assisted systems  

with mobility 

(Section 4.2) 

Channel estimation error 

(providing improved channel 

estimation error over 

baseline algorithms, while 

reducing the resource 

overhead) 

NMSE, Spectral efficiency 

5-10 dB reduction in NMSE 

Generalizable low complexity 

channel estimation using neural 

networks 

(Section 4.3)  

Channel estimation error 

reduction, improves the 

throughput by reducing the 

BER 

NMSE 

Within 3 dB range of MMSE 

ChanEst performance (the optimal 

solution) in terms of NMSE 

Table 8-1: Summary of technical enablers relevant to Target T1 along with targeted 6G KPIs/KVIs. 

8.2 AI for efficient resource utilisation (T2) 

Target T2 is defined as the increased AI algorithm robustness to system parameter volatility, lower 

complexity and efficient resource utilisation and rate gain as compared to classical approaches. The 

goal is to design and implement AI/ML-based solutions which provide efficient resource utilisation and 

throughput improvement for the identified use cases and services. The proposed technical enablers 

under the AI driven air interface design mainly cater for the “Interacting and cooperative mobile 

robots”, “Merged reality game/work” use cases and the “AI-assisted Vehicle-to-Everything” service. 

Relevant KPIs applicable for these use case under T2 are throughput, complexity gain (reducing the 

processing time/number of operations in the relevant problem scenario where other problem-specific 

metrics are achieved), and efficient resource utilisation as applicable for the relevant problem scenario. 
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Considering the interacting and cooperative mobile robots where novel system architectures such as D-

MIMO and cell-free massive MIMO could be used, the AI based compressed sensing for beam selection 

in D-MIMO solution in Section 3.1.3 enables rate gain via mobility support and efficient resource 

utilisation via faster beam scanning time and higher beam selection frequency. Furthermore, the low 

complexity radio resource allocation in cell-free massive MIMO in Section 4.1 achieves complexity 

gain via utilising a ML algorithm for RRM. Finally, the AI-empowered receiver for PA non-linearity 

compensation solution and the end-to-end learning solution presented in AI-based enhancements for 

sub-THz are applicable for all the relevant use cases in general which can provide throughput gains and 

resource utilisation as shown in Section 3.1.4 and Section 3.1.5 respectively. 

In Table 8-2 the technical enablers under the AI driven air interface design relevant to Target T2 are 

listed, along with the targeted 6G KPIs/ KVIs for each technical enabler. 

 

Technical Enablers Quantifiable Targets Targeted 6G KPIs/KVIs 

NN/ML aided channel 

(de)coding for constrained 

devices  

(Section 3.1.2) 

Complexity gain n.a. 

AI based compressed sensing 

for beam selection in D-MIMO 

(Section 3.1.3)  

Efficient resource utilisation, 

rate gain via mobility 

support (faster beam 

scanning time, higher beam 

scanning frequency) 

Beam scanning time reduced to 

5-20% of the baseline exhaustive 

scan (in a deployment with 100-1000 

beams) 

AI-empowered receiver for PA 

non-linearity compensation 

(Section 3.1.4) 

Improved throughput and 

resource utilisation 

Throughput gain: ~20% 

AI-based enhancements for 

sub-THz  

(Section 3.1.5) 

Improved throughput and 

resource utilisation 

Throughput gain: 10-20% 

Low complexity radio resource 

allocation in cell-free massive 

MIMO 

(Section 4.1)  

Complexity gain Complexity gain: more than x50 

times reduced computational 

complexity and above 95% SE 

performance compared to the 

baseline optimization-based 

algorithm,  

Flexibility and generalisability: at 

least 90% SE performance compared 

to baseline when using the same 

trained-DNN model for different 

system configurations. 

Table 8-2: Summary of technical enablers relevant to Target T2 along with targeted 6G KPIs/KVIs. 
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8.3 Resilient communication and compute for large scale 

distributed AI (T3) 

The target is defined as “Resilient communication and compute network services for distributed AI 

applications in large scales (e.g., applications with >1000 collaborating AI components)”. There are 

several targeted use case families where the application systems are highly distributed on different 

devices and network components. For example, the “Interacting and cooperative mobile robots” use 

case requires real-time intelligent decisions based on distributed and resource efficient data and model 

sharing. Similarly, in applications of “Hyperconnected resilient network infrastructures” a huge amount 

of data will be distributed on thousands or millions of devices, all of which is not feasible to be shared 

due to communication, capacity, privacy, complexity, and other reasons. These AI-enabled components 

will jointly realize a heterogenous AI compute and data sharing landscape where stored data, real-time 

sensor input, processing and control capabilities are distributed. 

Use cases realizing real-time and critical functionalities in such distributed environment would pose 

stringent requirements on the communication network in terms of packet latency, loss rates, and 

bandwidth stability, along with a high signalling overhead to manage it over wireless in a transparent 

manner. However, the key performance indicators relevant for the AI-enabled applications can also be 

realized by joint design of application-level control, network services (e.g., AIaaS), and supporting 

communication functions, which leads to more relaxed network requirements but still ensuring resilient 

application behaviour. The KPIs considered relevant for highly distributed resilient AI applications are: 

• AI agent density 

• AI inference accuracy 

• AI inference latency 

• AI agent availability and reliability 

This quantified target T3 and its related KPIs are addressed by several technical enablers. Scalable and 

resilient deployment of distributed AI proposed joint compute and communication system with 

advantages over the traditional approaches. By relying on incremental inferencing frameworks, it is 

possible to do both early phase ultra-low latency inference, as well as higher accuracy at the cost of 

higher delay. In a distributed sensor sharing application, where multiple inputs provide overlapping 

information for the inference task, over-the-air communication can be significantly reduced with the 

help of application control interacting with network layers on a fast and high data granularity level. In 

some cases, it can require per packet control on millisecond timescale. The benefits, however, are 

reduced traffic and connection load by 80% in the investigated scenario. The device density 

requirements for the targeted demanding 6G use cases are up to 5-10 devices/m2, which is 5-10 times 

higher than 5G requirements. The method for resilient deployment of distributed AI with joint fine-

grained control from the application layer and millisecond level traffic control by the networking layers 

has a significant contribution to reach these numbers in a distributed sensing and communication 

scenario with ~1000 collaborating AI components, as targeted in T3. 

The concept of AIaaS is primarily targeting AI agent availability and reliability in high-mobility 

environments involving safety-critical communications. The proposed solution is expected to enhance 

system robustness to mobility events, including (i) increased availability by improved mobility 

solutions, (ii) an increased reliability by accounting for low-quality connections, (iii) mitigating latency 

due to radio handovers, association to different AI agents in mobility events. AI models can rely on a 

substantial information pool, possibly the entire knowledge of the network, which can be exploited 

through providing AI models to the UE without exposing the actual underlying information. 

The high volume of data sharing requirement in large scale distributed AI applications is addressed by 

the CTDE framework, which enables centralized learning with decentralized execution and provides a 

practical and realistic approach for real-world cellular environments that require varying levels of 

observability and time constraints. In the investigated use case of multi-cell multi-user MIMO problem, 

the framework provides means for scalability to accommodate the increasing number of users and cells, 
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enables high AI agent density by reducing the volume of shared data by using partial observability 

during inference, while ensuring real-time fulfilment of beamforming schemes. 

Large scale deployment of AI workloads on multiple physical nodes can have a significant impact on 

E2E latency, which eventually results in increased AI training or inferencing latency. The provided 

algorithm for AI workload placement reduced E2E latency by up to 98% compared to the baseline in 

the investigated scenario. 
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Technical enablers KPIs addressed Results 

Scalable and resilient 

deployment of distributed AI 

(Section 5.2.1) 

Inferencing 

latency 

Inferencing 

accuracy 

Device density 

Improvements in sensor sharing inference 

applications with 100-1000 collaborating AI 

components simulated: 

▪ inference latency reduced by 2-5x for early 

lower accuracy results 

▪ incremental inference enabled with gradual 

tradeoff in accuracy 

▪ device density increased by 5x due to 

reduction of traffic load and active 

connections 

AI workload placement for 

energy, knowledge sharing 

and trust optimization 

(Section 5.1.3) 

E2E latency ▪ Up to 23% reduction of power consumption 

compared to baseline (random feasible 

placement) 

▪ Up to 98% reduction of E2E latency 

depending on number of AI workloads, 

compared to baseline (random feasible 

placement)  

Distributed AI for automated 

UPF scaling in low-latency 

network slices 

(Section 3.2.1) 

Inferencing 

latency 

Training latency 

Inferencing 

accuracy 

▪ Inferencing latency – less than the half the 

timestep of the input data (< 30 seconds);  

▪ Training latency – time from AI M&O 

request of training to the instantiation of the 

ML training pipeline < 1 minute;  

▪ Inferencing accuracy – LSTM 89% 

accuracy on training data, 83% accuracy on 

runtime data 

Centralized training and 

decentralized execution 

(CTDE) approach to multi-

cell multi-user MIMO 

(Section 5.3.1) 

Inferencing 

latency 

Inferencing 

accuracy 

AI agent density 

▪ Inference latency reduced as model only 

considers local information.  

▪ Signalling reduced as model only considers 

local information, contributing to increased 

AI agent density. 

▪ Inference accuracy improved compared to a 

model that is trained only on local 

information. 

Goal-oriented approach for 

edge inference (ensemble 

edge inference to increase 

computing reliability) 

(Section 5.2.3) 

Goal-

effectiveness 

(Inference latency 

+ inference 

accuracy) 

Energy 

consumption 

Energy consumption reduction at UE side thanks 

to goal-oriented approach in edge inference 

offloading (simulation-based assessment) 

▪ In simulated network conditions, 12% 

energy reduction with no loss is goal-

effectiveness (defined as correct inference 

on time) 

▪ Higher gains obtained by trading off goal-

effectiveness, due to inference accuracy 

reduction 

Table 8-3: Technical enablers and KPIs addressing target T3 Resilient communication and compute 

network services for distributed AI applications in large scales. 
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8.4 XAI model accuracy (T4)  

The design of AI systems, which will play pivotal role in future B5G/6G networks, cannot be simply 

targeted to optimize accuracy and technical robustness but must also comply with additional 

requirements towards trustworthy AI, such as transparency of AI models, regardless of the specific use 

case. In this regard, the Connecting Intelligence objective entails a specific quantifiable target, discussed 

in D4.2, Sec. 7, seeking “the accuracy of an XAI model within (<10%) of “black box” solutions”. 

The KPI to be addressed is indeed inference accuracy, to be pursued together with a high level of 

interpretability of ML models. The following table summarizes the technical enablers contributing to 

this target. 

  

Technical Enablers KPIs Results 

XAI models: Fuzzy 

regression trees and TSK 

Fuzzy Rule Based 

Systems 

(Section 6.3.1) 

Inference accuracy 

and explainability 

Trade-off between model interpretability and 

inference accuracy on benchmark datasets: 

 - inference accuracy (measured as MSE on 

regression task) comparable (or within 10%) to less 

interpretable models and state-of-art solution; In the 

case of TSK, the gain of XAI model vs less 

interpretable state-of-art solution is in the range [-

4%, +37%] based on results shown in Table 6-2 

Comparison of our approach (TSK-MM = 

maximum matching, TSK-WA = Weighted 

Average) and a state of art approach [FSN+20] for 

building TSK-FRBSs, in terms of MSE. 

- Higher inference accuracy obtained with first-

order polynomial models compared to lower 

complexity zero-order ones. 

Fed-XAI: Federated 

Learning of Explainable 

AI models 

(Section 6.3.2) 

Inference accuracy Inference accuracy of XAI models learned in 

federated fashion higher than those locally learned 

 - evaluation on benchmark dataset in terms of MSE 

with gain in the interval [1x,2x] 

Table 8-4: Technical enablers and KPIs addressing target T4 XAI model accuracy. 

In Section 6.3.1 the accuracy and interpretability of XAI models for regression tasks (Fuzzy 

Regression Trees and Takagi-Sugeno-Kang Fuzzy Rule-based Systems) have been investigated, with 

respect to design choices related to the inference strategy and the order of the polynomial regression 

model. The proposed TSK FRBS with enhanced interpretability is shown to be comparable to (or 

even better than) a less interpretable state of art TSK-FRBS, based on an empirical comparison on 

several benchmark datasets. The results confirm the outcome observed in the context of classification 

analysis, (D4.2, Section 5.2.1), for which inherently interpretable models (decision trees) are slightly 

outperformed (within 10%, in terms of f-score) by a Random Forest classifier which, as an ensemble 

model, is generally considered opaque.  

The target is also discussed in the context of the Fed-XAI demonstration activity. The Fed-XAI 

technical enabler (Section 6.3.2) is first evaluated on several benchmark datasets: the proposed 

approach for collaboratively training inherently interpretable models (TSK-FRBS) is shown to be 
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suitable, showing a significant improvement over local training. Furthermore, in the considered QoE 

forecasting problem (Chapter 7), a black-box model (Neural Network) achieves slightly higher 

modelling capability in the FL setting compared to the highly interpretable TSK-FRBS. 

 

8.5 Energy reduction at the infrastructure and user devices (T5) 

The energy consumption target is defined as follow: Energy reduction of a factor of (>10) at the 

infrastructure level and a factor of (>100) at the user devices’ side, as a result of (network & application) 

workload offloading and learning/inferencing task delegation:  

Various technical enablers presented in D4.2 and D4.3 address the problem of energy consumption at 

devices and infrastructure side (separately or jointly), including communication and computing. For 

these services, energy consumption is traded off with delay and/or accuracy of learning and inference 

workloads running at the edge. Contributions in D4.3, especially in Chapter 5 include several aspects 

of workload management and resource orchestration. The scalable and resilient deployment of 

distributed AI functions is proposed Section 5.2.1, addressing KPIs including inference latency and 

device density, but also decreased device communication energy by down-prioritizing sources with high 

communication cost and low utility for application KPI (goal-oriented concept) at a packet-level 

timescale. Also, going further in workload management, deep neural network splitting criteria and 

resource allocation to enable low energy edge inference with latency guarantees (Section 5.2.2). 

Furthermore, the goal-oriented communication paradigm is introduced (Section 5.2.3), to go beyond 

the legacy concept of reliably transmitting bits, to rather focus on the application performance, in this 

case the correct (or confident) inference on time, trading off energy consumption and other legacy 

communication related KPIs. Finally, workload placement for energy, knowledge sharing, and trust 

optimisation is proposed (Section 5.1.3) to reduce the power consumption, trading off delay, i.e., 

comparing the proposed method to a random feasible placement approach. End-to-end latency and 

power consumption are key performance indicators in this direction.  

Overall, simulation-based evaluations showed that latency can be reduced by 2-5 times for early lower 

accuracy results, energy reduction at devices side under high availability of computing resources, in the 

considered connect-compute network scenario and parameters (available edge resources, path loss, 

etc.).  Different gains (e.g., up to 90% at device side) are achieved, depending on such conditions, thanks 

to DNN optimal splitting point selection. Also at device level, further gains can be obtained through the 

goal-oriented approach, by relaxing communication performance while not sacrificing the application. 

At the network side, optimised workload placement has shown to reduce the power consumption by 

23% compared to baseline strategies. At MEC network side, thanks to the cooperative inference setting 

in Section 5.2.3, the statistical availability of each MEH can be reduced without degrading performance, 

provided that they cooperate to avoid single point of failure issues. This, in case of theoretical cubic 

models for CPU power consumption allows the MEC network to reduce the energy consumption. 

Depending on network conditions and performance requirements, in the simulated setting, 2x to 10x 

gains are obtained at the MEC network. All these solutions are foreseen to contribute to the targets on 

energy consumption at device and infrastructure side. 
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Technical enablers  KPIs addressed  Results  

Scalable and resilient 

deployment of 

distributed AI  

(Section 5.2.1) 

Inferencing latency  

Inferencing accuracy  

Device density  

Improvements in sensor sharing inference 

applications: 

▪ inference latency reduced by 2-5x for early 

lower accuracy results 

▪ incremental inference enabled with gradual 

tradeoff in accuracy 

▪ device density increased by 5x due to 

reduction of traffic load and active 

connections 

DNN splitting and 

resource allocation for 

edge inference 

(Section 5.2.2) 

Inference latency 

Energy consumption 

Energy consumption reduction at UE side thanks 

to partial offloading of inference workloads 

through DNN splitting (simulation based 

assessment of splitting point selection algorithm) 

▪ Inference latency as a requirement, i.e., not 

to exceed a predefined threshold 

▪ Depending on channel models (e.g., path loss 

exponent) up to 90% reduction in case of 

highly available edge computing resources. 

Gains reduced in case of volatile edge 

computing resources. Scenario in which full 

offloading is not feasible under simulated 

network conditions 

▪ Empirical model of computing power 

consumption but theoretical model for UE 

transmit power consumption 

Goal-oriented approach 

for edge inference 

(Section 5.2.3) 

Goal-effectiveness 

(Inference latency + 

inference accuracy) 

Energy consumption 

Energy consumption reduction at UE side thanks 

to goal-oriented approach in edge inference 

offloading (simulation-based performance 

assessment) 

▪ In simulated network conditions, 12% 

energy reduction with no loss is goal-

effectiveness (defined as correct inference on 

time) 

▪ Higher gains obtained by trading off goal-

effectiveness, due to inference accuracy 

reduction 

▪ At the MEC network side, 2x to 10x energy 

consumption reduction obtained in simulated 

network setting thanks to cooperative 

inference  

AI workload placement 

for energy, knowledge 

sharing and trust 

optimisation 

(Section 5.1.3) 

E2E latency 

power consumption 

▪ Up to 23% reduction of power consumption 

compared to baseline (random feasible 

placement) 

▪ Up to 98% reduction of E2E latency 

depending on number of AI workloads, 

compared to baseline (random feasible 

placement)  

Table 8-5: Technical enablers and KPIs addressing target T5 Energy reduction at the infrastructure and 

user devices. 
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8.6 Increased trustworthiness of AI (T6) 

The target T6 is defined as increased trustworthiness of AI through privacy and security enhancing 

technologies. The goal is to ensure that AI systems are developed in a way that minimizes potential 

privacy and security risks, while also maintaining the performance and functionality of the AI system. 

We proposed two technical enablers to enhance the privacy and security of the AI systems. To evaluate 

the effectiveness of the AI system, KVIs and KPIs are defined. In Federated Learning (FL), although  

each participant trains on its own data and only shares the model updates with other participants,  the 

local model updates can still disclose information about training data of clients. It is hard to measure 

how much the privacy of the FL system is improved when using privacy enhancing methods, however 

we can use the model accuracy and total overhead as KPIs and compare the values for these KPIs before 

and after applying privacy enhancing methods to the FL. In case of security, to evaluate the 

effectiveness of the adversarial attacks on AI system and applicability of mitigation technique, attack 

success rate, robustness of the AI model to withstand adversarial attacks (i.e., evaluating the 

effectiveness of defence technique), and efficiency (i.e., the computational cost of the defence 

technique) can be considered as KPIs.  

 

Technical enablers  KPIs addressed  Results  

Security friendly Privacy 

solution for federated 

learning 

(Section 6.2.1) 

 Model Accuracy 

Total overhead 

▪ Accuracy of model remains same (100%) 

▪ Up to 10.76% increase in total overhead 

in comparison with typical FL when 

communication speed is 504 Mb/sec.  

Defence mechanism to 

increase robustness of AI-

driven power allocation 

against adversarial attacks 

(Section 6.1.2) 

Attack success rate 

Robustness of AI 

model 

▪ Up to 37.29% reduction of Attack 

success rate 

▪ Up to 37.29% increase in robustness of 

the Al model against adversarial attacks 

Table 8-6: Technical enablers and KPIs addressing target T6 Increased trustworthiness of AI 

 

Conclusions  

AI-driven communication & computation co-design will constitute a major leap forward by 6G systems 

over previous generations. Instead of addressing AI and computation tasks on higher layers only, 

corresponding enablers will be deeply anchored in future 6G system and will rely on AI- and compute-

native design approaches.  

In the present deliverable, corresponding key enablers have been identified and studied – further adding 

details, substantive insight and evaluation results over the previous Hexa-X Deliverables [HEX-D41] 

and [HEX-D42]. Finally, all new approaches have been evaluated again Hexa-X Key Performance 

Indicators (KPIs) and Key Value Indicators (KVIs) as they have been defined on a project wide level.  

Sustainable 6G is one of the key objectives of the Hexa-X project and AI- as well as computation based 

solutions are clearly expected to provide support. A novel Low complexity radio resource allocation in 

cell-free massive MIMO is introduced; specifically, existing unsupervised learning concepts are 

extended for the pilot and data power control problem in uplink of a cell-free massive MIMO network. 

It is shown that the proposed power control improves the system sum rate. Furthermore, an ML-based 
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channel estimation for RIS-assisted systems with mobility is introduced relying on reconfigurable 

intelligent surfaces (RISs) to control the wireless propagation environment with software-controlled 

reflections. A novel ML based channel estimation is proposed and evaluated specifically tailored to RIS 

aided systems, while considering mobility. This study is complemented by a proposal on a 

Generalizable Low Complexity Channel Estimation using Neural Networks, which is inspired by the 

MMSE estimator for the linear problem of noisy pilot observations and introduces a Neural Network 

which resembles such an MMSE estimator. Under a proposed approximation, it is possible to treat the 

problem as three smaller problems and further even decompose the spatial domain as vertical and 

horizontal domain. This allows for smaller NNs that can be even trained separately, which roughly 

translates to smaller training sample complexity. A further approach relies on Deep unfolding for 

efficient channel estimation, extending a deep unfolding approach for channel estimation as explored 

in [HEX-D42] in the context of MIMO channels with a single subcarrier; it is demonstrated how to use 

the same technique for SISO-OFDM channels with multiple subcarriers. The result is a novel frugal 

channel estimation algorithm with reduced computational complexity when compared to generic deep 

learning- based approaches. Finally, a novel hybrid model for channel charting is considered. Channel 

charting is an unsupervised learning method which falls within the realm of machine learning in general, 

and dimensionality reduction in particular. It aims at projecting high-dimensional channel observations 

into a low-dimensional space, typically of 2 or 3 dimensions, in order to learn a channel chart. In fact, 

physical channel models indicate that channel observations are subject to the manifold hypothesis, 

meaning that although their original space is of high dimension, they are, in reality, governed by a small 

set of parameters. 

Security, privacy, and trust in AI-enabled 6G related solutions are essential building blocks of 

communications systems. In this context, Adversarial attacks and mitigation techniques in AI-driven 

power allocation are studied in detail. In a D-MIMO network context, we consider two sources of 

adversarial attack scenarios, the first related to malicious RUs or fronthaul links, the second related to 

malicious UE, considering the success of the adversary under both white-box and black-box setting. 

The results show that adversarial attacks are more effective than standard Gaussian noise. We introduce 

a proactive defence mechanism in which we look for an imaginary perturbation, that by maximizing the 

user spectral efficiency produces a better power allocation outcome. A further focus is on security 

mechanism friendly privacy solutions for federated learning. Although FL enhances the privacy of 

clients by enabling each client to train its own local data, there is still a possibility of information leakage 

when clients send local model updates to server to aggregate to a global model. In order to detect 

malicious forwardee clients who drop packets, we introduce and utilize a detector entity to the network 

which monitors packet exchanging procedure between a sender and a forwardee to find whether the 

process is fully accomplished or not. To further enhance inferencing accuracy and explainability, we 

consider Fed-XAI: Federated Learning of Explainable AI models as well as XAI models: Fuzzy 

regression trees and TSK fuzzy rule based systems. We exploit the fact that Rule Based Systems (RBSs) 

and Decision Trees (DTs) are generally considered more inherently interpretable than other popular 

“opaque” models (e.g., Neural Networks and Random Forest) and still able to achieve competitive 

performance, especially when data comes in tabular form. The trade-off between accuracy and 

interpretability of the XAI models are analysed.  

Building on sustainability and security objectives, we further study solutions to enable the future 6G 

network as an efficient AI platform. First, we consider a disruptive new communications paradigm 

in the context of Goal-oriented communication approach for edge inference. While the classical (data-

oriented) communication paradigm is to reliably transmit bits (i.e., it focuses on bit-quality oriented 

metrics), goal-oriented communications measure the actual performance of communication by its 

effectiveness at higher layers, e.g., by measuring the inference reliability (accuracy, confidence, etc.). 

Through numerical simulations, it is shown how the effectiveness can achieve good performance also 

in the presence of relaxed BER requirements, suggesting that high communication reliability is not 

necessarily needed, as far as inference performance reaches target levels. Furthermore, we acknowledge 

that future 6G networks will be designed such that AI capabilities are natively integrated. This leads to 

the principles of AI-as-a-Service (AIaaS) - seamless exploitation of network knowledge. Building on an 

initial solution proposal [HEX-D42] and a proposed protocol framework for AI-as-a-Service (AIaaS) 
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[HEX-D51], we provide further details and propose a set of data structures to support a proposed 

method, applicable to scenarios calling for frequent inferencing-based decisions. This approach is 

further complemented by a study on Network impairment resilience of autonomous agents. The 

objective is to increase resilience towards connection problems on the AI agent side, such as abnormal 

bearer session release (i.e., bearer session drop) in cellular telecommunication networks which seriously 

impact the QoS of mobile users. Specifically, we target the Massive twinning and Robots to Cobots 

Hexa-X Use cases, both in which real-time intelligent decisions have to be made based on distributed 

data available partly locally and partly from the network. The management of distributed learning data 

is furthermore addressed in the proposal of a Federated ML model load balancing at the edge, where 

large number of heterogeneous sensors are connected to FL nodes at the edge and the goal is to provide 

a low latency and high quality distributed ML service. We propose new approaches to load balancing 

to remedy potential hot spots and data type diversity to ensure quality balance for the federated learners. 

Load and diversity balance is necessary to make sure each node can equally contribute to the FL task 

dynamic load rebalancing by reconnecting sensors to nodes in the radio network. Similarly, our 

investigation on scalable and resilient deployment of distributed AI focuses on distributed sensing and 

communication scenarios where the applications benefit from tight integration of sensors and 

communications. Our solutions reduce both the overall inference latency and communication load by 

relying on an incremental evaluation framework. Incremental inference can be used in several AI 

models. Furthermore, we address Joint communication and computation orchestration for edge 

inference, acknowledging that learning and inferencing at the edge require to collect, pre-process (e.g., 

extract features), transmit, and process data (or features) remotely in a continuous fashion. The proposed 

solution aims at jointly optimising the splitting point selection and device transmit power, under time-

varying wireless channel conditions and Mobile Edge Host (MEH) availability. The goal is to minimize 

device energy consumption (including transmission and computation) under end-to-end service delay 

constraints of the edge inference service (both in average and probabilistic sense), which involves: i) 

local computation delay, ii) wireless uplink delay, and iii) remote computation delay. Further efficiency 

improvements are expected through Frugal Federated Learning. We propose a solution framework for 

customizing FL training to each contributing network entity's (e.g., device, edge cloud server) available 

compute, communication and energy resources. Also, we minimise bi-directional communication 

signalling during FL training. From those holistic and generic studies, we move to the specific case of 

centralized training and decentralized execution (CTDE) approach to multi-cell multi-user MIMO. To 

address the multi-cell multi-user MIMO precoding problem, we use a MA-DDPG algorithm to train 

decentralized actors and share critic in multi-cell multi-user MIMO systems under the assumptions of 

local CSI and no inter-cell data sharing. All of these approaches obviously require appropriate compute 

resources, likely made available through a distributed Compute-as-a-Service (CaaS) approach [HEX-

D52] for which we study the Flexible compute workload assignment, CaaS. Among the available code 

types Source Code, ConfigCode and Executable Code, we now consider the optimum code type 

selection for the Hexa-X Use Case Families and individual use cases thereof. The related choice is 

integrated into the Radio Application Package format for which corresponding extensions are being 

proposed. Finally, a study is conducted on AI workload placement for energy, knowledge sharing and 

trust optimization. We introduce a close to optimal placement of AI workloads to the various network's 

physical nodes by minimising the energy consumption of the overall network towards sustainability, 

minimising traffic, and maximising the trust level. The AI workloads are assumed to be mostly 

inferencing related. 

As a next step, Intelligent E2E Management and Orchestration are considered. One challenge 

addressed by the inclusion of AI in network management and orchestration is to avoid degradations in 

service caused by finite User Plane Function (UPF) resources while ensuring security, privacy and 

reducing data flow demands. This is being addressed through a study on distributed AI for automated 

UPF scaling in low-latency network slices. The agent is responsible for inferring traffic patterns 

associated with local UPFs and using this information to foresee opportunities for optimising resource 

allocations. Further improvements are achieved through AI/ML based predictive orchestration, which 

offers a wide range of approaches in order to ease the M&O-related operations within the network, 

being Predictive Orchestration is one of those approaches. This method aims at foreseeing future states 

of the network, using prediction/forecast AI/ML-techniques mainly based on time-series forecasting, to 
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be able to maximize the output of M&O operations in terms of flexibility, dynamicity, real-time, or 

resource placement, etc. among others. As a result, the forecasting algorithms have been split between 

the Management Functions block and the AI/ML Functions block at the Network Layer. 

Finally, we consider the lower layers of the 7-Layers OSI model proposing AI/ML solutions for RAN 

performance enhancements and sustainable 6G. We start with a study on ML-based end to end 

learning of RIS-assisted communication systems. The numerical results show the potential of a CNN-

autoencoder (CNN-AE) system for an RIS-assisted communication system which is capable of learning 

transmit signals and the optimal reflection coefficients for the RIS in an end-to-end manner to minimize 

the BER. Also, with the objective to further decrease channel decoding complexity, we study NN/ML 

aided channel (de)coding for constrained devices and investigate the use of Linear Block Codes (LBC) 

for short block lengths, typically in the range of few tens up to hundreds of bits, using Belief Propagation 

(BP) decoders, as used for LDPC codes. The goal is to provide a unified decoder architecture that would 

encompass both extrema in block regimes, and therefore suit both data and control planes requirements. 

This activity is complemented by a study on AI based compressed sensing for beam selection in D-

MIMO, which present reduced overhead with certain random dictionaries, local environment statistics 

can also be utilized to further optimize the dictionary. The distribution of beam patterns received by 

UEs is not uniform and statistics on typical joint beam patterns can be exploited. Initial investigations 

indicated that the number of required measurements can indeed be further reduced if we apply AI/ML 

techniques to learn the dictionary for a given deployment [HEX-D42]. This dictionary training is 

performed with the help of an autoencoder architecture, where input is a representative set of beam 

channel vectors sampled from potential UE locations. To further improve transmitter efficiency, a study 

is being conducted on an AI empowered receiver for PA non-linearity approach to compensate the 

impact of PA non-linearity at the receiver side using a neural network-based demapper in operating 

regimes in which out of band emission requirements are fulfilled. The simulation results confirm that 

the proposed method can increase throughput (20% improvement) and/or extend the coverage of a 

communication link in the presence of PA non-linearity, and to enable enhancing energy efficiency 

(70% improvement of PA power-added efficiency) at the transmitter side. Another key trend for 6G 

systems lies in the usage of higher frequencies which is addressed in a study on AI-Based Enhancements 

for Sub-THz. Our results indicate that joint learning of sub-THz transmitter and receiver processing can 

lead to higher spectral efficiency and high resilience against hardware impairments. This extends our 

original findings reported in [HEX-D42], where similar results were obtained for a sub-6-GHz center 

frequency. In the transmitter, the constellation shape is being learned to facilitate pilotless detection, 

which greatly reduces transmission overhead. The BLER gain is approximately 2 dB, while the 

throughput improvement is in the order of 20-30%. New approaches to beamforming are addressed in 

the context of Channel charting based beamforming. Channel charting (CC) is the task of locating users 

relative to each other in an unsupervised way and can be viewed as a way to discover a low-dimensional 

latent space charting the channel manifold. The results indicate that, although lacking positional 

information about the UEs, the presented approach is capable of producing precoders of good quality. 

In addition to the studies summarized above, a demonstration setup has been created including several 

instances of vehicular User Equipment (UE), connected to a B5G/6G network, receive (or send) a video 

stream, whose perceived quality is crucial for the availability of advanced driving assistance systems, 

such as see-through (or tele-operated driving). A Fed-XAI model is used to forecast the perceived video 

quality based on the available contextual, QoS and QoE metrics; furthermore, the Fed-XAI model is 

learned in a collaborative fashion and is highly interpretable by design.  

Finally, we should understand that the solutions proposed and discussed in the present document come 

with a certain level of cost – the underlying compute and AI entities will require energy to operate. It is 

thus proposed that future 6G system design choices rely on a detailed benefit/cost analysis. It is only 

appropriate to introduce a corresponding new mechanism if the benefits in terms of system efficiency, 

security and other outweighs the cost in terms of energy consumption or similar. 
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Annex A 

In this section, we propose a technically detailed extension of the “Reserve” field (as illustrated in 

Figure 5-2) of the “Radio Application Package (RAP)” in order to accommodate for two additional 

requirements in the context of Hexa-X applications: 

 

1) It is proposed to indicate the suitability of the RAP for usage in specific Hexa-X use cases. 

There are indeed different requirements depending on the target application – for example, code 

may require specific conformity checks prior to usage in an industrial environment where any 

malfunctioning may cause harm to persons.  

https://www.tensorflow.org/tfx/guide/serving
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Hexa-X Use Case Family Suitability indication 

Telepresence Bit 1 set to “1” means suitability for this class of Use Cases. Suitability to specific Sub-Use-

Cases are further detailed in a new bit-field (1st bit of new bit field indicates suitability to 

first sub-use-case as indicated by Fig. 1 for this class, etc.) 

Robots to Cobots Bit 2 set to “1” means suitability for this class of Use Cases. Suitability to specific Sub-Use-

Cases are further detailed in a new bit-field (1st bit of new bit field indicates suitability to 

first sub-use-case as indicated by Fig. 1 for this class, etc.) 

Massive Twinning Bit 3 set to “1” means suitability for this class of Use Cases. Suitability to specific Sub-Use-

Cases are further detailed in a new bit-field (1st bit of new bit field indicates suitability to 

first sub-use-case as indicated by Fig. 1 for this class, etc.) 

Trusted embedded 

networks 

 & 

Hyperconnected resilient 

network infrastructures 

Bit 4 set to “1” means suitability for this class of Use Cases. Suitability to specific Sub-Use-

Cases are further detailed in a new bit-field (1st bit of new bit field indicates suitability to 

first sub-use-case as indicated by Fig. 1 for this class, etc.) 

Enabling Sustainability Bit 5 set to “1” means suitability for this class of Use Cases. Suitability to specific Sub-Use-

Cases are further detailed in a new bit-field (1st bit of new bit field indicates suitability to 

first sub-use-case as indicated by Fig. 1 for this class, etc.) 

 

2) We furthermore consider the specific case that the RAP contains code the is considered to 

enable a “High Risk” application as defined by the draft AI Act [AIA]. In such a case, the 

application needs to fulfill a series of requirements and demonstrate compliance against those. 

It is thus proposed that the RAP contains a specific bit which indicates that the manufacturers 

guarantees compliance for specific AI “High Risk” categories. Only if the corresponding bit is 

set, the software component may be used in this specific context.  

Bit 1 set to “1” means suitability for 1. Biometric identification and categorisation of natural persons:  

(a) AI systems intended to be used for the ‘real-time’ and ‘post’ remote biometric identification of 

natural persons; 

Bit 2 set to “1” means suitability for 2. Management and operation of critical infrastructure:  

(a) AI systems intended to be used as safety components in the management and operation of road 

traffic and the supply of water, gas, heating and electricity.  

Bit 3 set to “1” means suitability for 3. Education and vocational training:  

Bit 3 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI systems intended to be used for the 

purpose of determining access or assigning natural persons to educational and vocational training 

institutions;  

Bit 3 set to “1”, sub-Bit 2 set to “1” means suitability for (b) AI systems intended to be used for the 

purpose of assessing students in educational and vocational training institutions and for assessing 

participants in tests commonly required for admission to educational institutions.  

Bit 4 set to “1” means suitability for 4. Employment, workers management and access to self-

employment:  

Bit 4 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI systems intended to be used for 

recruitment or selection of natural persons, notably for advertising vacancies, screening or filtering 

applications, evaluating candidates in the course of interviews or tests;  

Bit 4 set to “1”, sub-Bit 2 set to “1” means suitability for (b) AI intended to be used for making 

decisions on promotion and termination of work-related contractual relationships, for task allocation 

and for monitoring and evaluating performance and behavior of persons in such relationships.  
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Bit 5 set to “1” means suitability for 5. Access to and enjoyment of essential private services and 

public services and benefits:  

Bit 5 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI systems intended to be used by public 

authorities or on behalf of public authorities to evaluate the eligibility of natural persons for public 

assistance benefits and services, as well as to grant, reduce, revoke, or reclaim such benefits and 

services;  

Bit 5 set to “1”, sub-Bit 2 set to “1” means suitability for (b) AI systems intended to be used to 

evaluate the creditworthiness of natural persons or establish their credit score, with the exception of 

AI systems put into service by small scale providers for their own use; 

Bit 5 set to “1”, sub-Bit 3 set to “1” means suitability for (c) AI systems intended to be used to 

dispatch, or to establish priority in the dispatching of emergency first response services, including 

by firefighters and medical aid. 

Bit 6 set to “1” means suitability for 6. Law enforcement:  

Bit 6 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI systems intended to be used by law 

enforcement authorities for making individual risk assessments of natural persons in order to assess 

the risk of a natural person for offending or reoffending or the risk for potential victims of criminal 

offences;  

Bit 6 set to “1”, sub-Bit 2 set to “1” means suitability for (b) AI systems intended to be used by law 

enforcement authorities as polygraphs and similar tools or to detect the emotional state of a natural 

person; 

Bit 6 set to “1”, sub-Bit 3 set to “1” means suitability for (c) AI systems intended to be used by law 

enforcement authorities to detect deep fakes as referred to in article 52(3);  

Bit 6 set to “1”, sub-Bit 4 set to “1” means suitability for (d) AI systems intended to be used by law 

enforcement authorities for evaluation of the reliability of evidence in the course of investigation or 

prosecution of criminal offences;  

Bit 6 set to “1”, sub-Bit 5 set to “1” means suitability for (e) AI systems intended to be used by law 

enforcement authorities for predicting the occurrence or reoccurrence of an actual or potential 

criminal offence based on profiling of natural persons as referred to in Article 3(4) of Directive (EU) 

2016/680 or assessing personality traits and characteristics or past criminal behaviour of natural 

persons or groups;  

Bit 6 set to “1”, sub-Bit 6 set to “1” means suitability for (f) AI systems intended to be used by law 

enforcement authorities for profiling of natural persons as referred to in Article 3(4) of Directive 

(EU) 2016/680 in the course of detection, investigation or prosecution of criminal offences;  

Bit 6 set to “1”, sub-Bit 7 set to “1” means suitability for (g) AI systems intended to be used for crime 

analytics regarding natural persons, allowing law enforcement authorities to search complex related 

and unrelated large data sets available in different data sources or in different data formats in order 

to identify unknown patterns or discover hidden relationships in the data.  

Bit 7 set to “1” means suitability for 7. Migration, asylum and border control management:  

Bit 7 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI systems intended to be used by 

competent public authorities as polygraphs and similar tools or to detect the emotional state of a 

natural person;  

Bit 7 set to “1”, sub-Bit 2 set to “1” means suitability for (b) AI systems intended to be used by 

competent public authorities to assess a risk, including a security risk, a risk of irregular immigration, 

or a health risk, posed by a natural person who intends to enter or has entered into the territory of a 

Member State;  

Bit 7 set to “1”, sub-Bit 3 set to “1” means suitability for (c) AI systems intended to be used by 

competent public authorities for the verification of the authenticity of travel documents and 
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supporting documentation of natural persons and detect non-authentic documents by checking their 

security features;  

Bit 7 set to “1”, sub-Bit 4 set to “1” means suitability for (d) AI systems intended to assist competent 

public authorities for the examination of applications for asylum, visa and residence permits and 

associated complaints with regard to the eligibility of the natural persons applying for a status.  

Bit 8 set to “1” means suitability for 8. Administration of justice and democratic processes:  

Bit 8 set to “1”, sub-Bit 1 set to “1” means suitability for (a) AI systems intended to assist a judicial 

authority in researching and interpreting facts and the law and in applying the law to a concrete set 

of facts. 

 

The full bit-field is summarised below considering all possible items 1…8 above: 

High Risk AI Bits = 00, 01, 10, “11” (00 = no AI application, 01=AI application but no high risk AI 

application, 10 = high risk AI application, 11 = forbidden AI Application) 

Bit 1 = 0/1 Bit 2 = 0/1 Bit 3 = 

0/1 

Bit 4 = 

0/1 

Bit 5 = 

0/1 

Bit 6 = 

0/1 

Bit 7 = 

0/1 

Bit 8 = 

0/1 

No sub-Bit 

needed 

(only 1 

sub-item) 

No sub-Bit 

needed 

(only 1 

sub-item) 

Sub-Bits 

1…2 = 

0/1 

Sub-Bits 

1…2 = 

0/1 

Sub-Bits 

1…3 = 

0/1 

Sub-Bits 

1…7 = 

0/1 

Sub-Bits 

1…4 = 

0/1 

Sub-Bit 1 

= 0/1 

The proposed framework on flexible compute workload assignment aims to enable intelligent and 

flexible workload delegation, factoring in 6G use case's requirements as well as end user/ developer 

capabilities. The proposed solution may be relevant to all Hexa-X 6G UCFs, as described in [HEX-

D13].  

 

 

 


