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Abstract  

This Deliverable D6.3 contains the final evaluation of management and orchestration (M&O) 

mechanisms of the Hexa-X project and concludes work in WP6, which addresses. This 

document is built upon previous deliverable D6.2, which described the architectural design of 

these mechanisms. It demonstrates the selected M&O mechanisms in the form of two demos 

in alignment with selected Hexa-X Use Cases. The final assessment is performed through 

measurements of improvements in areas such as energy efficiency, intelligent network 

reconfiguration, onboarding time and service continuity. 
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Executive Summary 

This report is the third deliverable of the Hexa-X Work Package 6 (WP6). It presents the 

evaluation of service management and orchestration (M&O) mechanisms for Hexa-X. The 

deliverable reflects the work done in WP6 from month 17 (May 2022) until month 28 (April 

2023). This document introduces the implementation of novelties described in the previous 

Deliverable D6.2 [HEX22-D62], such as (1) unified orchestration across the “extreme-edge, edge, 

core” continuum, (2) unified management and orchestration across multiple domains owned and 

administered by different stakeholders, (3) increasing levels of automation, (4) adoption of data-

driven and AI/ML techniques in the M&O system and (5) adoption of the cloud-native principles 

in the telco-grade environment.  

The main part of this deliverable focuses on the description of two demos (Demo #4, Demo #5) 

and complementary lab experiments. Each of the demos is presented uniformly, consisting of (i) 

Demo overview, (ii) Innovations related to the demo and (iii) Demo implementation, of which the 

last one additionally describes individual scenarios related to a particular demo. All of the 

scenarios are again presented in a uniform fashion, consisting of (a) scenario description, (b) 

software components, (c) functional behaviour and (d) deployment.  

Demo #4, “Handling unexpected situations in industrial contexts”, consists of a set of three mobile 

robots in a simulated industrial environment, which are able to work as Digital Twins. The target 

of this objective is to turn AI/ML into an essential component of B5G/6G technology. In order to 

address this objective, Demo #4 presents three scenarios: 

• Scenario 4.1 “Continuum (cloud, edge, extreme-edge) M&O of a Digital Twins 

service”. 

• Scenario 4.2 “Handling unexpected events using functions placement”. 

• Scenario 4.3 “Improving service downtime and reducing costs using predictive 

orchestration”. 

These scenarios build upon each other in order to show how distinct enablers can be used together 

to accomplish the targets of related objectives. 

On the other hand, Demo #5, “Data-driven device-edge-cloud continuum management”, presents 

four scenarios which, unlike scenarios in Demo #4, focus on specific facets each: 

• Scenario 5.1, “Continuum orchestration of AI/ML-Driven Traffic Lights Control 

Service”, aims at demonstrating how AI/ML-Driven approach can improve road traffic 

mobility compared to the legacy non-AI/ML approach. 

• Scenario 5.2, “Prediction-based URLLC service orchestration and optimization”, aims at 

demonstrating how the predictive approach for resource allocation differs from reactive 

methods.  

• Scenario 5.3, “Reactive security for the edge”, aims at demonstrating the proposed 

network management architecture’s effectiveness in handling cyber security threats 

against a vulnerable application deployed at the extreme-edge.  

• Scenario 5.4, “MLOps techniques to deploy AI/ML service components”, aims to 

demonstrate the implementation of the MLOps practices in a telecommunications 

environment by proposing an architecture in which vendor and operator coexist, 

and communication between them is established. 

Complementary lab experiments aim to independently address the topics of network energy 

efficiency, extreme-edge nodes discovery, as well as the impact of B5G/6G RAN on Scenario 

5.1. 

In the second part of this document, the evaluation of the proposed service M&O mechanisms is 

performed. The evaluation includes the following: 

• The WP6 contribution to the overall Hexa-X objectives, focusing on Objective 3 (which 

is the one related to this WP6 according to the Hexa-X workplan), and considering the 

main outputs towards that objective, the main measurable results, and the evaluation of 

the quantifiable targets.  
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• The evaluation of the Hexa-X M&O architectural design, provided in the previous 

Deliverable D6.2 [HEX22-D62], by means of the demos presented in this deliverable 

(Demo #4 and Demo #5). 

• The evaluation of those KPIs, KVIs and Core Capabilities identified as the most relevant 

in the M&O scope also in the previous [HEX22-D62], and that have been evaluated in 

the context of the demos and the complementary experiments in this document.  

• A summary of the main lessons learnt. 

• Finally, some hints and suggestions for future work.  

  



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 6 / 129 

 

Table of Contents 
Executive Summary .................................................................................................................... 4 

1 Scope ...................................................................................................................................... 11 

2 Abbreviations ....................................................................................................................... 11 

3 Introduction .......................................................................................................................... 15 

3.1 Objectives of the document .............................................................................................. 15 

3.2 Methodology ..................................................................................................................... 15 

3.3 Structure of the document ................................................................................................. 17 

4 Demo #4: Handling unexpected situations in industrial contexts .................................... 17 

4.1 Demo overview ................................................................................................................. 17 

4.2 Innovations related to the demo ........................................................................................ 18 

4.3 Demo implementation ....................................................................................................... 18 

 Scenario 4.1: Continuum (cloud, edge, extreme-edge) M&O of a Digital Twins 

service .......................................................................................................................... 18 

 Scenario 4.2: Handling unexpected events using Functions Placement ...................... 26 

 Scenario 4.3: Improving service downtime and reducing costs using Predictive 

Orchestration ................................................................................................................ 32 

 Scenario Deployments ................................................................................................. 34 

5 Demo #5: Data-driven device-edge-cloud continuum management ................................ 35 

5.1 Demo overview ................................................................................................................. 35 

5.2 Innovations related to the demo ........................................................................................ 36 

5.3 Demo implementation ....................................................................................................... 37 

 Scenario 5.1: Continuum orchestration of AI/ML-driven Traffic Lights Control 

Service ......................................................................................................................... 37 

 Scenario 5.2: Prediction-based URLLC service orchestration and optimization ........ 54 

 Scenario 5.3: Reactive security for the edge ................................................................ 60 

 Scenario 5.4: MLOps techniques to deploy AI/ML service components .................... 69 

6 Complementary lab experiments ........................................................................................ 79 

6.1 Network energy efficiency ................................................................................................ 79 

6.2 Extreme-edge nodes discovery ......................................................................................... 81 

6.3 Simu5G in Scenario 5.1 .................................................................................................... 83 

7 Evaluation ............................................................................................................................. 86 

7.1 WP6 contribution to the Hexa-X objectives ..................................................................... 87 

 WP6 output towards Objective 3 ................................................................................. 88 

 WP6 measurable results towards Objective 3 .............................................................. 89 

 WP6 quantifiable targets towards Objective 3............................................................. 90 

7.2 Validation of the Hexa-X M&O architecture ................................................................. 100 

 Demo #4..................................................................................................................... 100 

 Demo #5..................................................................................................................... 101 

7.3 KPIs, KVIs and Core Capabilities .................................................................................. 103 

 Demo #4..................................................................................................................... 103 

 Demo #5..................................................................................................................... 106 

 Small-scale lab experiments ...................................................................................... 111 

7.4 Lessons learnt.................................................................................................................. 113 

7.5 Future work ..................................................................................................................... 114 



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 7 / 129 

 

8 Conclusion........................................................................................................................... 116 

Annex II. RL Agent implementation details ......................................................................... 120 

Annex III. Results of the RL-based traffic lights control service........................................ 123 

References ................................................................................................................................ 125 

 

 

  



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 8 / 129 

 

List of Figures 
Figure 4-1. Digital Twin interface. .............................................................................................. 19 

Figure 4-2. VR control of Digital Twins. .................................................................................... 19 

Figure 4-3. Demo #4 software architecture. ................................................................................ 20 

Figure 4-4 Digital Twin Application Interface ............................................................................ 21 

Figure 4-5. Main components of the MaaS architecture. ............................................................ 22 

Figure 4-6. Service registration & instantiation sequence diagram. ........................................... 24 

Figure 4-7. Main functionalities offered by the MaaS framework. ............................................. 24 

Figure 4-8. Tree-like organization of the monitorable quality attributes. ................................... 25 

Figure 4-9. Example of MaaS monitoring goals. ........................................................................ 25 

Figure 4-10. Robotic scenario ..................................................................................................... 26 

Figure 4-11. An anomaly detected during robot operation. ........................................................ 27 

Figure 4-12. Function Placement workflow ................................................................................ 29 

Figure 4-13. Monitored components. .......................................................................................... 32 

Figure 4-14 Predictive orchestration workflow........................................................................... 33 

Figure 4-15. Demo #4 deployment overview. ............................................................................. 34 

Figure 5-1. Smart traffic lights to enable AI/ML-driven control. ............................................... 38 

Figure 5-2. Simulated urban environment synchronised with the real traffic lights. .................. 39 

Figure 5-3. Scenario 5.1 – streets layout. .................................................................................... 39 

Figure 5-4. Main functional components of Scenario 5.1. .......................................................... 40 

Figure 5-5. Reinforcement Learning in Scenario 5.1. ................................................................. 42 

Figure 5-6. High-level software for orchestration in Scenario 5.1. ............................................. 44 

Figure 5-7. Workflow for the discovery of extreme-edge nodes. ............................................... 46 

Figure 5-8. Over extreme-edge and edge continuum. ................................................................. 47 

Figure 5-9. Scenario 5.1 functional flow diagram. ...................................................................... 49 

Figure 5-10. Scenario 5.1 deployment diagram. ......................................................................... 50 

Figure 5-11. Scenario 5.1. Extreme-edge implementation. ......................................................... 51 

Figure 5-12. Scenario 5.1: Traffic Lights physical panel. ........................................................... 52 

Figure 5-13. Elements for presenting Scenario 5.1. .................................................................... 53 

Figure 5-14. A high-level view of Scenario 5.2 configuration. .................................................. 54 

Figure 5-15. Exemplary traffic trace used in Scenario 5.2. ......................................................... 54 

Figure 5-16. Main software elements composing Scenario 5.2. ................................................. 55 

Figure 5-17. URLLC traffic flow in the Simu5G-based emulated network. ............................... 56 

Figure 5-18. Real-time scenario visualization using a custom GUI. ........................................... 57 

Figure 5-19. Functional blocks of Scenario 5.2. ......................................................................... 58 

Figure 5-20. Deployment of Scenario 5.2 – architecture. ........................................................... 59 

Figure 5-21. Deployment of Scenario 5.2 – real-life testbed. ..................................................... 59 

Figure 5-22. Local and central loops of Scenario 5.3. ................................................................ 62 

Figure 5-23. Software components used in Scenario 5.3. ........................................................... 63 

Figure 5-24. Scenario 5.3 sequence diagram .............................................................................. 65 

Figure 5-25. Level of Trust update based on containment plan for Scenario 5.3. ...................... 68 

Figure 5-26. Level of Trust update based on eradication plan for Scenario 5.3. ........................ 68 

Figure 5-27. Scenario 5.4 block diagram. ................................................................................... 70 

Figure 5-28. Main steps of the MLOps workflow in the MNO Domain. ................................... 73 

Figure 5-29. MLOps Workflow - Drift Management. ................................................................ 75 



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 9 / 129 

 

Figure 5-30. MLOps Scenario functional blocks and software components. ............................. 77 

Figure 5-31. Scenario 5.4 deployment diagram. ......................................................................... 79 

Figure 6-1. Vehicular rate at Corso Agnelli street in Torino during a day. ................................ 81 

Figure 6-2. Power consumption results. ...................................................................................... 81 

Figure 6-3. Node discovery test scenario. ................................................................................... 82 

Figure 6-4. Simu5G mapping to Scenario 5.1 software components. ......................................... 84 

Figure 6-5. Average number of resource blocks in Uplink (left) and Downlink (right)

 ..................................................................................................................................................... 85 

Figure 6-6. Average delay of the communication between the SUMO Extreme-edge 

components and the RL Agent. .................................................................................................... 86 

Figure 6-7. Average delay of the communication between the Traffic Lights Control 

Logic and the SUMO Ext. Edge. ................................................................................................. 86 

Figure 6-8. Average delay of the communication between the RL Agent and the 

Traffic Lights Control Logic components. .................................................................................. 86 

Figure 7-1. Collected time measurements during unexpected events. ........................................ 92 

Figure 7-2. Average workflow time for each event type. ........................................................... 93 

Figure 7-3. Average service downtime for each event type. ....................................................... 93 

Figure 7-4. Battery consumption collected data sets. .................................................................. 95 

Figure 7-5. Battery consumption prediction horizon. ................................................................. 95 

Figure 7-6. Simulated deployment for the experiment of Scenario 5.2. ..................................... 96 

Figure 7-7. Behaviour of the pure-reactive baseline in Scenario 5.2. ......................................... 97 

Figure 7-8. Behaviour of the Oracle (theoretical optimum) baseline in Scenario 5.2. ............... 97 

Figure 7-9. Behaviour of the Threshold-based baseline in Scenario 5.2. ................................... 97 

Figure 7-10. Behaviour of the AI-based prediction in Scenario 5.2. .......................................... 97 

Figure 7-11. Scenario 5.3 results ................................................................................................. 99 

Figure 7-12. Mapping of the Demo #4 functionalities to the architecture. ............................... 101 

Figure 7-13. Mapping of Demo #5 functionalities to the Hexa-X M&O architecture .............. 102 

 

Figure AI - 1. Scenario 5.1 SUMO layout. ............................................................................... 117 

Figure AI - 2. Scenario 5.1. SUMO road speeds and length. .................................................... 117 

Figure AI - 3. Scenario 5.1 - SUMO TL object view. ............................................................... 118 

 

Figure AIII - 1. Scenario 5.1 - simulation total vehicles comparative. ..................................... 123 

Figure AIII - 2. Scenario 5.1 - simulation halting vehicles comparative. ................................. 123 

Figure AIII - 3. Scenario 5.1 - simulation vehicles mean travel time comparative. .................. 124 

Figure AIII - 4. Scenario 5.1 - simulation vehicles mean waiting time comparative. ............... 124 

Figure AIII - 5. Scenario 5.1 - simulation vehicles HC comparative. ....................................... 124 

Figure AIII - 6. Scenario 5.1 - simulation vehicles fuel comparative. ...................................... 124 

Figure AIII - 7. Scenario 5.1 - simulation vehicles CO2 comparative....................................... 124 

 

  



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 10 / 129 

 

List of Tables 
Table 3-1. Topics addressed by the demos and complementary lab experiments. ...................... 16 

Table 4-1. Demo #4 deployment resources. ................................................................................ 35 

Table 5-1. Virtual Machines in the Atos cloud domain. ............................................................. 52 

Table 5-2. Virtual Machines in the Nextworks cloud domain. ................................................... 53 

Table 5-3. Description of the nodes used in Scenario 5.2 ........................................................... 60 

Table 5-4. Scenario 5.3 VM-based component list. .................................................................... 69 

Table 5-5. Scenario 5.3 container-based component list. ............................................................ 69 

Table 6-1. Modelling of extreme-edge nodes’ volatility. ............................................................ 82 

Table 6-2. Synchronisation time for nodes’ joining and leaving actions. ................................... 83 

Table 6-3. Scenario 5.1 components modelling. ......................................................................... 84 

Table 6-4. Scenario 5.1 main simulation parameters. ................................................................. 85 

 

Table AI - 1. Scenario 5.1: SUMO vehicle types. ..................................................................... 119 

 

Table AII - 1. Actions for crossroad types A (light) and B (dark). ........................................... 120 

Table AII - 2. Q-table layout. .................................................................................................... 121 

  



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 11 / 129 

 

1 Scope 

This report is the third deliverable of the Hexa-X Work Package 6 (WP6) and presents the 

evaluation of service management and orchestration (M&O) mechanisms of the M&O 

architectural framework provided by the Hexa-X project. The selected evaluation mechanisms 

are linked with the key novelties of the proposed framework and include predictive, data-driven 

orchestration, continuum orchestration (till the extreme-edge) and adoption of cloud-native 

principles in the telco-grade environment. The M&O operations of the mentioned framework 

deeply use AI/ML techniques. All the mechanisms contribute to intelligent orchestration and 

service management needed for 6G networks. The document evaluates the benefits of the 

proposed framework and AI-driven mechanisms and their contribution to project quantifiable 

targets.  

2 Abbreviations 

2D  Two-dimensional 

3D  Three-dimensional 

3GPP  3rd Generation Partnership Project 

5G  Fifth generation of mobile telecommunications technology. 

6G  Sixth generation of mobile telecommunications technology.  

ACK  Acknowledgement 

AGV  Automated Guided Vehicle 

AI  Artificial Intelligence 

AL  Abstraction Layer 

API  Application Programming Interface 

ARIMA Autoregressive Integrated Moving Average 

AS  Access Stratum 

B5G  Beyond 5G 

BMU  Best Matching Unit 

BRMS  Business Rules Management System 

CD  Continuous Delivery 

CDN  Content Delivery Network  

CI  Continuous Integration 

CO2  Carbon Dioxide 

CNF  Container Network Functions 

CPaaS  Communications Platform as a Service 

CP  Control Plane 

CPU   Central Processing Unit 

CQI  Channel Quality Indicator 

CRUD  Create Read Update Delete 

CSMF   Communication Service Management Function 

CVSS  Common Vulnerability Scoring System 

DB  Database 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DevOps Development and Operations 

DoS  Denial of Service 
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DDoS  Distributed Denial of Service 

DRT  Delta Reconfiguration Time 

DT  Digital Twins 

E2E  End-to-End 

EC  Edge Cluster 

EEC  Extreme-edge Cluster 

ETSI  European Telecommunications Standards Institute 

gNB  Next-Generation NodeB 

GPIO  General Purpose Input/Output 

GPRS  General Packet Radio Service 

GTP  GPRS Tunnelling Protocol 

GUI  Graphical User Interface 

HMI  Human-Machine Interaction 

I/O  Input/Output 

IDS  Intrusion Detection System 

IoT  Internet of Things 

IP  Internet Protocol  

IPS  Intrusion Prevention System 

ISO  International Organization for Standardization 

K3s  Lightweight Kubernetes 

K8s  Kubernetes 

KNF  Kubernetes-Based Virtual Network Function 

KPI  Key Performance Indicator 

KVI  Key Value Indicator 

LAD  Lane Area Detector 

LCM  Life Cycle Management 

LED   Light Emitting Diode 

LIDAR  Light Detecting and Ranging 

LoT  Level of Trust 

LoTAF  Level of Trust Assessment Function 

LSTM  Long Short-Term Memory  

M&O  Management and Orchestration 

MANO  Management and Orchestration 

MA  Micro-aggregation 

MAC  Media Access Control 

MaaS  Monitoring as a Service 

MEC  Mobile Edge Computing 

ML  Machine Learning 

MLOps  Machine Learning Operations 

MNO  Mobile Network Operator 

MTTD  Mean Time To Detect 

MTTR  Mean Time To Respond 

NACK  Negative Acknowledgement 
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NAS  Non Access Stratum 

NF  Network Function 

NN  Neural Network 

NR  New Radio 

NSMF  Network Slice Management Function 

NSSMF Network Slice Subnet Management Function 

OAM  Operations Administration and Management 

OMNeT Objective Modular Network Testbed 

OS  Operating System 

OSM   Open-Source MANO 

PMx  Particulate Matter 

PGW   Packet Data Network GateWay 

PoC  Proof of Concept 

QoS  Quality of Service 

RADAR Radio Detecting and Ranging 

RAM  Random Access Memory 

RAN  Radio Access Network 

RCA  Root Cause Analysis  

RD  Resource Discovery 

REC-EXEC REsource orchestrator for Continuum across EXtreme-edge, Edge, Cloud  

RI  Resource Inventory 

RL  Reinforcement Learning 

RMSE  Root Mean Square Error 

RSU  Road Side Unit 

SARIMA Seasonal AutoRegressive Integrated Moving Average 

SBA  Service-Based Architecture  

SBMA  Service-Based Management Architecture 

SD  Service Deployer 

SOM  Self-Organizing Maps 

SSH  Secure Shell 

SUMO   Simulation of Urban Mobility 

SW  Software  

TCP  Transmission Control Protocol 

TFX  TensorFlow Extended 

TL  Traffic Light 

TRL  Technology Readiness Level 

ToD  Tele-operated Driving  

TraCI  Transport Control Interface 

TSDB  Time-Series Database 

UDP  User Datagram Protocol 

UE  User Equipment 

UI  User Interface 

UL/DL   Uplink/Downlink 
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UP  User Plane 

UPF  User Plane Function 

URLLC  Ultra–Reliable Low Latency Communication  

V2X  Vehicle-to-everything 

VM  Virtual Machine 

VNF  Virtualised Network Function 

VPN  Virtual Private Network 

VPP  Vector Packet Processor 

VR   Virtual Reality 

WP  Work Package 
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3 Introduction  

Deliverable D6.3 is the last deliverable of the Work Package 6 (WP6) of the Hexa-X project, 

being the continuation of the previous Deliverables D6.1 [HEX21-D61] and D6.2 [HEX22-D62]. 

It describes the work performed from M17 (May 2022) to M28 (April 2023) according to the 

Hexa-X project execution plan. 

3.1 Objectives of the document 

This document has two main objectives: (i) to report on the final evaluation of the service 

management and orchestration mechanisms developed in WP6 and described in Deliverable D6.2 

[HEX22-D62], and (ii) to serve as a means of verification of the project Objective 3 (Connecting 

intelligence towards 6G) intended to deliver methodology, algorithms, and architectural 

requirements for an AI-native network, and in this case, focusing on the AI-driven governance. 

Regarding objective (i), the evaluation targets different aspects, namely: the evaluation of the 

M&O architectural design provided in the previous Deliverable D6.2 and an evaluation of specific 

KPIs, KVIs and Core Capabilities defined in [HEX21-D12] and in Deliverable D6.2, for this WP. 

Finally, and also as part of the evaluation, the document provides information about the main 

lessons learnt and some hints for future work. Regarding objective (ii), the document provides 

information about how WP6 has contributed to the overall Hexa-X Objectives, and specifically, 

to the so-called Objective 3 (“Connecting intelligence towards 6G”), in what regards those aspects 

related to what is our main concern in WP6, i.e., the M&O related aspects. This second document 

objective includes providing information about the WP6 outputs towards such Objective 3, the 

WP6 measurable results according to that Objective, and their related quantifiable targets. 

3.2 Methodology 

The above-mentioned objectives are mainly verified by implementing Demo #4 and Demo #5, 

which according to the Hexa-X project execution plan, are in the scope of WP6. Demo #4 main 

scope is handling unexpected situations in industrial contexts. In general, the demo targets 

handling unforeseen problems in a simulated industrial environment, consisting of a set of mobile 

robots that cooperate to complete a defined task. The unexpected situations are impairments/faults 

intentionally caused by the human operators in the context of the demo to test the robots’ self-

adaptation capabilities. This demo has been addressed from two different work packages (WP6 

and WP7) that rely on the same infrastructure to address some of their specific work topics. 

Regarding WP6, the work done on this demo lies in applying predictive M&O mechanisms to 

proactively mitigate the impact of a faulty device on the routine activity of the robots, which are 

considered extreme-edge devices in terms of M&O. The TRL required for this demo is TRL 4 

(technology validated in a lab) [TRL]. Demo #5 targets the demonstration of the data-driven 

device-edge-cloud continuum management concept. This demo focuses on a simulated road-

traffic urban environment on which different scenarios have been developed, covering aspects 

such as the deployment of an AI/ML-driven network service to provide smart control of the traffic 

lights in that urban environment, application of proactive scaling polices for a URLLC (Ultra 

Reliable Low Latency Communications) service based on the predicted road traffic conditions, 

security aspects applied to this context, and the application of MLOps techniques to deploy 

AI/ML services. The demo focuses on using AI/ML techniques in these scenarios and also in 

extending the M&O scope beyond the edge, relying not only on simulations but also on practical 

hardware-based implementations of specific extreme-edge resources using small-scale computing 

devices (e.g., to simulate the traffic lights themselves and their associated controllers). The TRL 

(Technological Readiness Level) required for this demo is TRL 3 (experimental proof-of-

concept). Both demos have been implemented and aligned with the M&O architectural design 

provided in the previous Deliverable, D6.2. However, from the required TRLs and the Demo’s 

requirements in the Hexa-X project plan, a complete E2E implementation with all the 

architectural components and functionalities as they are described in D6.2, goes far beyond the 
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Demos purpose, which is with a much more limited scope. Therefore, although well aligned with 

the overall architecture, the demos implementation is limited to demonstrating selected topics. 

Demo #4 is in strong alignment with two described in D1.2 [HEX21-D12] use cases, namely: 

Digital Twins for manufacturing and Flexible manufacturing. Both of these use cases are related 

to each other. The first one describes how using Digital Twins can benefit production lines via 

improvements in capabilities such as management of infrastructure resources, detection of 

anomalous behaviour, and mitigation of critical situations. The second one focuses on allowing 

dynamic configuration of real-time communication services, which is essential for mobile 

production machinery. Demo #5 is aligned with one described in D1.2 [HEX21-D12] use case, 

which is 6G IoT micro-networks for smart cities. This use case focuses on the management of 

traffic flows in a complex local system of objects interacting with each other. Traffic Light control 

described in Demo #5 can be such a system. The implementation of Demo #4 and Demo #5 has 

been complemented with a set of lab experiments that, beyond the topics covered by the demos, 

are also considered interesting to explore some of the innovations introduced in Deliverable 6.2. 

These experiments are described in detail in Section 6. Specifically, they are three experiments 

concerning network energy efficiency, extreme-edge nodes discovery, and the potential usage of 

the Simu5G NR User Plane simulator [NSS+23] in an urban road-traffic scenario, such as the one 

presented in Demo #5. Table 3-1 summarizes which specific topics were addressed by each demo 

and the lab experiments. 

Table 3-1. Topics addressed by the demos and complementary lab experiments. 

Work Topic Demo #4 Demo #5 Lab Exp. 

1: Unified orchestration across the “extreme-edge, edge, 

core” continuum. 
✔ ✔ ✔ 

2: Increased level of automation. ✔ ✔  

3: Adoption of data-driven and AI/ML techniques in the 

M&O system. 
✔ ✔  

4: Unified management and orchestration across multiple 

domains, owned and administered by different 

stakeholders. 

 ✔  

5: Adoption of the cloud-native principles in the telco-

grade environment. 
 ✔  

6: Security  ✔  

7: RAN integration   ✔ 

8: Network energy efficiency   ✔ 

It is worth noting that most of the novel capabilities in the M&O architectural design reported in 

Deliverable D6.2 are addressed (items 1 to 5), with the only exception of the application of the 

intent-based approaches for service planning and definition (see [HEX22-D62], Section 5.3). 

Additionally, other topics not explicitly declared in that capabilities list nor in the Demos 

requirements have been included, such as the Security topic (item 6), the RAN integration (item 

7), and the experiment regarding the network energy efficiency (item 8, this last one intended to 

evaluate one of the quantifiable targets assigned to this WP6). Based on the experience gained 

from the implementation of the demos and the lab experiments and on the measurements and 

results obtained from them, the evaluation of the main innovations raised in the previous 

Deliverable D6.2 has been carried out. This evaluation has focused on, validating the WP6 

contribution to the overall Hexa-X objectives, the validation of the M&O architectural design, 

and the evaluation of selected KPIs, KVIs and Core Capabilities (from those presented in the 

previous D6.2) regarding the demos and the lab experiments presented here. All this evaluation 

information has been collected in Section 7. 
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3.3 Structure of the document 

The document is structured as follows: 

• Section 1 describes the overall scope of the document. 

• Section 2 includes a list of abbreviations to support the reading process. 

• Section 3 describes the main objectives of the document, the methodology followed to 

reach those objectives, and the document's structure (this section).  

• Section 4 includes the description of Demo #4, which addresses handling unexpected 

situations in industrial contexts. The Demo is composed of three scenarios, which are 

extensively described in such section, in separated subsections. 

• Section 5 includes the description of Demo #5, which concerns algorithms for data-driven 

device-edge-cloud continuum management. The Demo is composed of four scenarios, 

which are also described in that section, in separated subsections.  

• Section 6 touches on complementary lab experiments concerning the benefits of the 

proposed proactive orchestration in the energy efficiency case, extreme-edge nodes 

discovery, and the integration of the RAN in Scenario 5.1. 

• Section 7 is the core part of the document regarding results, targeting the final evaluation 

of service M&O mechanisms, mainly based on the demos and the complementary lab 

experiments presented in the previous sections.  

• Section 8 consists of conclusions drawn on the basis of the content in the previous 

sections. 

• At the end of the document, three Annexes describe selected mechanisms supporting 

demos. 

4 Demo #4: Handling unexpected situations in 

industrial contexts 

4.1 Demo overview 

Demo #4, which is a cross-WP demo between WP6 and WP7, is related to both the Hexa-X 

Objective 3 (Connecting intelligence towards 6G) and Objective 4 (Network evolution and 

expansion towards 6G). The target of these objectives is to turn AI/ML into an essential 

component of the B5G/6G technology and to deliver enablers for an intelligent network of 

networks, respectively. WP6 targets specifically Objective 3, which is intended to develop 

AI/ML-powered enablers for orchestration and service management in order to achieve higher 

efficiency, increase network programmability, increase service continuity and enable new 

services (and revenue streams)1. Following this, Demo #4 has been designed to showcase a set of 

relevant features aligned with some of the main innovations introduced in the previous 

Deliverable D6.2 [HEX22-D62] and making AI/ML a core part of the M&O operations in an 

industrial context. With this in mind, the demonstration consists of three scenarios that will 

showcase the corresponding enabler: 

• Scenario 4.1: Continuum (cloud, edge, extreme-edge) M&O of a Digital Twins use 

case. 

• Scenario 4.2: Handling unexpected events using dynamic Functions Placement. 

• Scenario 4.3: Improving service downtime and reducing costs using Predictive 

Orchestration. 

The intention is that these three scenarios will showcase how these distinct enablers can be used 

together to accomplish the targets set by the related objectives. Each scenario builds upon the 

 
1 For WP7, Objective 4 is intended to develop enablers for resource-efficient support of complex and dynamically 

changing availability requirements as well as Human-Machine Interaction (HMI) and fully immersive digital twins, 

as described in Deliverable 7.2 [HEX22-D72]. 



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 18 / 129 

 

previous ones and demonstrates how the addition of each enabler helps achieve the defined 

objectives. In the following sections, each of these scenarios is described in more detail. 

4.2 Innovations related to the demo 

Demo #4 addresses three of the main innovations declared in the previous Deliverable D6.2 – 

Section 5.3 [HEX22-D62] for the M&O architecture, namely: 

• Unified orchestration across the “extreme-edge, edge, core” continuum. This topic is 

addressed by integrating the robot infrastructure at the extreme-edge domain together 

with the edge and the central cloud resources. This is done using two orchestrators, one 

for the cloud and edge domains and another one for the extreme-edge, both of them in 

turn under the supervision of a higher-layer controller. The addition of the developed 

enablers allows the orchestration of services across the whole continuum, optimizing their 

placement and increasing efficiency and performance. 

• Increasing levels of automation. This innovation is also apparent throughout this demo 

through the inclusion of the developed enablers. Providing novel automation mechanisms 

for orchestration, function redistribution, monitoring and performance diagnosis, as well 

as predictive orchestration, brings forth new ways to optimize the network and service 

deployments and utilization. The addition of these enablers paves the way for a zero-

touch approach to network and service management, especially covering the distribution, 

placement and troubleshooting of functionalities across the various domains. 

• Adoption of data-driven and AI/ML techniques in the M&O system. These 

techniques are used to generate AI/ML models and feed them with data in the context of 

Zero-touch automation. In turn, these models are responsible for making decisions 

regarding the management and orchestration of the deployed services. These tools rely 

on automated processes to retrieve the required data across the various domains, 

providing monitoring of services and components dynamically upon request. 

4.3 Demo implementation 

Demo #4 is designed in such a way that it can align with the different system architecture views 

mentioned in Deliverable D6.2 [HEX22-D62]. The various aspects of the demo are presented 

according to the view they align with. For reference, the software components are aligned with 

the proposed structural view, the functionality and algorithms are aligned with the functional 

view, and finally, the deployment is aligned with the physical infrastructure that has been used to 

implement the demo. Though most of the components are common in all three scenarios, it is also 

true that there exist scenario-specific components. The role of these novel components is 

emphasized in the corresponding component description. 

 Scenario 4.1: Continuum (cloud, edge, extreme-edge) M&O of a Digital 

Twins service 

This scenario is the basis on which the following two scenarios are built as well. Thus, in each 

consecutive scenario, all the components mentioned in the previous ones are carried over and 

used as well. As the title suggests, this scenario focuses on the orchestration and monitoring of 

the Cloud – Edge – Extreme-edge continuum. 

4.3.1.1 Scenario description 

In short, this demo scenario consists of a set of 3 mobile robots in a simulated industrial 

environment, which are able to work as Digital Twins, meaning that they can "copy" and execute 

the actions and movements required by humans through a remote Human-Machine Interface 

(HMI), thus avoiding the human presence in the industrial environment itself, which could be 

inconvenient or even dangerous in some cases. To make this possible, this HMI has been 

implemented through an advanced Virtual Reality (VR) User Interface (UI) that can be used to 

visualize the whole industrial environment in real-time and with 3D graphics, as well as the robots 
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themselves, providing a great level of detail (see Figure 4-1). This way, the end-user can manage 

the robots and also detect issues and fix them through teleoperation. 

Besides the use-case itself, this demo scenario also aims to demonstrate one of the main 

innovative concepts introduced in the previous Deliverable D6.2: the continuum M&O concept 

through the Cloud–Edge–Extreme-edge continuum, being the robots the main elements of the 

extreme-edge infrastructure itself. This contrasts with the common state-of-the-art approach, 

which typically addresses each domain in a separate way.  

 
Figure 4-1. Digital Twin interface. 

The information regarding the status of the robots, battery capacity, CPU usage, RAM usage and 

storage capacity is sent to the Digital Twin interface and illustrated in an easy-to-view way. The 

UI can further display the number, names, health status of the robotic services running at each 

robot in the industrial environment and even display alerts when an impairment is identified. 

Additionally, for the creation and control of the industrial Virtual Reality (VR) environment and 

the Digital Twins, the Unity game engine [UNI] is used. The Automatic Guided Vehicles (AGVs) 

are equipped with 5G NR modems that are used to communicate with the cloud, housing the 

industrial automation service and the edge, where the AGV controllers are located. 

 
Figure 4-2. VR control of Digital Twins. 
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4.3.1.2 Software components 

The software components used for the scenario implementation have been designed as standalone 

and loosely coupled modules to allow for their independent development, deployment and scaling 

when necessary. Since the three scenarios use, more or less, the same components, the software 

architecture is described once here and it will be referenced in the following scenarios. An 

integrated view of the software architecture and the various component interactions is pictured in 

Figure 4-3. 

 
Figure 4-3. Demo #4 software architecture. 

For the implementation of the scenarios, and specifically for the unified orchestration of the Cloud 

– Edge – Extreme-edge continuum, the Open-Source MANO (OSM) [OSM] was selected as the 

baseline orchestration stack. On top of OSM, a few additional components were developed in 

order to handle the higher-layer intelligence operations, such as differentiation of the various 

domains, deployment on the individual domains, management operations, etc. In addition, 

components such as Intelligent Orchestration and Diagnostics support the orchestration 

procedures for automatic deployment, scaling and migration of services when needed. Intelligent 

orchestration is a superset of other components like the AI algorithms (i.e., Function Placement) 

and orchestration manager, where all interfaces with other components and tools are located for 

enabling the various actions and the service registry. These will be explained in detail later in this 

document. At the lowest layer, the Virtualized Infrastructure Managers, in this case, OpenStack 

[OST] and Kubernetes (K8S) [KUBa], work together with OSM deploying the Virtual Network 

Functions (VNF) or Containerised Network Functions (CNF). The deployed functions for this 

demo include the components of the industrial automation service. The components comprising 

that service are the Industrial automation cloud component, the edge-level controller and the 

autonomous robot agents. These functions provide the external management of the automation 

service, the edge-level group coordinator and the individual robot agents, respectively. 

Additionally, the MaaS component collects all system, network and robot metrics for analysis by 

the Diagnostic component. K8s is deployed as a cluster, where extreme-edge devices, edge and 

cloud are introduced and managed by the system. For the extreme-edge devices, a lightweight yet 

powerful certified K8s distribution designed for production workloads, called K3s [K3S], was 

selected. Monitoring probes are also used to monitor the infrastructure, network and services that 

are running inside the system. The probe is the ultimate tool to capture and analyse data in real-

time to help system operators find the sources of any slow-downs or performance bottlenecks 

before they begin to affect the system. Collected data can be processed locally and published to 

the target output, in our case, the Monitoring system, which is the central point of all logs, metrics, 
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and other types of data from the system. The probe is the ultimate tool to capture and analyse data 

in real-time to help system operators find the sources of any slow-downs or performance 

bottlenecks before they begin to affect the system. Collected data can be processed locally and 

published to the target output, in our case, the Monitoring system, which is the central point of all 

logs, metrics, and other types of data from the system. Different actions, events and alerts can be 

generated by the system based on the analysis done. 

The group containing the Service Registry, Predictive orchestration, Function placement, and 

Diagnostic components for the purposes of this demo is referred to as Intelligent Orchestration. 

This fabric of functionalities provides added value on top of the M&O capabilities. It is the higher-

layer controller logic that is constantly fed data from the MaaS framework and propagates its 

decisions for potential actions to the orchestrator (OSM) for enforcement on the infrastructure. In 

the Infrastructure layer, there are three robots that are being used as workers for the industrial 

automation context. These robots receive and execute tasks based on the requirements of the 

production line inside this context. The User Equipment are mobile terminals, in this case, a laptop 

and a set of VR glasses with controllers, used by local or remote human workers or technicians 

to control, if necessary, overview or provide a technical examination of the robots. Finally, the 

Digital Twin application is a desktop and VR application that interfaces with robots as part of the 

industrial automation service and provides the tools to humans to perform the aforementioned 

actions. Detailed descriptions of each component used in this scenario can be found in the 

following subsections. Some of the components, namely the Predictive Orchestration, Function 

Placement and Diagnostic components, is described later in the next scenarios, where they are 

introduced respectively. 

Digital Twin App 

The Digital Twin application has been developed using Unity [UWS], a 3D engine for creating 

real-time 3D games, apps, simulators, and it is even used in films, automotive, architecture, and 

more. The interface fully depicts the industrial environment with 3D graphics providing remote 

monitoring and control of the environment by displaying in real-time and in great detail industrial 

systems, robots, their parts, movements, forces, interactions, and all other assets. A human can be 

involved (HMI – Human Machine Interaction) in these industrial tasks with the use of a Digital 

Twin App via Virtual Reality (VR) technology with immersive, realistic 3D graphics (Figure 4-4). 

Through the HMI the user can receive notifications, observe and interact with their digital twins, 

examine their exact location on the site and their status condition (battery level, mode, RAM, 

CPU, running services, etc.) at all times. Video is streamed in real-time from the cameras of the 

robots as well as from other cameras placed inside the industrial environment. By using Virtual 

Reality (VR), the remote interaction with the factory becomes more interactive. The user, with 

the help of special glasses, can "touch" the robots virtually, come close to them, control the 

different parts of the robot, supervise, and adjust its parameters. Finally, using the remote control, 

a user can carry out a task “manually”, solve problems, or in case of faults, move a robot to a 

specific area (e.g., a repair point) where a mechanic can fix the problem. More details about the 

Digital Twin and the VR application are described in Deliverable D7.3 (section 6.1.7), which is 

planned to be released alongside with this document.  

 
Figure 4-4 Digital Twin Application Interface 
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Deployed Services 

The main target of the M&O operations are the deployed service components that comprise the 

industrial automation service used in this demo. These components are (see Figure 4-3): 

• the cloud management service; 

• the controller services; 

• the autonomous robot agent services. 

Based on their functionalities, each of these components can be deployed on the corresponding 

infrastructure. The cloud management service is resource intensive, as it hosts most of the AI 

functionalities of the industrial automation service. So it’s better suited to be hosted on the Cloud. 

It is also the main gateway for the users to get access to the provided functionalities, such as 

teleoperation of the robots, remote inspection, and monitoring. The controller service implements 

some communication and coordination functionalities between collocated and collaborating 

robots and can be deployed both on the Cloud and on the Edge. Finally, the autonomous robot 

agents, as the name suggests, are deployed on the individual robots acting as the proxy between 

the management services and the robot worker. These agents also allow the deployment of more 

specific services that can implement various worker roles in the industrial context. These services 

are practical implementations of robotic actions written in python and C++ that work on top of 

ROS (Robotic Operating System) [ROS] designed and developed in a microservices approach. 

Services can use sensors and servos to detect and grab objects, map the environment, navigate, 

collaborate with other robots, etc., inside the industrial environment. The conversion of roles to 

services allows the extension of the M&O reachability to intrinsic service components, enhancing 

the programmability of the extreme-edge.  

MaaS framework 

In terms of architecture, Figure 4-5 shows the design of the MaaS framework, which is composed 

of three main parts: the MaaS Client(s), which implements the front-end; a MaaS Server; and the 

Bridge, which translates the MaaS server probes’ requests to the targeted cloud platform 

technology.  

 
Figure 4-5. Main components of the MaaS architecture. 

In this scenario, the cloud platforms are the K3s cluster deployed on each robot. As a whole, the 

MaaS Platform works like this: the MaaS Client selects its monitoring goals. This selection is 

received by the MaaS server and transformed into a technology-agnostic probe deployment from 

the probes available on the probes catalogue. The MaaS Server supports multiple monitoring 

strategies. Either the probes are deployed as a sidecar or already provisioned in the running VM 

(Virtual Machine) or container. In most cases, the probe is deployed as a sidecar since sidecar 

containers can share resources with the target containers that are needed to be monitored, and 

monitoring can be performed seamlessly. The MaaS server selects the probes from the probes 

catalogue and the way the probe is deployed. The nature of the sidecar, VM or container is let to 

the bridge. The probes are stored in a probe catalogue and associated with metadata that allows 
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the MaaS server to select the deployment decisions. The metadata information contains the KPIs 

that the probe can collect and its deployment option (as a sidecar or not). The nature of the sidecar, 

VM or container is let to the bridge. The Bridge is the component responsible for mapping the 

pattern identified by the MaaS Server into a number of operations to deploy the necessary set of 

probes. In particular, the Bridge implements CRUD (Create Read Update Delete) operations on 

the set of probes present in the targeted cloud platform. The deployed probes push data into a 

Time Series Database (TSDB) that stores the collected data. The MaaS can integrate any TSDB 

technology as long as probes are properly configured. The MaaS also supports the possibility of 

using a pub-sub channel to decouple the probes from the TSDB. 

Service Registry component 

The Service Registry component is developed with the purpose of providing a well-defined 

directory of available/running services so that the system always has the latest information on 

specific values and requirements of these services. Additionally, it acts as a common data storage 

among all the components for synchronizing operations between them, management, and status 

monitoring. All the services that get registered to this component become visible to the other 

components as well. For each registered service, the following information is provided: 

• descriptors to be passed to the orchestrator for the actual deployment; 

• metrics/KPIs of interest to be monitored;  

• resource requirements for the deployment of the service; 

• capabilities requirements for the deployment of the service; 

• information regarding dependency on other services; 

• exposed endpoints for discoverability and programmability; 

• performance constraints for the diagnosis;  

• criticality; 

• resource/power usage profiles. 

After the registration, each component can retrieve the corresponding required information from 

the Service Registry in order to perform its tasks. 

Service Repository component 

The Service Repository implements the role of the common repository for all the components and 

service artefacts required in order to deploy the registered services like the Docker images, helm 

charts, etc. This repository acts similarly to a localized Content Delivery Network (CDN) for all 

the infrastructure across the Cloud – Edge – Extreme-edge continuum. Utilizing this component, 

the functionalities under the common M&O continuum are able to be distributed and placed on 

any of the managed resources, given that capabilities and hardware constraints are taken into 

consideration as well. 

4.3.1.3 Functional behaviour 

All the developed components have distinct functionalities that complement each other and are 

focused on the intelligent and automated management & orchestration of infrastructure and 

services.  

As described, artificial impairments (high CPU/memory/disk load, high latency, low battery, 

hardware stress, etc.) are introduced to the system. For the software to be able to identify these 

impairments, custom probes capable of monitoring all the required metrics are deployed as well. 

These probes are developed with functionalities to monitor all the required metrics. More 

information on these probes is found in the MaaS description below. To support the defined 

scenarios, groups of operations have been created to showcase the various stages of the M&O 

functionalities. These groups are: 

• service registration & instantiation; 

• functions placement operations; 

• predictive orchestration operations. 

Initially, the Service registration & instantiation stage includes all the operations required for the 

deployment of the industrial automation service. The sequence diagram for this stage can be seen 

in Figure 4-6. After the instantiation of the service is finished, the service is added to the list of 
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services under monitoring. This is a requirement for the second stage and part of Subsection 4.3.2, 

i.e., the Function Placement operations. The functionality of each component from those 

described in the previous Section 4.3.1.2 is described in the following subsections. 

 
Figure 4-6. Service registration & instantiation sequence diagram. 

MaaS framework 

The MaaS framework offers three main functionalities summarized in Figure 4-7. 

 

 
Figure 4-7. Main functionalities offered by the MaaS framework. 

For the Data Gathering, the goal of the MaaS platform offers the possibility to manage the 

monitoring goals in a declarative manner and independent from the underlying cloud platforms 

(OpenStack or K8ss) and technologies. The MaaS provides a unique entry point for the different 

stakeholders (platform owner, service owner etc.) to monitor different KPIs. The MaaS offers the 

following features: 

• Technology agnostic: the MaaS is a general framework that is designed to support 

multiple target cloud platforms and multiple probing technologies. One can cite 

Prometheus Exporters [PAE], Elastic Stack Beats [Ela19], or a custom probe like the one 

deployed in this Demo #4. This probe is capable of collecting all the required metrics to 

support the scenarios in the industrial context. In this context, the selected metrics that 

are used as input for the intelligent orchestration mechanisms, along with the service 

descriptors, capabilities and constraints, are: 

o resource metrics (CPU, memory, disk); 

o network metrics (latency, packet loss, UL/DL data rate); 

o power consumption; 

o service KPIs: 

▪ industrial operation cycle time; 
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▪ packages handled per min/hour; 

▪ incidents per min/hour; 

▪ availability. 

The deployment of the probes is handled by the automated mechanisms provided by the 

MaaS framework. 

• Model-driven: the monitoring goals are specified following a tree-like model derived 

from the ISO 25011 service quality standard [ISO2011, ISO2017]. The model defines 

multiple quality attributes that are decomposed into finer-grained concepts until reaching 

measurable properties, as it is depicted in Figure 4-8. Indicators can be selected at any 

level of the tree. The selection is mapped automatically into the measurable properties 

associated with the leaves of the selected subtree. This request is then transformed into a 

set of probes that are deployed in the target platform or system. 

 
Figure 4-8. Tree-like organization of the monitorable quality attributes. 

 

Figure 4-9. Example of MaaS monitoring goals. 

Figure 4-9 introduces an example of monitoring goals. Of course, the MaaS supports 

many other goals, and use-specific goals can also be added.  

Service Registry component 

The main functionality of this component is to store and share information among the components 

of the system. By using the service registry, the problem of two components having different 

values, identifiers or even semantics has been avoided by providing a central reference place for 

the information it needs, enabling thus greater continuity of the intelligent orchestration system. 

Its main functionalities are:  

• Registration, where data, metrics, configurations, requirements, etc., are kept and can be 

accessed by other mechanisms of functions. 

• Retrieval, where any component can retrieve the service-specific information it requires. 

• Modification, where the contents of the services that are stored to match the latest 

versions and updates can be updated. For example, every time a service is moved from 

one node to another, the service registry needs to have the latest changes available for all 

components to reflect the latest deployment status. 
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• Filter or query, where the output is processed to match a specific metric or value. 

• Deletion is the process of removing irrelevant data from the service registry. For example, 

if a service is not used, the associated records containing all the information for 

orchestration, monitoring, and other components can be removed. 

Specifically, after a new service, in this case, the industrial automation service, is registered, OSM 

is triggered to deploy the new service on the selected infrastructure. After deployment, the service 

components perform their internal operations for discovery and coordination and then extreme-

edge infrastructure, the robots, become available for operation through the Digital Twin 

application. 

Service Repository component 

The functionality provided by this component is that of a repository for all the required software 

and artefacts for the deployment of services. Each service that is registered in the Service Registry 

requires sources for the artefacts to deploy. These sources can be local or remote. Having this 

local repository with all the required artefacts enables immediate deployment of new or existing 

services, especially on “fresh” nodes that have not been used before. 

Specifically, this demo implements the role of a Docker images repository hosting the container 

images for the various services utilized in the industrial automation context. Furthermore, it also 

performs the role of the Helm chart [HELM] repository for the various K8s charms utilized for 

the deployment of the same services. Finally, it can also be used as storage for the descriptors, 

configurations and package/binary files that might be used during the scenario workflows. 

 Scenario 4.2: Handling unexpected events using Functions Placement 

This scenario introduces novel mechanisms to detect and handle unexpected events during the 

operation of the industrial automation service that has been selected for this use case.  

4.3.2.1 Scenario description 

This scenario aims to demonstrate how AI/ML enablers, for anomaly detection and performance 

degradation analysis, along with increased automation and programmability, can be utilized to 

further increase the efficiency of network and/or service operations, in this case, industrial 

operations, using closed-loop control mechanisms. These mechanisms rely on monitoring and 

performance diagnosis of the various services and components running on the infrastructure and 

are responsible for reconfiguring and redeploying services and functionalities in order to optimize 

their performance and achieve the targeted KPIs/KVIs.  

 
Figure 4-10. Robotic scenario 
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Additionally, these mechanisms are used to show how unexpected situations can be handled in an 

automated way without requiring human intervention while still allowing the option for a “human-

in-the-loop” workflow. Beyond the implementation itself, what this scenario demonstrates is the 

benefits of deploying closed-loop control mechanisms that rely on real-time data from the 

infrastructure and deployed services, as well as AI/ML mechanisms, in order to optimize the 

deployment and performance of the same services. Doing so, the accomplishment of target 

KPIs/KVIs can be monitored, and corrective actions can be taken immediately, or even pre-

emptively, upon detection/prediction of irregularities instead of relying on delayed human 

intervention. To showcase the various functionalities in the context of an industrial environment, 

in this scenario, impairments to the operations are injected artificially. These impairments can be 

applied instantly or gradually so as to better showcase the triggered responses from the 

corresponding handling component, the diagnostic and predictive orchestration components in 

this case. These impairments include, but are not limited to, the following:  

• resources stress (CPU/memory/disk); 

• network stress (artificial latency/packet loss); 

• artificial low battery;  

• artificial motor stress. 

For the demo implementation, an emulated industrial production line has been built using three 

mobile robots, with three locations assigned as goals for their respective roles of the robots and 

placeholder objects that are to be transferred between the different target locations: Production 

(quality checking), Shipping, and Repairing, based on the role that each robot implements. 

 
Figure 4-11. An anomaly detected during robot operation. 

Figure 4-10 depicts the described robotic scenario. Further information regarding the industrial 

environment and the robotic operations can be found in Deliverable D7.2 (to be released together 

with this Deliverable D6.3) in section 4.2.2. The mobile robots are also equipped with compute 

resources allowing the M&O systems to deploy and manage services on them as extreme-edge 

nodes. There is also a UI that can be used to provide information regarding technical malfunctions 

or performance degradations to technical personnel in case a remote intervention or maintenance 

is needed, like in the case of the malfunction shown in Figure 4-11. In this example, one of the 

robotic arms is experiencing increased stress caused by external human action for demonstration 

purposes, which is detected using the collected stress metrics from the arm’s motors. All the 

software components in these domains can be managed and orchestrated by the orchestrator.  
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4.3.2.2 Software components 

In this scenario, the previously mentioned components from Scenario 4.1, MaaS, Service 

Registry, and Service Repository, are also used. The newly introduced components are the 

Diagnostic and the Function placement components, shown in Figure 4-3. For details on those 

components, refer to Subsection 4.3.1.2. The details for the new components introduced in this 

scenario can be found in the following subsections. 

Functions Placement component 

The Function Placement component (which is described in detail in Deliverable D7.3, sections 

6.1.4 and 6.1.5) is developed with the purpose of optimizing the placement of services and their 

components across the available infrastructure, either at the cloud, edge or the extreme-edge 

domains, as seen in Figure 4-3. In the industrial context of this demo, for example, in the case of 

an unexpected situation, like the case where a task/functionality is in pending mode or is executed 

slowly, it is crucial to reallocate this malfunctioning task to one of the other nodes/robots to avoid 

possible downtimes. Accordingly, in the case where a robotic device goes out of order, there 

should be a component/algorithm responsible for redistributing the functions to the rest of the 

nodes/robots/units in an orchestrated manner and with minimum cost. For the correct operation 

of this component, interfaces with the Diagnostic, Monitoring, and Orchestrator components are 

needed. These interfaces are implemented as typical REST interfaces between the corresponding 

components. The interface with the Diagnostic component provides the trigger input for when 

services or components need to be moved in order to alleviate undesired situations or performance 

degradations. The interface with the Monitoring component, the MaaS framework, is required so 

that the Function Placement component can retrieve the current status of the infrastructure 

available and services in operation. Finally, the interface with the Orchestrator is required for the 

enforcement of the decision for the optimal placement of one or more services or components. 

Diagnostic component 

The Diagnostic component’s purpose is to carry out a performance diagnosis of a deployed 

service without extensive knowledge of the service’s functionality, metrics, and overall usage. 

Thus, it can comprise a useful tool that can provide valuable information to the components 

responsible for the optimal placement of the services and components. It has been developed 

specifically for monitoring a service/node and is characterized by a set of metrics/KPIs in order 

to detect anomalies in the observed behaviour or performance degradations. To accomplish that, 

this component utilizes information retrieved from the monitoring system, the MaaS framework. 

After the detection of such an event, a trigger is generated for the other components, specifically 

the Function Placement (FP) component, for an evaluation of the optimal placement of the service 

and its components. The optimization goal of the placement can be configured for a service based 

on predefined policies like minimizing the number of robots used, optimizing power consumption 

on the robots and optimizing based on the robot location. Additionally, if the services are not 

tightly coupled with the robots and can be offloaded on the Edge or Cloud compute nodes, then 

additional options exist regarding minimizing the latency of the service, maximizing the number 

of industrial tasks completed and so forth. To accomplish the detection of these events, the 

Diagnostic component utilizes different AI algorithms that have been implemented as 

interchangeable submodules to be used in conjunction with this component, also allowing the 

extension of the list of supported algorithms. This allows the extension of this mechanism with 

additional algorithms following common interface and data information models. The currently 

implemented algorithms include Self-Organizing Maps (SOMs) [SOM] and Depth-based spatial 

clustering of applications with noise (DBSCAN) [DBS] as an alternative for the clustering of the 

observed data, as well as a custom algorithm for topological investigation, correlation and root 

cause analysis based on adjacency lists. The algorithms are described in more detail in subsection 

4.3.2.3. Additionally, if the necessary requirements are met, a root cause analysis process can also 

be executed in order the detect the origin of the observed anomaly or degradation more accurately. 

The combination of these algorithms is capable of providing additional analysis capabilities by 

exploiting the advantages of the SOM tool (unsupervised learning, heterogeneous input) and 

utilizing additional information.  
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4.3.2.3 Functional behaviour 

This scenario relies on the already provided functionalities from Scenario 4.1 and introduces new 

workflows on top of them. During this stage, the running services, along with the available 

infrastructure, are continuously monitored for changes, errors, anomalies, or performance 

degradations. When such a case is identified, the Function Placement mechanism is triggered in 

order to compute the optimal placement for the service or services in question. The sequence 

diagram for this workflow is shown in Figure 4-12. 

 
Figure 4-12. Function Placement workflow 

A detailed description of the new components’ functional behaviour that performs these new 

functionalities can be found in the following subsections. 

Diagnostic component 

The Diagnostic component is utilized as a part of the intelligent orchestration group of 

functionalities. After the services and components of the industrial operation scenario have been 

registered and deployed on the corresponding domains, the Diagnostic component is triggered, 

by the Service Registry, in order to start performing analysis on the data generated by the service. 

During the industrial automation service operation defined in the scenario, multiple metrics are 

generated from the utilized nodes, for instance, CPU/RAM/disk/network utilization, as well as 

higher-level KPIs that have been defined for the service, for example, finished work cycles, 

number of examines items, number of malfunctions, etc. These metrics and KPIs are collected 

and exposed to the M&O system from the probes deployed using the MaaS platform. While the 

infrastructure and network ones are retrieved independently from the respective resources, for the 

service-specific KPIs, a common way of exposure and retrieval needs to be set for both the 

infrastructure provider and the service provider. For this demo, the high-level KPIs and the 

endpoints they are exposed to are declared in the initial definition of the services registered in the 

Service registration stage. This ingested information is then passed through a vectorizer, which is 

a module that vectorizes this information in order to be spatiotemporally correlated. This means 
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that the metrics and KPIs of a specific time slot are grouped together to provide a snapshot of the 

system and the service for that specific time slot, a vector.  

The created vectors contain one group of information per node as well as some general 

information of the vector. Each node is represented in the vector by its metrics and some general 

information about the node, including the anomaly detection analysis. For example, a vector can 

contain the groups: vectorID (a unique ID for each node), Timestamp (the timestamp of the 

snapshot the vector represents), Service (The name or ID of the service) and vector_data, the 

structure that contains the metrics of each node. The vector_data structure contains a Nodes list, 

where each element is a set of data for each node, and each set contains the values shown below: 

• name: name of the node; 

• state: node’s state according to the outlier detection decision; 

• outlier: boolean value to show if a node is detected as an outlier or not; 

• distance: distance between the node’s metrics and the respective neuron’s weights; 

• threshold: the predetermined threshold for the node’s distance, used for outlier detection; 

• percentage: the deviation between each metric and the respective neuron weight; 

• metrics: list of node metrics, where each element contains information for the name, 

value, unit and timestamp of each metric. 

Since each vector represents the service’s state at a given moment in time, the number of vectors 

propagated to the models is determined by the metrics collection frequency. An unsupervised 

learning process is taking place (as described in [SOM2]) when running a service for the first 

time, assuming the service runs in a normal environment, i.e., using non-anomalous data to train 

the models. The training is executed in real-time, starting from the instantiation of the service 

until a specific point is reached (determined from testing in an equivalent 

infrastructure/environment), where it is assumed that the learning process is completed. From that 

point on, the model can be used to detect anomalous sets of metrics of a node inside a given 

vector. Topologically, the training and inference stages benefit from increased resources, and such 

takes place at the resource that the Diagnostic component is deployed in the Cloud. The generated 

2D map of neurons, created after the feature set has been created from the ingested metrics, is 

used during the inference stage in order to detect anomalous states in the ingested vectors and 

trigger the root cause analysis process. As the selected algorithm for the clustering functionality, 

the SOM utilizes the concept of an artificial neuron map, where each neuron is characterized 

during training by its individual weights., i.e., the values that correspond to each input metric and 

are determined during training. The procedure to be followed in order to identify abnormal 

behaviours of the nodes is described by the following steps: 

• Step 1 - Data collection: The input data, which are the service's metrics/KPIs, are 

collected and correlated spatiotemporally as vectors. 

• Step 2 - Initialization of the topological map: The topological map is composed of 25 

neurons (assuming that the variety of metrics/KPIs is under a specific range). Each neuron 

is initialised by a random set of weights.  

• Step 3 - Competition learning process: For each input vector, the Euclidean distance 

between the weights of the neurons is computed. The neuron whose weights are most 

similar to the input vector is selected as BMU (Best Matching Unit). This step is repeated 

until all input vectors are examined and assigned to their BMUs. 

• Step 4 - Cooperation learning process: Through this step, all the sets of weights are 

updated. Steps (3) and (4) are repeated until several iterations have passed.  

• Step 5 - Detect faults: After training, the quantization error for each input vector is 

calculated. The quantization error is the distance between the input vector and the BMU's 

weights. A self-adjusted threshold (the parameters for self-adjusting are set during 

testing) is used to determine if this distance is long enough for the input vector to be 

characterized as an outlier. The nodes state is diagnosed using this comparison. 

The SOM algorithm was chosen, as it is able to combine and analyse various performance metrics 

(such as CPU utilization, memory utilization, disk I/O, network interface I/O, request latency etc.) 

to learn their underlying patterns and ultimately make decisions about the health status of VNFs 
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(Virtualized Network Functions) and CNFs (Containerized Network Functions) instances of 

services without prior knowledge of specific thresholds. The examined services, in this case, are 

the services that comprise the industrial automation service, namely the cloud management 

service, the edge controller service and the autonomous agent services. Upon detection of such 

events, and if the required information has been provided during service registration (e.g., 

available topology information and information for the internal service elements), a topological 

investigation is launched to try to identify the possible causes for those events. The selected 

algorithm for topological investigation is based on Root Cause Analysis (RCA) [RCA]. The basic 

principle of the algorithm is to check the reachability between the nodes (for example, instances 

that belong to VNFs), using each node’s health status that is determined by the fault detection 

performed in the SOM module and the network topology. The RCA module can also enable fault 

localization by identifying connected nodes that affect each other’s status, e.g., the non-healthy 

node connected to a healthy node and both being detected as non-healthy. The selected algorithm 

uses the health status provided to label the service nodes as “Healthy” or “Unhealthy”. An extra 

label, “Unknown”, is applied for the “Unhealthy” nodes that may be affected by other respective 

nodes. This is performed using an adjacency list that is obtained from the network topology. 

Specifically, an n-node undirected graph represented as an adjacency list is created using the 

virtual links of the topology. The nodes are numbered from 1 to n. Next, each “Unknown” node 

is examined to identify the Unhealthy nodes that may cause the node’s non-healthy state. The 

algorithm’s output is one list per “Unknown” node that contains the “Unhealthy” node(s) 

identified as the root cause for the respective node’s performance issues. The workflow described 

above is structured in two parts of the algorithm:  

• Part A determines the status of individual elements in the network (“Healthy”, 

“Unhealthy”, “Unknown”). 

• Part B creates the Root Cause lists for the Unknown” nodes. 

After both stages of the diagnostic process have been completed for a vector, and an anomaly or 

degradation has been successfully identified, with or without a valid root cause, a message 

containing information regarding the detected event along with the information regarding the 

relevant service/node is propagated to the Function Placement component. 

Functions Placement component 

This component comprises two sub-modules, one implementing the optimization function 

responsible for deciding on the optimal placement and a controller responsible for interfacing 

with the orchestrator in order to apply the deployment decision on the corresponding 

service/component. For the first module, typical function optimization techniques have been used 

to construct a multivariate function that takes into consideration all the possible variables of 

interest for this problem. The currently selected variables are: 

• number of services/tasks; 

• number of available infrastructures (across the available domains); 

• computational load and maximum computational load of each infrastructure; 

• the power cost of utilizing corresponding infrastructure; 

• the computational cost of utilizing corresponding infrastructure; 

• communication cost between related infrastructures. 

Utilizing information retrieved from the available infrastructure and monitoring the deployed and 

available services/components, this module can provide optimal placement for targeted services. 

Specific details for each service are retrieved from the Service registry component. The placement 

algorithm is also configurable regarding the targets that are prioritized for the placement. Energy 

efficiency, the minimum number of infrastructures used, minimum amount of network traffic 

(focus on collocating as many services as possible) are some of the potential optimization targets. 

For the second module, an API has been developed and added as a wrapper to the first module in 

order to allow interfacing with the optimization algorithm and propagating the decisions to the 

orchestrator. 

After a service is registered, the FP component is triggered in order to decide the placement for 

it. This initial placement also follows the selected policy for the placement, mentioned earlier. In 

this case, the initial placement of the industrial automation service’s components is performed 
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based on the restrictions regarding the placement of these components. This means that the Cloud 

management service is placed in the Cloud, the controller service is placed at the Edge, and the 

Autonomous robot agents and service roles are placed on the robots. When a need to find a new 

placement for one or more of these components arises, the FP is triggered to decide on this new 

placement. During this scenario, the service roles of the robots are frequently required to be 

migrated due to injected impairments or artificial stress. 

 Scenario 4.3: Improving service downtime and reducing costs using 

Predictive Orchestration 

This scenario is focused on moving from a reactive approach in handling unexpected events to a 

proactive one, based on predicting the future states of the services and resources in order to 

identify the conditions that will lead to said events. 

4.3.3.1 Scenario description 

This scenario aims to demonstrate how utilizing AI/ML enablers to predict the behaviour of 

services and/or components can lead to increased efficiency and reduced costs, operational and 

maintenance, of industrial operations and systems. These mechanisms rely on using monitoring 

data from selected services or components to train predictive models capable of identifying 

upcoming critical events. The objective of this scenario is to demonstrate how the deployment 

and utilization of these AI/ML enablers could accomplish the proposed improvements for the 

operational workflows inside an industrial context. Moreover, these mechanisms are used to show 

how the impact of unexpected situations can be minimized in an automated way without requiring 

immediate human intervention. Besides the implementation itself, this scenario demonstrates the 

benefits of utilizing AI/ML enablers that rely on monitoring data from the infrastructure and 

deploying services in order to optimize the orchestration of services and allocation of roles/tasks 

in an industrial context. In this way, the target KPIs/KVIs can be monitored, and in extreme cases, 

corrective actions can be taken pre-emptively before a critical event occurs. For the demo 

implementation, the focus is on the health and power consumption of AGV components like 

batteries and motors, shown in Figure 4-13. The behaviour of those components is monitored in 

order to predict upcoming critical events such as malfunctions, overvoltage, extreme stress, low 

power, etc., and trigger the appropriate orchestration actions to avoid/handle them pre-emptively. 

This scenario utilizes all the software components introduced in the two previous scenarios and 

extends them with the introduction of the predictive orchestration component. 

 
Figure 4-13. Monitored components. 
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4.3.3.2 Software components 

In this Scenario 4.3, all the components developed for Scenarios 4.1 and 4.2 are reused, and the 

set of functionalities is extended by introducing a new component, the Predictive Orchestration 

component, seen in Figure 4-3, tasked with handling the prediction of future states of the deployed 

services and infrastructure.  

Predictive Orchestration component 

The Predictive Orchestration component has been developed with the purpose of predicting the 

behaviour and performance of monitored services and nodes across the available infrastructure. 

The purpose of these predictions is to compile an image of the future state of the infrastructure 

and deployed services. To accomplish that, the component utilizes AI/ML models specifically for 

time series forecasting. This future state is used by the functionality allocation component in order 

to discern if there is a need for pre-emptive actions to prevent upcoming critical events. These 

actions increase the efficiency of the industrial scenario operations by reducing the maintenance 

costs, reducing the time to replace malfunctioning workers, reducing the time stalled/blocked time 

between stopped operations, and in general, reducing industrial operations downtime while also 

minimizing maintenance costs by scheduling it proactively. Since the context of this demo is that 

of an industrial environment and its automated operations, appropriate pre-trained models for the 

specific metrics that will be taken into consideration will be utilized to enable the prediction of 

the behaviour of the various AGV components, like the battery, the motors, etc. 

4.3.3.3 Functional behaviour 

This scenario relies on the already provided functionalities from Scenarios 4.1 and 4.2 and 

introduces a new workflow on top of them. The predictive orchestration, an extension of the 

closed-loop M&O process as described in Scenario 4.3 (Subsection 4.3.3), is demonstrated. The 

purpose of these operations is to be proactively triggered in order to prevent an undesired event, 

like performance degradation and malfunctions, from happening. This sequence diagram is shown 

in Figure 4-14. A description of the new component’s functional behaviour can be found in the 

following subsections. 

 
Figure 4-14 Predictive orchestration workflow 
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Predictive Orchestration component 

The prediction functionality of this component is implemented using multiple AI/ML algorithms 

for trend detection, univariate and multivariate prediction, and prediction evaluation. These 

algorithms, similar to the ones of the Diagnostic component, have been developed as external 

modules to be used in conjunction with the predictive orchestration component, thus allowing its 

extension with others as well. The currently implemented algorithms are Facebook's Prophet 

[FPR], ARIMA/SARIMA [ARI], and Univariate and Multivariate Linear Regression [MLR]. 

These models are used individually, mainly depending on the type of metric, if it is additive, etc., 

and the predictions it provides. The predictions of each model are cross-compared and weighted 

against the actual observed value for which they provided predictions. This acts as a self-

validating feedback loop. Greater weight is assigned to the models that give more accurate results, 

while the rest of them are assigned lower weights and might also have their hyperparameters tuned 

in order to provide better future results. For this component, an API has also been developed for 

interfacing with the rest of the components and external management. During the operation of the 

service, its state is monitored and analysed by the MaaS and Diagnostic components, respectively. 

In parallel, the Predictive Orchestration component utilises the aforementioned models to predict 

the future state of the monitored metrics and KPIs. These predicted values are fed back to the 

Diagnostic component in order to analyse the predicted future state for any anomalies. When an 

anomaly is detected in that future state and verified as valid through the mechanisms described 

earlier, the FP component is then proactively triggered to decide the optimal placement of the 

service components to prevent the predicted anomaly. 

 Scenario Deployments 

The various developed software components are deployed on resources on the cloud and edge 

domains. The deployment layout is pictured in Figure 4-15. 

 
Figure 4-15. Demo #4 deployment overview. 

This deployment considers a common orchestrator for the extreme-edge nodes, K3s, which is 

available, meaning that its connection information is already provided, a priori to these nodes, for 

their management and orchestration. In cases where such an assumption is not made, another 

solution to the problem of extreme-edge discovery will need to be implemented, like the one 

proposed in the complimentary lab experiment regarding node discovery in subsection 6.2. The 

communication between the extreme-edge nodes, the AGVs, and the rest of the infrastructure is 

implemented using a commercial 5GNR solution, the Quectel RM500Q modem [QUEC] and 

utilizing an overlay VPN network over the commercial 5G network. The communication between 

the various Cloud-Edge domain components is handled by wired connections and virtual 

networks. The interaction between different users and the robots in this demo is implemented 

utilizing a Virtual Reality (VR) headset and a laptop. Through these devices, the user can view 

the Digital Twin application and also interact with the individual robots or configure/control the 

service overall. A large monitor is also used to provide the overall presentation of the Digital 

Twin application for other users that are not currently interacting with it. A secondary monitor is 
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also used to show the status of the deployment in the form of metrics and KPIs collected and 

ingested by the system through the MaaS framework. Other than the infrastructure requirements 

of the deployment, the demo also requires a minimum amount of space for the robots to localize 

and move inside. This space needs to be mapped as the emulated, or the actual, if that is the case, 

industrial floor space. This space should be a minimum of 9 square meters up to no known size 

limit. For this demo specifically, the used area is 12 square meters, i.e., 4x3 meters. Finally, Table 

4-1 contains the compute resources allocated for each of the demo components.  

Table 4-1. Demo #4 deployment resources. 

Host Description Type 

(VM/ 

Physical) 

OS Arch. CPU 

(#) 

RAM 

(GB) 

Disk 

(GB) 

MaaS 

framework 

MaaS framework 

host 

Virtual Ubuntu 

20.04 

x86_64 8 32 80 

K3s-master K3s master for the 

edge 

Virtual Ubuntu 

20.04 

x86_64 4 4 100 

K3s-master K3s master for the 

extreme-edge 

Virtual Ubuntu 

20.04 

X86_64 4 4 80 

K8s-master K8s master for the 

cloud nodes 

Virtual Ubuntu 

20.04 

X86_64 4 8 80 

OSM Service orchestrator Virtual Ubuntu 

20.04 

x86_64 2 4 80 

Intelligent 

orchestration 

components 

Service Registry, 

Diagnostic, 

Predictive 

mechanism, 

Functions placement 

Virtual Ubuntu 

20.04 

x86_64 4 4 100 

Service 

Repository 

Orchestration 

repositories for 

docker images and 

helm charts 

Virtual Ubuntu 

20.04 

x86_64 2 4 100 

K8s cloud 

node 

Cloud worker node Virtual Ubuntu 

20.04 

x86_64 4 8 80 

K3s Edge 

node 

Edge worker node Virtual Ubuntu 

20.04 

x86_64 4 8 80 

k3s-worker-1 Robot worker Physical Ubuntu 

20.04 

x86_64 4 8 256 

k3s-worker-2 Robot worker Physical Ubuntu 

20.04 

x86_64 4 8 256 

k3s-worker-3 Robot worker Physical Ubuntu 

20.04 

x86_64 4 8 256 

5 Demo #5: Data-driven device-edge-cloud continuum 

management  

5.1 Demo overview 

Demo #5 is directly related to Hexa-X Objective 3 (Connecting intelligence towards 6G), which 

targets turning AI/ML into an essential component of the B5G/6G technology. Specifically, for 

WP6, this objective is intended to develop AI/ML-powered enablers for orchestration and service 

management in order to achieve higher efficiency and enable new services (and revenue streams) 
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considering an expanded focus by targeting the continuum from the end-devices to the cloud/core 

networks. Demo #5 integrates four different scenarios that are executed in a simulated urban 

environment:  

• Scenario 5.1: Continuum orchestration of AI/ML-driven traffic light control service. 

Broadly, the scenario consists in a simulated road-traffic urban environment where traffic 

lights are controlled by a network service which is deployed on the device-edge-cloud 

continuum, and that relies on an AI/ML algorithm to increase the mobility of the vehicle 

in the simulated environment. Although the urban scenario is mostly simulated, the traffic 

lights have been implemented through a set of real LED lamps that are connected to a 

cluster of low-power computing nodes (a Raspberry Pis cluster) running the traffic lights 

control functions, which in practice constitutes a realistic extreme-edge implementation 

for this demo. The service functions are deployed on demand by a service orchestrator 

able to manage resources on this extreme-edge environment and on other regular 

computing nodes simulating the edge and the cloud domains.  

• Scenario 5.2: Prediction-based URLLC service orchestration and optimization. This 

scenario is a particularization of the simulated road-traffic urban environment in the 

previous Scenario 5.1, but with a small set of vehicles, where the vehicles request 

URLLC-type services. In this case, an AI/ML data-driven approach is used to predict the 

road traffic increases and proactively scale-up the needed resources to make the necessary 

servers available before the service quality actually drops. Also, if possible, 

computational tasks can be offloaded to the extreme-edge resources, i.e., close to the end-

users.  

• Scenario 5.3: Reactive security for the edge. Relying on the main concept from the 

previous scenarios, this scenario targets to showcase how M&O security can be enforced 

across the whole network (from the extreme-edge to the central cloud), also targeting 

specific network domains and network slices. The scenario covers various aspects:  

o The prediction of the future state of a device. In this case, the M&O security 

framework is used to proactively detect the early steps of an attack and take 

actions to block the predicted next steps of the attack.  

o Ensuring the lowest possible latency. In this case, the security orchestration 

framework is distributed to improve the time-to-detect and time-to-remediate 

KPIs.  

o Re-locating service as close as possible to the end-user device. In this case, the 

scenario shows how security functions can be distributed in a very granular way, 

down to the extreme-edge domain devices, relying on a hierarchical organisation 

of security orchestrators. This approach allows deploying local autonomic 

lightweight orchestrators on the edge and complex orchestrators in the core.  

• Scenario 5.4: MLOps techniques to deploy AI/ML service components. This scenario 

approaches the MLOps methodology to deploy and operate an AI/ML model on a 

simulated MNO infrastructure. It highlights the cooperation between two stakeholders 

involved in the MLOps workflow: the MNO (which operates the AI/ML model on its 

infrastructure) and the SW Vendor (which designs and trains the AI/ML model). Aligned 

with the Design Layer concept introduced in [HEX22-D62], this cooperation between 

two independent entities is one of the main concepts explored in this Demo #5 since it 

implies the sharing of the training data from the MNO to the Vendor, which in real-life 

scenarios could involve the sharing of sensitive data (e.g., personal data) between the two 

entities to train the AI/ML model. The scenario also explores other well-known concepts 

in the AI/ML scope: the drift management concept, considering how to integrate this in 

the MLOps workflows.  

In the following sections, each of these scenarios is described in more detail.  

5.2 Innovations related to the demo 

Although in a reduced scope, this Demo #5 addresses most of the innovations described in 

Deliverable D6.2 – Section 5.3 [HEX22-D62], namely:  
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• Unified orchestration across the “extreme-edge, edge, cloud” continuum. This is the 

main topic addressed in Scenario 5.1 - integrating the traffic lights infrastructure at the 

extreme-edge domain, together with the edge and the central cloud components. Also, in 

Scenario 5.2, where the same prediction algorithm that drives the orchestration decision 

can be used for the three different resource domains: depending on the time required to 

activate each of them, a different prediction window can be employed.  

• Unified management and orchestration across multiple domains, owned and 

administered by different stakeholders. This is partially addressed in Scenario 5.4, 

where MLOps techniques involve both: the MNO domain and the SW Vendors domain.  

• Increasing levels of automation. This innovation is addressed in all the Demo #5 

scenarios. In Scenario 5.1, RL algorithms contribute to automatically operating the traffic 

lights' status in a more efficient way. In Scenario 5.2, an LSTM [LST] network prediction 

already determines the number of resources to be (de)activated over time. In Scenario 

5.3, layered closed loops are used to automatically detect, contain, and eradicate a cyber-

security threat (the level of automation depends on the authorizations granted to the 

system since some remediation actions may require approval from human 

administrators). Finally, in Scenario 5.4, MLOps techniques are used to automatically 

train and deploy the AI/ML models on a simulated MNO infrastructure, reducing manual 

intervention for both: the AI/ML models vendor and the network operator.  

• Adoption of data-driven and AI/ML techniques in the M&O system. Data and AI/ML 

techniques are used to feed a Reinforcement Learning model in Scenario 5.1. Also, in 

Scenario 5.2, they are used to compute the number of servers required based on the real-

life traces from an Italian city [MKV+22]. Also, in Scenario 5.3, although no AI/ML 

technique is currently proposed in the scenario itself, the proposed system is evolutive, 

meaning that it is able to integrate AI/ML modules to leverage its automation capabilities. 

In this sense, AI/ML could be useful both: in the detection/analysis phase and in the 

remediation phase. Finally, in Scenario 5.4, data is used to train the AI models that need 

to be generated at the SW Vendor side and to monitor the AI models once deployed on 

the MNO infrastructure.  

• Adoption of the cloud-native principles in the telco-grade environment. Cloud-native 

principles are applied in two main ways within this Demo #5: (i) by using micro-services 

for implementing the different software components in the demo in the form of Docker 

containers, and (ii) by showcasing mechanisms for the services to be deployed and 

updated using DevOps practices, implementing continuous integration and continuous 

delivery (CI/CD) pipelines with a high automation degree. This is specifically addressed 

in Scenario 5.4.  

5.3 Demo implementation 

As for the previous Demo #4, the implementation of this Demo #5 has been designed in such a 

way that it can be aligned with the M&O architectural design introduced in the previous 

Deliverable D6.2 [HEX22-D62]. In the following subsections, the scenarios considered for this 

demo are presented according to the same structure used for the previous Demo #4, describing 

the different components used for each scenario, its functional behaviour, and the deployment 

details for each.  

 Scenario 5.1: Continuum orchestration of AI/ML-driven Traffic Lights 

Control Service  

5.3.1.1 Scenario description  

Scenario 5.1 aims at demonstrating how the 6G technology can be used to improve the road traffic 

flow in urban environments by controlling the traffic lights using AI techniques. The objective is 

to demonstrate how the deployment of this AI/ML-enabled control could improve road traffic 

mobility compared to the common approach, i.e., the traffic lights activation based only on 

deterministic and periodic time patterns. Beyond the implementation itself, what this scenario 

suggests is the possibility of deploying more advanced sets of connected traffic lights to enable 
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more efficient road traffic control strategies. These traffic lights, beyond simply switching on/off 

their lamps, would also be enabled to perceive their immediate environment (e.g., through 

cameras installed on the traffic lights themselves or in nearby locations) and would send this 

information to the edge application through the 6G network. Here, based on AI/ML algorithms, 

it could trigger more intelligent actions by adapting the traffic lights switching times to the actual 

traffic conditions (see Figure 5-1). This would help to reduce traffic jams and minimize waiting 

times, as well as provide more advanced functionalities, such as coordinating the traffic lights 

activation to give preference to priority vehicles passing through (e.g., ambulances or other 

emergency vehicles), among others. Besides, real-life implementations of a system like this could 

help to reduce CO2 emissions in polluted cities, which is also in line with the Sustainability KVI 

defined in [HEX21-D12]. For the demo implementation, a simulated set-up has been devised2, 

consisting of:  

• The extreme-edge components are implemented by a set of hardwired red/orange/green 

LED lamps representing the set of traffic lights to be controlled, which are connected to 

a set of small-scale Raspberry Pi computers running the low-level traffic light control 

processes.  

• The edge cloud, where the AI/ML model is used to control the traffic lights, is trained 

and executed. Specifically, the classical Q-Learning algorithm [Wat89], a Reinforcement 

Learning based algorithm, has been used for this3  

• The central cloud, where a so-called central urban mobility server and other core NFs are 

be hosted.  

For the vehicle's flow generation, a well-known open-source framework for the simulation of 

urban mobility scenarios has been used (SUMO [LBE+18]).  

 
Figure 5-1. Smart traffic lights to enable AI/ML-driven control. 

This tool allows the generation of different traffic patterns with different kinds of vehicles over a 

simulated urban environment consisting of several intersections regulated by traffic lights. It also 

offers a GUI which displays in real-time the vehicle's flow and the traffic light's activation (see 

Annex I). However, although software-based, this simulated environment is in full 

synchronisation with the actual LED lamps at the extreme-edge mentioned above (see Figure 

5-2). More specifically, regarding the urban environment setup, a layout with four crossroads has 

been designed, with a traffic light at each branch of each crossroad. Three crossroads have four 

 
2 “Technology Readiness Level (TRL) [Hor20] for this demo is TRL 3 (experimental proof of concept). 

3 Please, be aware that for this demo scenario the main concern here is not on the AI/ML topic itself, but the 

demonstration of the continuum M&O concept including the extreme-edge domain. AI/ML is used here anyway as 

a way to align the scenario with what could be a use case for future 6G networks, where services based on AI 

techniques are expected to be more and more relevant. 
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branches, while the last one has only three, having a total of 45 individual lamps to be controlled 

(see Figure 5-3).  

 

Figure 5-2. Simulated urban environment synchronised with the real traffic lights. 

 

Figure 5-3. Scenario 5.1 – streets layout. 

This setup is used to run the software simulation on the computer. However, as mentioned, a 

physical replica of this setup has also been built with real LED lamps, which are connected to 

four Raspberry Pi cards (one per crossover) to implement a realistic extreme-edge set-up. Figure 

5-12 in Section 5.3.1.4 shows a picture of this replica. The traffic lights view areas (one per traffic 

light) are simulated within this scope, i.e., no real cameras have been deployed to measure the 

traffic density in each traffic-light control area. For the sake of simplicity, this functionality has 

been delegated to the above-mentioned SUMO simulator, which monitors those lane areas 

highlighted in blue in Figure 5-34. The generation of the vehicles participating in the simulation 

is also delegated to SUMO, which generates them with specific trajectories and speeds on the 

given street layout. It progressively adds vehicles following a statistical distribution based on a 

random seed. Of course, the challenge to the AI is to control the traffic lights status in such a way 

to allow the vehicles to make their journey as quickly as possible, minimising (or even avoiding) 

waiting at red lights. More details about the demo implementation are provided in the following 

 
4 As previously mentioned, in a real-life application, this could be done by real video camera attached to the traffic 

light, together with an AI/ML-based image recognition software trained to detect high traffic density situations. 
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sections, starting with the main functional components (section 5.3.1.2), the overall functional 

behaviour of the demo (section 5.3.1.3), and the deployment details (section 5.3.1.4).  

5.3.1.2 Software components  

Figure 5-4 shows the main software components that have been used to implement this demo 

scenario, grouped in the three network domains: cloud, edge, and extreme-edge. Also, and in line 

with the M&O architectural design introduced in [HEX22-D62], the red dashed line on top groups 

the components in the M&O scope, i.e., the Extreme-edge Orchestrator, the Edge Orchestrator, 

and the Cloud Orchestrator, which handle the management of the resources in the three domains, 

with the Vertical Slicer, deployed in the cloud domain and responsible for E2E service 

management.  

 

Figure 5-4. Main functional components of Scenario 5.1. 

The Vertical Slicer has parent-child relationships with the rest of the domain-specific 

orchestrators. Altogether, these four orchestrators implement the E2E Continuum Orchestration 

function, which is the main topic addressed in this demo scenario. On the other hand, those 

components below the red dashed line are the service-related components, i.e., those components 

implementing the AI/ML-driven traffic lights control use case introduced in the previous section. 

In practice, this traffic lights control service is distributed over multiple containers, which are 

deployed dynamically by the E2E Continuum Orchestration function that operates at the Network 

Layer of the architecture and has been implemented explicitly for this demo. The Vertical Slicer 

(called SEBASTIAN), which extends an existing open-source software for the management of 

communication services and network slices in 5G networks [5GR21-D24], interacts with various 

virtual infrastructure platforms to manage computing resources across the continuum of the 

extreme-edge nodes (represented by Raspberry Pi nodes connected to the traffic lights for their 

control), edge nodes, and cloud nodes. This resource continuum, which is mapped into the 

Infrastructure Layer of the Hexa-X M&O architecture, is handled through different virtual 

infrastructure platforms. Specifically, a K3s [K3S] cluster is used for the management of the four 

extreme-edge nodes, K8s [KUBa] for the management of edge and cloud resources for container-

based deployments, and OpenStack [OST] for the management of cloud resources for VM-based 

deployments. Although this scenario does not explicitly consider 5G connectivity, experiments 

with the SIMU5G NR simulator [NSS+20] working with the traffic related to this scenario are 

reported in Section 6.3. In the following subsections, the software components developed for this 

scenario in each domain are described in more detail.  

Extreme-edge domain 

The following are the functional components in this domain:  
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• Traffic Lights Control Logic. Generally speaking, this is basically a sort of low-level 

driver in charge of activating/deactivating each physical traffic light led in the set-up. It 

receives commands from the AI/ML agent (running on the edge domain) and parses them 

to properly activate/deactivate the traffic lights (through the General-Purpose IO -GPIO- 

ports in the Raspberry Pis), according to the AI/ML agent requests. However, although 

this is its primary function, it also implements an additional low-level control logic to 

avoid certain undesired situations that the AI/ML agent might lead mainly during its 

training stage. These low-level control logic functions include but are not limited to 

preventing lights from blinking excessively often, or the opposite, never changing their 

status (they could remain red or green for too long, or even all the time), and also 

preventing from inconsistent situations, such as all lights in a crossroad being either red 

or green at the same time. In other words, this control module, besides just 

activating/deactivating the traffic lights themselves, also performs a kind of “hard-wired” 

filtering function, preventing the AI from provoking obvious inconvenient situations. 

From the AI agent's perspective, the rules set is part of the “external” environment from 

which it learns, so these rules are integrated into the learning process. This component 

has been developed specifically for this scenario in Demo #5. Four instances are deployed 

(one on each of the Raspberries) in the form of K3s pods to control each of the crossroads 

in the setup (i.e., each instance controlling one crossroad). The implementation uses 

Python 3.8.10 and is optimised for ARM64-based architectures.  

• SUMO Extreme-edge Controller. This component, which works as a complement to 

the SUMO simulator, can be understood as a kind of kernel in terms of synchronising all 

the other components in the simulation process, as well as a data-collector from the 

SUMO simulation that gathers data and interacts with the simulator. The component has 

been implemented from a “containerised” perspective to be deployed as a K3s pod. Four 

instances are allocated, one on each Raspberry Pi device, to collect data individually from 

each crossroad at a time. This functional approach has been used in order to ease the 

implementation of a distributed E2E architecture. It has been developed using Python 

3.8.10, optimised for ARM64 architectures. The component was developed mainly 

because of the usage of the SUMO Simulator in this Scenario 5.1 requires an interface 

operating through its TraCI API [LBE+18] in order to obtain real-time data from the 

ongoing simulation. Its main functionalities are:  

o Components’ Synchronisation. Proper synchronisation between the SUMO 

Server and the rest of the functional components must be assured in order to have 

a correct simulation behaviour. To get this, a specific SYNC signal is sent from 

each SUMO Extreme-edge Controller instance before a new simulation step 

starts.  

o Data Collection: It collects the data required by the AI/ML function on each 

crossroad (i.e., the number of vehicles). The data is retrieved using the values 

obtained through each crossroad’s LADs and is used to comprise the information 

sent to the AI/ML functional component.  

o Data Sharing: The required data is sent to the AI/ML component as a structured 

Python data dictionary.  

o Data Reception: This functional component expects data from the Traffic Lights 

Control Logic component comprised of traffic lights status updates.  

o Update the traffic lights simulation statuses. Traffic lights status updates are 

sent to the SUMO Server so that the actions that result from the AI/ML component 

are applied to the simulation scenario.  

o Extreme-edge Orchestrator. This is the orchestrator used to perform the life-

cycle management of the components at the extreme-edge, i.e., the Traffic Lights 

Control Logic and the SUMO Extreme-edge Controller previously described. As 

can be seen in Figure 5-4, it has been implemented using K3s, a certified 

lightweight K8s distribution built for IoT and Edge computing [K3S]. This 

orchestrator interfaces with the overall Vertical Slicer component in the cloud in 

order to integrate it into the continuum orchestration workflows. This interaction 

is based on the K8s API (exposed by the K8s API server within K3s) to retrieve 
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the list of extreme-edge nodes in the cluster, subscribe for and retrieve 

notifications on cluster events (e.g., new nodes), and perform CRUD operations 

on namespaces, deployments and pods for service provisioning. K3s has been 

deployed in the form of a lightweight K8s cluster, with distributed storage, on 

the four available Raspberry Pi nodes, with one of them acting as the master node 

and the other three as workers. All the nodes have been labelled accordingly in 

order to assign one crossroad to each Raspberry Pi so that the K3s deployments 

can be allocated correctly.  

Edge domain  

The edge domain hosts the following components:  

• The Traffic Lights Reinforcement Learning Agent. This is the brain of the service. It 

is based on the Q-Learning algorithm [Wat89], a model-free algorithm that aims to learn 

the value of an action based on a particular state depending on the rewards it receives 

from its environment. In the context of this demo, the environment is the urban 

environment described in the previous paragraphs (see Figure 5-5), where its overall state 

at a certain moment is defined by the traffic situation in the crossroads (taken from the 

monitored lane areas nearby the traffic lights), while the actions are the commands sent 

to the traffic lights to put them in a specific state (red, green, or yellow). The reward is a 

value based on the average speed and average waiting time of vehicles: a higher average 

speed will produce positive rewards, and higher average waiting times will produce lower 

or even negative rewards, reinforcing the agent to learn which specific actions on specific 

states produce higher rewards.  

The AI/ML application developed for the demo consists of four independent RL agents, 

each acting on the traffic lights of a specific crossroad. However, these four agents are 

deployed together on a single AI/ML application instance, on which each agent receives 

information on all the LADs in the four crossroads. This is intended to provide each agent 

with overall visibility since the traffic situation in a specific crossroad could be affected 

by what could be happening in the neighbour crossroads also. This way, learning of each 

agent is not only based on what could be happening locally but also on a broader level. 

 
Figure 5-5. Reinforcement Learning in Scenario 5.1. 

The AI/ML application has been implemented using Python language and some 

additional libraries like Pandas to handle the Q-Table and NumPy to process input data. 

More information explaining how this agent performs its work is provided in subsection 

5.3.1.3 (Functional Behaviour) and also in Annex II.  

• Messages Queue. This is an instance of the well-known open-source RabbitMQ 

messages broker [RAB]. In the context of this demo, it is used to establish communication 

between the software components of the demo. More specifically, to communicate the 

RL Agent with the SUMO Extreme-edge Controller and the Traffic Lights Control Logic 

components at the extreme-edge (see Section 5.3.1.3).  

• Edge Orchestrator. This is an instance of the well-known open-source K8s system 

[KUBa] for automating the deployment, scaling, and management of containerized 

applications. It plays the same role as the K3s orchestrator at the extreme-edge explained 
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before, but in this case, for the applications on edge. It also interfaces (using the K8s API) 

with the overall Vertical Slicer in the cloud in order to integrate the edge components 

with the continuum orchestration workflows. It has been deployed in the form of a 

Rancher K8s Engine (RKE) v2 multi-node cluster with distributed storage and a service 

mesh based on Istio [IST]. A dedicated VM has been created to act as the K8s controller 

and two worker nodes within the edge domain. This orchestrator is also part of the 

compute continuum M&O and, therefore, it interfaces with the Vertical Slicer component 

to enable the same operation available for the extreme-edge orchestrator.  

Cloud domain  

As can be seen in Figure 5-4, the cloud domain contains the following components:  

• SUMO Server. This is the main component of the above-mentioned open-source urban 

mobility SUMO simulator [BBE+11]. SUMO has been chosen for implementing this 

scenario due to its wide-range of real-time interaction, visualisation, and metrics 

extraction features in the urban scenario devised for this demo. Specifically, SUMO can 

be used to simulate the movement of a number of individual vehicles inside the virtual 

roads network designed for the demo, taking into account things like speed restrictions, 

traffic lights, and the presence of other vehicles. SUMO is also able to provide metrics 

reporting on the overall state of the vehicular scenario (i.e., mean travel time metrics, 

mean waiting time metrics, vehicle consumption metrics, vehicle pollution metrics, etc.) 

[LBE+18]. The simulator also includes a GUI (accessed thru this SUMO Server 

component) that allows the user to visualise the SUMO simulations and watch the 

behaviour of the vehicles under the running conditions (in a layout like the one in Figure 

5-3). In addition to the simulation capabilities, SUMO also provides a complete API (the 

so-called Transport Control Interface - TraCI) [LBE+18]. The TraCI API allows SUMO 

users to programmatically control and interact with the SUMO simulations enabling the 

integration of SUMO with other tools and platforms. This is, of course, a key aspect that 

has been used in this demo in order to integrate the simulator with the other components 

in the edge and the extreme-edge domains. Specifically, the TraCI API has been used in 

the demo to, of course, interact with the traffic lights and to get real-time information 

about the number of vehicles in the lane area detectors associated with the traffic lights. 

The SUMO Server component has been deployed, in a dedicated VM on the cloud 

domain, as part of an OS-package in the form of a C++ binary. A computer, acting as a 

client, can be connected to this SUMO Server component to allow the end-user to launch 

the simulations and visualise them in real-time.  
• SUMO Cloud Controller. This component is in charge of loading the simulation 

configuration parameters, vehicular data-flows and managing the initial SUMO GUI 

appearance. Besides, it also implements the features required to gather different real-time 

metrics (i.e., number of running vehicles, stopped vehicles, CO2 consumption, fuel 

consumption, PMx, etc.) and to store them in a database so that they can be monitored 

and plotted in several monitoring stacks (e.g., Grafana [GRA]). This component has been 

developed specifically for this demo using Python 3.8.10.  

• Cloud Orchestrator. This component is with a similar function to the one of the 

Extreme-edge Orchestrator and the Edge Orchestrator described in the previous sections. 

However, here, its function is to specifically orchestrate the components in the cloud 

domain, i.e., the SUMO Server and the SUMO Cloud Controller. In this case, these 

components have been implemented by means of virtual machines (instead of containers, 

as in the previous edge and extreme-edge domain), so the Cloud Orchestrator has been 

implemented using OpenStack Kolla (version Yoga) [YOG] for managing these VMs. 

Like the other orchestrators in the other domains, this one also interfaces with the overall 

Vertical Slicer Orchestrator using the OpenStack REST APIs for the dynamic creation 

and management of virtual networks, subnets, and VMs (in particular, relying on the 

subset of Compute API and Networking API v2.0 exposed by OpenStack and securely 

accessed through an OpenStack client library integrated with the Vertical Slicer).  

• Vertical Slicer. This component implements the overall E2E continuum orchestration 

function. It is an evolution (specifically implemented for this Hexa-X project) based on 
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the open-source Vertical Slicer software [5GR21-D24], developed by Nextworks in the 

context of previous 5G-PPP and ESA projects for the management of vertical services in 

5G networks, their mapping to end-to-end network slices, and the lifecycle management 

of these network slices across RAN, core and transport domains. This is, of course, a core 

part of the demo since this is, in fact, the component implementing the continuum 

management and orchestration concept.  

The original software was already composed by (i) a Communication Service Management 

Function (CSMF) handling the lifecycle management logic of vertical services, (ii) a Network 

Slice Management Function (NSMF) responsible for the provisioning and orchestration of end-

to-end network slices, and (iii) some Network Slice Subnet Management Functions (NSSMF) 

specialized for the management of RAN, core and transport functions and resources. For 

implementing this Hexa-X Scenario 5.1, the CSMF has been extended to manage vertical services 

running in the extreme-edge, edge, cloud continuum, and the software has been complemented 

with a new component specifically dedicated to the resource orchestration over multiple 

edge/cloud platforms featuring extreme-edge nodes, as represented in Figure 5-6.  

 

Figure 5-6. High-level software for orchestration in Scenario 5.1. 

The new software component (REC-EXEC – REsource orchestrator for Continuum across 

EXtreme-edge, Edge, Cloud - the lower rectangle in the figure) has a modular architecture 

allowing it to interact with several platforms at its southbound, handling the details of their 

interfaces through an abstraction layer that exposes a unified interface towards the resource 

orchestration logic components. In this implementation, the abstraction layer works with three 

different plugins for K3s, K8s and OpenStack, respectively (those orchestrators deployed locally 

at each domain in the demo). The orchestration logic is implemented through four modules: 

Resource Inventory, Resource Discovery, Service Deployer and Descriptor Translator. The 

Resource Inventory and the Resource Discovery components are dedicated to the management of 

resource clusters and available nodes in the extreme-edge, edge and cloud domains (an additional 

experiment, specifically focused on the resource discovery feature, is reported in Section 6.2). The 

Resource Inventory works as a dynamic catalogue of K8s/K3s clusters and clusters’ nodes, 

monitoring the events related to the composition of the clusters (e.g., the addition of a worker 

node, removal of a worker node, etc.) and exposing endpoints to:  
• register a new cluster for monitoring;  

• retrieve information and receive notifications of the clusters under monitoring; 

• retrieve the information of the nodes of a given cluster; 

• retrieve the information of the nodes of a given cluster that match a set of specified labels;  

• unregister a cluster under monitoring.  
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The Resource Inventory works as a dynamic catalogue of K8s/K3s clusters and clusters’ nodes, 

monitoring the events related to the composition of the clusters (e.g., the addition of a worker 

node, removal of a worker node, etc.) and exposing endpoints to:  

• register a new cluster for monitoring;  

• retrieve information and receive notifications of the clusters under monitoring;  

• retrieve the information of the nodes of a given cluster; 

• retrieve the information of the nodes of a given cluster that match a set of specified labels;  

• unregister a cluster under monitoring.  

In order to retrieve the information of the K8s-like clusters and be aware of any changes that can 

occur in terms of nodes that form the clusters themselves, the K8s/K3s clients are used to monitor 

the registered cluster making use of watch objects and API calls. The adopted library allows the 

Resource Inventory plugins to interact with all kinds of K8s clusters compliant with the 

specifications detailed by the K8s API (K8s API server). In the case of Hexa-X, the interaction is 

with K3s instances deployed in extreme-edge domains and with the standard kubeadm tool 

deployed in K8s clusters for edge and cloud domains.  

The Service Deployer allows instantiating the various service virtual components in the 

underlying platforms, giving the possibility to specify the target nodes. The Service Deployer is 

supported by the Descriptor Translator, in charge of translating the platform-agnostic service 

descriptors received from the CSMF into the descriptor formats adopted in each platform. For 

example, for OpenStack, the original service descriptor would be translated into a Heat template. 

The CSMF has been extended with two new internal modules. A Resource Allocation component 

has been added to decide the target platform, clusters and nodes where the service components 

should be deployed. A driver towards the REC-EXEC allows for retrieving information about 

nodes and resources available in the continuum (to feed the Resource Allocation logic) and to 

trigger the instantiation and all the other lifecycle management actions of the service components 

on the underlying computing resources. For the demo, the CSMF and the REC-EXEC 

components are instantiated in two VMs running in the OpenStack cloud environment in 

Nextworks laboratory, interconnected to Atos testbed via VPN. Each VM hosts a set of Docker 

containers with the various modules of CSMF and REC-EXEC. Further details on the VMs’ 

requirements are provided in Section 5.3.1.4. The CSMF service catalogue includes the service 

blueprints defining the characteristics of the traffic light control service components to be 

deployed and orchestrated in the infrastructure continuum. The blueprints have been defined 

manually, and they are expected to be the output of the service design layer in the overall service 

lifecycle. To this point, all the components that have been deployed for the implementation of the 

demo have been introduced. The following subsection, 5.3.1.3, describes how these components 

interact with each other to provide the required functionality.  

5.3.1.3 Functional behaviour  

This section describes how the different components in the previous section interact with each 

other to provide the demo functionality. Aligned with the split of Figure 5-4, this description is 

also split into two parts: the M&O functionality on the one hand and intelligent traffic control 

functionality (i.e., the managed service) on the other.  

M&O functionality 

From an orchestration point of view, both the CSMF and the REC-EXEC realise a workflow for 

the provisioning of the service. In particular, all the internal services of the REC-EXEC are 

involved: the Resource Inventory (RI), the Resource Discovery (RD), the Service Deployer (SD), 

and the Abstraction Layer (AL) with the specific plugins. Regarding the resources available, both 

Edge cluster (EC) and Extreme-edge Cluster (EEC) are considered in this workflow. Before the 

actual service provisioning, an initial configuration stage allows the collection of information 

about the resources available in both clusters and registers for any dynamic change. This approach 

is used to keep the Resource Inventory (RI) continuously synchronized with the nodes entering 

and leaving the clusters at runtime. The workflow is depicted in Figure 5-7.  
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Figure 5-7. Workflow for the discovery of extreme-edge nodes. 

As can be seen, the workflow consists of the following steps:  

1. The REC-EXEC is configured using the cluster configuration information (e.g., 

credentials, IP addresses, and so on) sent to the RD. In this way, the REC-EXEC knows 

where the resources (and thus the clusters) are located.  
2. The RD, through the AL, performs a watch request to both extreme-edge and edge 

clusters and requests the RI information about the cluster’s resources.  

3. The AL translates the information about the nodes and their resources into more generic 

and platform-independent information stored in the RI.  
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4. At any given time, it is possible that some events can occur at the edge or extreme-edge 

cluster. For instance, a node can join\leave the clusters themselves or a pod is deployed. 

In this case, the RD is notified, and the RI is updated.  

5. Thanks to the watch mechanism, this information is notified from the cluster itself to the 

specific plugin of the AL. Then, this event processed by the AL is notified to the RD, 

which updates the RI.  

6. At this point, the extreme-edge and edge nodes and resource information are available in 

the REC-EXEC, within the RI.  

.  

Figure 5-8. Over extreme-edge and edge continuum. 

After this initial stage, the CSMF can receive requests for provisioning new services, which are 

allocated on the various clusters and nodes depending on the available resources.  
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The provisioning service time can vary, because mainly depends on the amount of resources to 

be allocated in the edge and extreme-edge. For this reason, asynchronous mechanisms between 

the service requestor and CSMF and between the CSMF and the REC-EXEC.  

However, the workflow involving the CSMF itself and the REC-EXEC is realised, as depicted in 

Figure 5-8 is described below.  

As can be seen, in this case, the workflow comprises the following steps:  

1. The CSMF receives a request to provision a service. The request status is set to 

PROCESSING.  
2. Then, the CSMF translates the provisioning request into a set of required resources 

needed for provisioning the service.  

3. The CSMF, after retrieving the resource information from RI, computes the resource 

allocation for the service provisioning. If the number of available resources is enough, 

then the service is set in INSTANTIATING status.  

4. The provisioning service requestor receives a notification about the service provisioning 

taken in charge because it is not known a priori the time to provision the service.  
5. The CSMF sends the provisioning request to the SD.  

6. The SD invokes the DT to translate the service provisioning request into a set of generic 

descriptors for the single target domains.  
7. The SD notifies the CSMF about the fact that the provisioning request has been 

taken in charge, avoiding active waiting. 

8. The descriptors deployment request sent by the SD to the AL is translated into a set of 

infrastructure-specific descriptors. In this particular case, the descriptors are related to the 

edge and extreme-edge namespace and pods deployment.  
9. The namespaces and pods are deployed on the extreme-edge and edge by specific plugins 

of the AL.  

Once the pods are running, the AL notifies:  

• the RI about the resource used for the pods;  

• the SD about the running status of the pods themselves;  

• the SD that notifies the CSMF about the service provisioned.  

At this point, the service has been successfully provisioned, deploying the pods to both edge and 

extreme-edge clusters. Moreover, the CSMF keeps the status of the service itself, as well as the 

REC-EXEC keeps the status of the different resources in terms of a node within the two clusters 

and is used for the whole service. 

AI/ML-driven road traffic control functionality  

Figure 5-9 depicts a high-level view of the flow diagram picturing the interactions among the 

main service components introduced in the previous Section 5.3.1.2. For the sake of simplicity, 

two of the components have been omitted: the Messages Broker component (RabbitMQ) and the 

SUMO Cloud Controller component, given that these two components do not play a relevant role 

in the main service logic (note that the Messages Broker is used just to communicate the SUMO 

Extreme-edge Controller, the AI Agent and Traffic Lights Control Logic components, while the 

SUMO Cloud Controller is just to boot-up the SUMO Server process and to get metrics from it). 

Besides, note also that one single instance of the SUMO Extreme-edge Controller and the Traffic 

Lights Control Logic is depicted, but it is important to recall that actually, they are four instances 

of these SW components running on the simulation (one for each crossroad/Raspberry Pi), and 

only one instance of the AI/ML component (although this one executes four RL Agents, as 

mentioned in Section 5.3.1.2). As can be seen, the SUMO Simulation starts by loading the 

required data for the simulation scenario in the SUMO Server (the two initial steps in the 

diagram). After that, the SUMO Server is left on a listening status, awaiting client connections. 

The clients, in this case, are the four instances of the SUMO Extreme-edge Controller (i.e., the 

ones on each Raspberry Pi). Once connected, the clients request the initial traffic lights status for 

the crossroad they are operating onto (a random initial status generated by SUMO) and send that 
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information to the Traffic Lights Control Logic component in order to synchronise the physical 

LEDs with the simulation status. 

 

Figure 5-9. Scenario 5.1 functional flow diagram. 

Once this initialising sequence is finished, the simulation enters into its main execution loop, on 

which the following steps are executed:  

1. A synchronisation signal is sent from each SUMO Extreme-edge Controller instance 

towards the SUMO Server. This is intended for all the components in the simulation to 

run properly in a synchronized way.  

2. The SUMO Server updates all the vehicles’ positions within the simulated scenario, e.g., 

moves vehicles to new coordinates, adds new vehicles, removes the vehicles that have 

reached their destination, etc. (this step is carried out only if all the components are 

properly synchronised – this is why the previous Step 1 is necessary).  

3. Each SUMO Extreme-edge Controller instance collects from the SUMO Server the status 

information to the AI/ML component, i.e., the degree of occupancy of the monitored lane 

areas associated with each traffic light in each crossroad, and sends this information 

towards the AI/ML component.  

4. Using this information, the RL Agents (one per crossroad) in the AI/ML component 

perform basically two tasks:  

5. Using the data from the current iteration, they compute the actions to be done on their 

associated traffic lights (e.g., to change from red to green) based on the reinforcements 

received in previous iterations and send them to each Traffic Lights Control Logic 

component.  

6. Measures the effect of the actions taken in the previous iteration considering the average 

road traffic speed in the simulation and, based on that, computes the reward and updates 
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the actions policies to be applied in future iterations, reinforcing those actions that, 

overall, improve the movement of the vehicle5. This in itself constitutes the reinforcement 

learning process of the AI Agents, which occurs continuously on each iteration6.  

7. Each Traffic Lights Control Logic instance applies its internal logic to the received data, 

process it, and changes the physical LEDs status if required. After that, it will send the 

new traffic lights status to its respective SUMO Extreme-edge Controller instance.  

8. Each SUMO Extreme-edge instance will send the updated traffic lights status to the 

SUMO Server (which will display it on its associated GUI).  

As shown in the diagram, this loop is executed repeatedly until the end of the SUMO simulation.  

5.3.1.4 Deployment  

Figure 5-10 shows the deployment diagram used for Scenario 5.1. 

 

Figure 5-10. Scenario 5.1 deployment diagram. 

As can be seen, the deployment includes different scopes: 

 
5 More information on the specific RL Agent implementation details can be found in Annex II. 

6 Please, bear in mind that in RL models there is not a clear separation between the training and the execution stages 

for the models, i.e., agents learn while they are actually interacting with the real environment on which they are 

integrated (the urban environment in this demo). In this specific case, in the initial stages of the simulation, i.e., while 

the model is still in its early stages of learning, the traffic lights just work in what we might call their “legacy mode”, 

i.e., being controlled only by fixed time patterns, as it typically happens in the real-life scenarios (this legacy 

behaviour is determined by the “hard-wired” rules in the Traffic Lights Control Logic module). Later on, as the agent 

gains experience, the agent-generated actions predominate, so that the traffic control evolves into a more intelligent 

mode, better adapted to the traffic conditions generated in the simulation. This means that, although the learning 

takes place directly on the execution environment, in the worst case the behaviour of the traffic lights would always 

be timing-based (that of the “legacy mode”), so that even in the case where the RL agent might not work well yet, it 

would never cause harm, beyond generating the same kind of situations as those based on using regular timing 

patterns for the traffic lights control. 
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• the extreme-edge domain (orange block, top-left);  

• the cloud domains (light green block at the bottom-left and red block at the bottom-right); 

• the edge domain (purple block at the bottom); 

• the DMZ block (light grey block in the middle of the figure).  

The extreme-edge domain has been built using four Raspberry Pi cards (brand Broadcom, model 

BCM2711, with a 64-bit quad-core Cortex-A72 -ARM v8- @ 1.5GHz, and with 8GB RAM), 

bound together into the K3s cluster (the four of them are running Ubuntu v20.04.5). They are 

connected to each other using a Netgear GS308v3 network switch. The picture in Figure 5-11 

shows the practical implementation of this small-scale extreme-edge domain deployed at Atos 

premises. Additionally, this extreme-edge domain also consists of a physical panel which mimics 

the simulated urban environment described before (see Figure 5-12 below). As it can be 

appreciated, this panel represents exactly the same urban environment as the simulated one, with 

the same streets, intersections, etc., but it also contains a realistic implementation of the traffic 

lights in the scenario by means of LED lamps, intended to emulate a realistic implementation of 

what would be a traffic lights set in a real urban scenario The idea behind this set-up is to try to 

represent an environment similar to what could be found in a real situation: an extreme-edge 

environment with low-power control devices activating real traffic lights and in communication 

with the edge and cloud nodes on which the M&O systems and the AI service components would 

run. Of course, the LED lamps in this panel are connected to the Raspberry Pi cards in Figure 

5-11, where the traffic lights control logic modules are running. 

 

Figure 5-11. Scenario 5.1. Extreme-edge implementation. 

Moving to the cloud domain, it has been implemented using physical resources from the two 

partners participating in this Scenario 5.1: Nextworks and ATOS. The Nextworks cloud part hosts 

the M&O system (the SEBASTIAN system – see Figure 5-4), while the Atos infrastructure is 

used to host the managed objects (those in Figure 5-4 as well). Both environments, in different 

geographical locations (in Italy and Spain), are connected through the Demilitarized Zone (DMZ) 

block represented in Figure 5-10. 
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Figure 5-12. Scenario 5.1: Traffic Lights physical panel. 

Specifically, the following physical resources have been used for each domain:  

• On the Atos side (in Spain), the cloud has been implemented by means of a single, 

general-purpose Dell server (model PowerEdge T550) and an additional Intel NUC small-

form computer (model NUC8i7HVK). The general-purpose server has been used to 

instantiate two VMs intended to run the K8s cloud controller and the SUMO server (see 

Figure 5-10). Table 5-1 summarizes the main features of these VMs. On the other hand, 

the cloud NUC is used to deploy all the required NFs (in the form of pods or CNFs) that 

might be needed in the cloud domain. Finally, within this domain, all the DevOps (i.e., 

Gitlab and Nexus container registry) repositories are allocated in servers shared across 

Atos. 
Table 5-1. Virtual Machines in the Atos cloud domain. 

Hostname OS Architecture CPU (#) RAM (GB) Disk (GB) 

K8s-cloud-ctrl  Ubuntu 22.04.1 x86_64 3 6 40 

Sumo-server  Ubuntu 20.04.5 x86_64 4 8 40 

• On the Nextworks side (in Italy), the orchestrator software stack relies on the internal 

Open Stack virtualized infrastructure composed of one controller node and two physical 

computers. On top of this virtualized infrastructure, it is installed the orchestrator software 

stack that can be deployed either as a single virtual machine or multiple virtual machines. 

Since the CSMF and REC-EXEC are logically separated, these have been installed and 

deployed on two different VMs whose hardware and OS requirements are available in 

Table 5-2. However, the deployment of CSMF and REC-EXEC can be performed using 

either Docker containers or K8s on those VMs. In the former case, the minimum required 

version is 20.10.13, while in the latter case, the minimum required is 1.21. As illustrated 

in Figure 5-14, end users are consuming a service running in edge servers connected via 

the radio access network. In conclusion, once the VMs where the CSMF and REC-EXEC 

are up and running (regardless of the compute nodes they rely on), a VPN is established 

towards the Atos testbed for making working the REC-EXEC communications towards 

the extreme-edge and edge clusters. Regarding the edge domain, it has been implemented 

using a NUC computer (same model as the one used for the cloud) that is used to execute 

the edge software components (those in Figure 5-4), which are always in the form of K8s 

pods. Following the description of the different components in Figure 5-10, the DMZ 
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block is comprised of four network components. The “DMZ Router” acts as an isolating 

router that enables the generation of the Demilitarized Zone – DMZ block. 

Table 5-2. Virtual Machines in the Nextworks cloud domain. 

Hostname OS Architecture CPU (#) RAM (GB) Disk (GB) 

CSMF  Any compatible with 

minimum version of 

Docker or K8s  

x86_64 4 4 40 

REC-EXEC  x86_64 8 8 40 

The “extreme-edge” and the “edge/cloud” routers provide two separate networks to the different 

components of each domain so that they can be logically and physically separated. The “Internal 

Firewall” network security component adds another security layer between the DMZ inner 

components and the external world.  

Demo presentation  

The demo is intended to be showcased including the following three elements (see Figure 5-13):  

1. A main screen to show the real-time simulation execution (the SUMO Server GUI). This 

main screen is split into two (see Figure 5-13): the right-hand side showing the simulation, 

but without using the AI/ML algorithms developed for the demo (i.e., activating the 

traffic lights just using fixed time patterns). In this case, it is appreciated that several 

traffic jams will appear after a short period of time. At the same time, and on the left-

hand side, a second window shows the same situation but controlled by the AI/ML 

service, resulting in an improved traffic density situation. This set-up allows the user to 

appreciate the advantage of the AI/ML approach at a glance by having the two 

simulations running in parallel.  

2. A secondary screen that can be used for different purposes: as a console to show how the 

service can be deployed using the continuum orchestration function and also to show 

relevant service metrics.  

3. The Raspberry Pis and the panel with the traffic lights are implemented with the real LED 

lamps (the one in Figure 5-12) to showcase that the simulation runs in sync with this 

realistic implementation of the extreme-edge domain.  

 

Figure 5-13. Elements for presenting Scenario 5.1. 

In Annex III, some graphs are shown with the results from the demo execution using this set-up.  
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 Scenario 5.2: Prediction-based URLLC service orchestration and 

optimization 

5.3.2.1 Scenario description  

Scenario 5.2 aims at demonstrating the ability of proper machine learning algorithms to anticipate 

the resource needs of the network and preemptively activate the related services so the application 

perceives no delay. In a nutshell, in contrast to reactive methods that may scale up/down the 

resources as the traffic load increases/decreases, Scenario 5.2 demonstrates the advantages of a 

proactive approach that does not involve the typical delays of reactive methods. This is 

particularly critical for deployments where resources are set in a deactivated or sleep state to 

support sustainability but require a non-negligible amount of time to be powered on. Such boot-

up delays are highly harmful in the case of real-time services, such as URLLC services.  

 
Figure 5-14. A high-level view of Scenario 5.2 configuration. 

Scenario 5.2 complements Scenario 5.1 by focusing on a prediction-based orchestration of 

computing nodes, providing a URLLC service having stringent delay requirements. As illustrated 

in Figure 5-14, end users are consuming a service running in edge servers connected via the radio 

access network or running on an extreme-edge resource if available and if deemed suitable by the 

service orchestrator. It is assumed that the traffic requests follow a typical daily pattern.  

 
Figure 5-15. Exemplary traffic trace used in Scenario 5.2. 

Figure 5-15 illustrates the vehicular traffic pattern over a week in an Italian city [VBM+21]. The 

different traffic peaks and valleys are noticeable and result in a drastic variation in traffic over 

time. Because of these variations, to support a sustainable service, it makes sense to implement a 

resource-on-demand policy, where the number of resources activated at the edge to provide the 

URLLC service (e.g., real-time video processing) matches the demand at a given point in time. 
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One challenge with this approach is that the time to boot up a machine is longer than the inter-

arrival time of requests, and therefore reaction methods are, in general, not adequate to support a 

timely matching of resources to the required capacity. In contrast to reactive methods, this demo 

illustrates the advantages of using a prediction algorithm based on machine learning. More 

specifically, it illustrates how a Long Short-Term Memory (LSTM) network [LST] can predict 

the traffic during a given future time window (in green, in the figure above), and therefore 

providing the required anticipation to the orchestration mechanism to activate the required 

resources and provision the service with zero-perceived disruption.  

5.3.2.2 Software Components  

Scenario 5.2 includes three main software components, as Figure 5-16 shows. The first 

component is the URLLC application, which comprises a client and a server. A second component 

is the Simu5G network emulator [NSS+20], which is responsible for emulating the 

communication environment and the edge-cloud computing environment. Finally, a third 

component is an intelligent orchestrator. In the following, we provide the details and relations of 

each component.  

URLLC Application  

The scenario assumes an application with stringent delay and delivery guarantees, such as those 

required by vehicular traffic (e.g., teleoperated driving [5GA21]). It should be noted, though, that 

the use of this type of application would be unpractical, and there is no open-source software 

available. Furthermore, in order to measure and keep track of the experienced delay, it becomes 

advisable to rely on a synthetic traffic generator to assess the performance of the system. Because 

of this, the iPerf traffic generator [IPE] is considered.  

 
Figure 5-16. Main software elements composing Scenario 5.2. 

Network Emulator  

The software component used to emulate the network is Simu5G, which is the evolution of the 

well-known SimuLTE [VIR+16], extending 4G capabilities with 5G capabilities at both radio 

access and core network side. Simu5G is an event-driven system-level simulator building upon 

models from the INET library [INE], which allows one to simulate a complete TCP/IP-based 

network stack and supports end-to-end communications among applications. Simu5G models the 

data plane of both the core and the radio access networks. As far as the Core network is concerned, 

it allows users to instantiate a User Plane Function (UPF) or Packet Data Network GateWay 

(PGW) and an arbitrary topology, where forwarding occurs using the GPRS Tunnelling Protocol 

(GTP). As far as radio access is concerned, it allows one to instantiate gNBs and UEs, which 

interact using a model of the New Radio (NR) protocol stack. The gNBs can be connected to the 

Core network directly in the so-called standalone deployment. Alternatively, a gNB can operate 

in an E-UTRA/NR Dual Connectivity (ENDC) deployment, wherein LTE and 5G coexist. The 

gNB are connected through the X2 interface, and all 5G New Radio (NR) traffic traverses the 

eNB first. UEs and gNBs are compound OMNeT++ modules. UEs have all the protocol stack 

until the application layer, whereas gNBs only have Layer 3 functionalities. Both include an NR 

Network Interface Card (NIC), which models the NR protocol stack. Packet transmission entails 
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top-down traversal of the NR protocol stack, with messages exchanged by neighbouring modules. 

Conversely, packet reception entails bottom-up traversal. Note that OMNeT++ messages are 

events: the price to pay for complete modelling of the layers within the NR protocol stack is that 

the transmission of a single IP packet via the NR interface requires Simu5G to handle a sizable 

number of events in the order or few tens, among inter-layer communication, 

fragmentation/reassembly, timers, ACK/NACK sending, etc 

 

Figure 5-17. URLLC traffic flow in the Simu5G-based emulated network. 

The gNB are connected through the X2 interface, and all 5G New Radio (NR) traffic traverses 

the eNB first. UEs and gNBs are compound OMNeT++ modules. UEs have all the protocol stack 

until the application layer, whereas gNBs only have Layer 3 functionalities. Both include an NR 

Network Interface Card (NIC), which models the NR protocol stack. Packet transmission entails 

top-down traversal of the NR protocol stack, with messages exchanged by neighbouring modules. 

Conversely, packet reception entails bottom-up traversal. Note that OMNeT++ messages are 

events: the price to pay for complete modelling of the layers within the NR protocol stack is that 

the transmission of a single IP packet via the NR interface requires Simu5G to handle a sizable 

number of events in the order or few tens, among inter-layer communication, 

fragmentation/reassembly, timers, ACK/NACK sending, etc. From a physical layer standpoint, 

Simu5G models the effects of propagation on the wireless channel at the receiver without 

modelling symbol transmission and constellations. When a sender sends a MAC Protocol Data 

Unit (PDU) to a receiver, the PHY modules of the two entities exchange an OMNeT++ message, 

whose propagation delay is set to the duration of one NR time slot.  

Within the scope of Demo #5, Simu5G is used as the network transport, having application 

endpoints exchanging packets through it in real-time. In the literature (e.g., [CAR+03], 

[MAH+04]), such an approach is referred to as emulation since packets exchanged by real 

applications with the simulator perceive the same impairments (e.g., delay and losses) as if they 

were running on the real network. This is useful to test and showcase the real-time performance 

of an application, e.g., when closed-loop sensing and control applications are to be tested. These 

applications can be, for instance, the two counterparts of a MEC-based URLLC application, one 

running on a 5G UE in mobility and the other on a MEC host connected to the 5G infrastructure. 

This allows us to test the performance of our scenario on a 5G network under controlled conditions 

(e.g., as for load, channel quality, mobility, etc.) in a preproduction environment so as to obtain 

confidence regarding their performance. Within the scope of Demo #5, one real application 

generates real network traffic to be sent through the Simu5G network emulation. The URLLC 

application includes the client and server sides, running on two separated hosts, as Figure 5-17 

shows. The network traffic between the client application (Host B) and a server application (Host 

C) flows through a Simu5G instance (Host A). The client application transmits data packets over 

a TCP socket to the server application. These processes are unaware of the presence of Simu5G. 

The OS on host A takes care of forwarding their packets through Virtual Ethernet (veth) 

interfaces, as depicted in Figure 5-17 when the sender transmits data via a UDP socket by 

specifying the IP address of veth2 and the port number the receiver is listening to, while the 
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routing table of the host is configured to reroute packets destined to veth2 through veth1 and vice 

versa, the OS forwards them to the Virtual Ethernet interfaces depicted in Figure 5-17. The 

packets are forwarded through the 5G RAN and reach a MEC application on an emulated MEC 

host. Finally, the packets exit the emulated network through veth2 and are forwarded to the server 

application.  

Orchestration Interface  

The Orchestration Engine allows the orchestrator to interact with the system emulated within 

Simu5G. On the one hand, it allows the enforcement of orchestration decisions on the emulated 

resources. This includes:  

• the activation/deactivation of edge nodes. Although a node can be activated 

instantaneously, activating it requires a configurable amount of time;  

• the offload of the servicing application between edge and extreme-edge nodes and the 

consequent redirect of client requests to the proper service;  

• the (re)balancing of existing services among the active edge nodes. This operation is 

performed in a simulated manner in the scope of this demo scenario; however, the 

procedures and methods for migrating running services between edge servers have been 

defined and validated in [BPV+22].  

On the other hand, the orchestration engine retrieves information on network status and feeds it 

to the intelligent orchestrator. The information collected includes the current load of the network 

in terms of the active application, as well as the location and status (reachable/unreachable) of the 

existing extreme-edge resources. The orchestration engine is executed periodically within the 

emulated network. At each execution, it performs the following operations:  

• it retrieves the current number of services in the system;  

• it retrieves the status of the extreme-edge resources;  

• it performs a remote call to the intelligent orchestrator, passing the collected information;  

• it retrieves and parses the orchestration decision;  

• it enforces the actions stated in the orchestration decision, possibly activating and/or 

deactivating edge nodes whenever needed.  

The Orchestration interface has been developed specifically for the purpose of Scenario 5.2. 

Scenario Visualization  

During the execution of the scenario, the status of its components and their statistics are 

continuously monitored and visualized through a GUI. 

 

Figure 5-18. Real-time scenario visualization using a custom GUI.  
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Figure 5-18 provides an exemplary instance of such an implementation, which includes (i) the 

performance over time in terms of Service Time (QoS) of a monitored UE running the URLCC 

application client, (ii) the performance over time in terms of processing time of a monitored MEC 

Host, iii) the current deployment of network and computing nodes (e.g., gNBs, edge hosts, etc.) 

and the mobility of UEs, iv) aggregated statistics of traffic and loads.  

Intelligent Orchestrator  

Intelligent orchestration builds on two main functionalities. On the one hand, the ability to predict 

the traffic demand, i.e., a Prediction Module, and on the other hand, the Orchestration Intelligence. 

The traffic prediction takes as input the traffic and keeps the history of past traffic data to generate 

an AI model. The Orchestration intelligence is fed with the current traffic load and, based on the 

Prediction, takes an orchestration decision.  

The intelligent orchestration entity is implemented as a client-server service. The server is 

logically executed on a remote node (e.g., in the cloud) which runs both the actual prediction and 

the orchestration logic and notifies the decisions to the client. The latter is logically executed at 

the edge and interfaces with the network emulator that finally enforces the orchestration 

decisions.  

This Intelligent Orchestrator has been developed specifically for the purpose of Scenario 5.2. 

5.3.2.3 Functional Behaviour  

The demo is composed of three main functional blocks:  

• Simu5G: which simulates the complete data plane of a 5G network. It relies on an “input 

trace” file, which consists of a set of {<time>, <no. of users>}tuples that determine the 

number of users present in the system at a given time. The simulator periodically provides 

as output to the orchestration intelligence the current status of the system (number of 

users, number of active servers, current time) and reads as input the decision from the 

orchestration intelligence (activate a server, deactivate a server or re-route the traffic from 

the target app through the extreme-edge).  

• Intelligent Orchestrator: a module that is in charge of taking as input the current status of 

the system and the output of the prediction algorithm (discussed next) and producing as 

output the decision to be made at that point in time. The decision could be to activate a 

new resource, deactivate it, or re-route traffic via the extreme-edge.  

• Prediction module: this module takes as input the “input trace” file and produces as output 

the predicted number of users over time. This prediction can be based on a simple 

Exponentially Weighted Moving Average (EWMA), which serves as a benchmark, or it 

can be based on a tong short-term memory artificial neural network. For the latter, in 

addition to the specifics of the neural network, it can be configured with a given 

“memory” window (i.e., the amount of prior data to be used) and another “prediction” 

window (i.e., how far ahead the algorithm should try to predict).  

 

 
Figure 5-19. Functional blocks of Scenario 5.2. 

In Figure 5-19, the different functional modules and their relationships are illustrated. The main 

interactions between modules are as follows: 
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1) The input trace (bottom left) feeds the simulator (top left) with real-life data about the 

number of vehicles. 
2) The simulator provides the current status of the system to the orchestration intelligence 

(top right) 
3) The orchestration intelligence feeds the information from the status of the system to the 

prediction algorithm (i.e., it "learns“ the input trace via the simulator, as denoted by the 

bottom arrow).  
4) The orchestration intelligence, based on its information, provides the simulator with the 

orchestration decision to take.  

5.3.2.4 Deployment  

The deployment of Scenario 5.2 is shown in Figure 5-20. Simu5G is executed on a dedicated node 

and shows the status of the execution through a dedicated dashboard. A URLLC application, 

modelled in the form of an iPerf instance, is executed on a real device, a laptop in this case, and 

its traffic is routed into Simu5G, wherein it enters the network from the perspective of a simulated 

user. 

 
Figure 5-20. Deployment of Scenario 5.2 – architecture. 

 
Figure 5-21. Deployment of Scenario 5.2 – real-life testbed. 

The traffic travels through the emulated network and is affected by system delays. Traffic reaches 

the intended emulated endpoint (either an extreme-edge or a near-edge device) and exits the 

emulated network. The traffic is finally routed to the propped real endpoint: edge resource, 

implemented with a Raspberry Pi. Besides all of this, on the control plane, an orchestration 

application runs on a remote PC (which is logically in the cloud) and orchestrates the emulated 

resources, activating/deactivating edge nodes and/or offloading traffic to and from the extreme-

edge resources. According to the description above, Scenario 5.2 can be deployed flexibly using 

different hardware devices. Figure 5-21 shows a real-life testbed which includes the devices, 

which are also described in Table 5-3. 
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Table 5-3. Description of the nodes used in Scenario 5.2 

Name Device Role OS CPUs RAM 

(GB) 

Disk 

(GB) 

Notes 

SIMU5G  Qotom MiniPC 

– high 

performance 

Emulated 

network using 

Simu5G 

Ubuntu 

20.04 

Intel i7 8 128 Simu5G 

ver1.2 

Edge Resource  Qotom MiniPC 

– low 

Performance 

Edge server Ubuntu 

18.04 

Intel 

Celeron 

8 58 

 

User Application  Laptop 

MacBook Pro 

User Device macOS Big 

Sur 

Intel i5 8 250 

 

Extreme-edge 

resource  

Raspberry Pi Extreme-edge 

resource 

Raspian 

OS 

Cortex-

A72 

4 64 

 

Orchestrator 

(remote)  

Remote Server Orchestration 

intelligence 

Ubuntu 

20.04 

Intel i7 16 1000 - 

 Scenario 5.3: Reactive security for the edge  

5.3.3.1 Scenario Description  

The use cases developed in the previous Scenarios 5.1 and 5.2 regarding road traffic related 

applications, involve resources and services deployed over the extreme-edge. In these specific 

scenarios, the traffic lights are controlled by services hosted in Raspberry Pis, which, in the real 

world, would either be hosted within the traffic light itself or in a separated equipment in the 

direct vicinity of the controlled traffic lights. In both cases, a critical service is hosted on small, 

isolated spots of resources. By nature, those isolated resources could be cut off from the central 

clouds, either by accident or due to an attack. An attacker can also physically access those 

resources that cannot be closely guarded. At the same time, the service provided here is highly 

critical. If an attacker manages to disrupt the service, traffic may get slowed. Worst, if an attacker 

manages to take control of the service, it could cause deadly accidents within seconds. A solution 

is needed to protect those remote, extreme-edge services. 

Scenario 5.3 precisely aims to demonstrate the ability of the proposed M&O architecture to 

efficiently handle cyber-security threats against a vulnerable application deployed at the extreme-

edge. The addressed vulnerability in the demo scenario is log4shell, also known as CVE-2021-

44228 [CVE-L4J], which is a zero-day vulnerability exploited by arbitrary code execution and 

affecting the Java utility Log4j [L4J]. To detect and remediate an attack exploiting this 

vulnerability, we propose hierarchical security management of two layers designed to 

accommodate the scarce resources available on the extreme-edge while ensuring the required 

security level.  

Although standards establish a set of security measures to protect telecommunication networks, 

those networks still face risks of attacks. Those risks may come from unidentified/unknown 

threats and vulnerabilities, from trade-offs between costs of protection versus risk, or from poorly 

implemented standard security measures. To enhance security, it is then necessary to add to these 

preventive measures a reactive line of defence, to monitor continuously both the network itself 

and its users and detect any security event. 6G networks are envisaged as very complex systems 

to manage as a result of the distributed topology, which tends to include more edge devices, 

heterogeneous virtualization technologies of resources and functions, and sophisticated 

technologies that require significant expertise to master. Therefore, network service management, 

including security service management, needs to be assisted by means of automation. Such 

automation is usually implemented by several autonomic closed loops monitoring and acting upon 

the system. In this context, two problems arise for the security management of 6G networks:  

• Resource locality. In 6G, many services may have to be located over extreme-edge 

resources, which are typically scarce and located far from a large central data centre. 

However, those services need security as well. Locating the associated security closed 
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loop in the central cloud may induce a number of issues: it could be temporarily 

disconnected from the extreme-edge location, leaving it without security, it would induce 

additional bandwidth consumption to bring raw monitoring data from the edge to the 

central cloud, and it would induce additional latency due to the travel time. On the other 

hand, locating the security closed loop that has sophisticated activities on the extreme-

edge premises may have a severe impact on the resources available, as security may 

require complex autonomous algorithms or/and large signature databases to analyse and 

respond efficiently to potential threats.  

• Reaction time. Although the security processes rely on a closed loop, some actions of the 

loop (analysis, remediation plan creation) may take some time, enough for the attacker to 

inflict significant damage to the system. In some cases, the response would even involve 

requesting actions or authorizations from human actors, which considerably increases the 

response time.  

To tackle these two issues, this Scenario proposes a layered security architecture aligned with the 

M&O architectural design provided in the previous Deliverable D6.2. Local security orchestrators 

are installed on the same premises as the assets they protect, including extreme-edge resources, 

while central security orchestrators are installed in a remote location with access to a vast pool of 

resources. Both types of orchestrators contain autonomic closed loops for threat detection and 

remediation. The local security orchestrators are intended to be lightweight to minimize their 

footprint on scarce local resources. To reach this goal, they would leverage the relationship with 

central security orchestrators as much as possible to coordinate activities, thus avoiding 

performing complex and computationally intensive tasks. The local security orchestrators take 

rapid and simple mitigation actions to quickly stop an ongoing attack, while the central ones take 

more complex actions to eradicate the attack and provide long-term protection to the system. In 

the context of AI used for security, central security orchestrators would typically centralize 

training data and train AI/ML models and would send the trained models to local security 

orchestrators to enhance their performance with little computational effort on their side. As a 

result, the local security orchestrators are less resource-consuming than the central one while still 

being in a position to provide an acceptable level of security for the assets under its control, even 

in the event of a temporary loss of connection to the central orchestrator. This layered security 

concept can further be extended to match the layered nature of the 6G network: each sub-slice 

and slice may have its own security orchestrator, with additional ones at the inter-slice level. In 

the specific perimeter of this scenario, the approach consists of a two-layer implementation, 

including a local and a central security orchestrator.  

To demonstrate the efficiency of this solution, Scenario 5.3 focuses on one specific attack: 

log4shell. This attack takes advantage of a vulnerability in the log4j library, a popular Java 

logging library, to effectively give access to a shell in the target. Due to the widespread use of 

log4j, and the high impact of the attack, log4shell obtained a CVSS score of 10 out of 10 [L4J]. 

To deal with this attack, we propose a two stages process, represented in Figure 5-22. First, the 

attack is detected and mitigated locally. The mitigation is very fast and simple: it consists in 

blocking the source of the attack. The detection is propagated to the central security orchestrator, 

which takes more complex eradication actions: if allowed, it automatically patches the vulnerable 

application to a more recent version of log4j, immune to the attack. Else, it raises an alarm to 

request administrators to perform this patch or a full upgrade. Finally, the central security 

orchestrator can locate other applications within its management domain with similar 

vulnerabilities and apply the same eradication action to prevent any attack attempt. Due to the 

high versatility of the proposed management and orchestration architecture [HEX22-D62], the 

security service management enables dynamic communication across security functions and even 

M&O layers. Such security functions aim at providing accountability for security risk mitigation, 

forensic analysis and threat prevention, for instance, the aforementioned local and central security 

loops. In this vein, a security function may support to or consume from other security functions 

to ameliorate the overall 6G network services.  

Complementary to the previous, when it comes to security management, Hexa-X has introduced 

the concept of Level of Trust Assessment Function (LoTAF) [HEX22-D14], which enables 

assessing the security and privacy aspects of a network service in a particular application 
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environment. LoTAF is one of the security functions belonging to the Service Layer of the M&O 

architecture design [HEX22-D62], so it is totally aligned with the hierarchical security 

management architecture mentioned above. Thus, LoTAF may be considered as an add-on or 

supplementary solution (i.e., another security function developed for this Scenario 5.3), together 

with the local and central security orchestrators, to complement the security of future 6G network 

services. Therefore, LoTAF does not disrupt or modify the functionality of other security 

functions, but it mainly consumes information generated by other security functions to enhance 

the user’s experience. Concretely, one of the principal actions under LoTAF is to verify whether 

new cyber security threats, appearing at the runtime stage, may compromise a set of security and 

privacy requirements previously requested by end-users during Stage 1 of Level of Trust (LoT) 

[HEX22-D14]. In this regard, both the local and the central security orchestrators may feed to the 

LoTAF with real-time information related to cyber security threats, log4shell attack in this 

Scenario 5.3, so as to update the Level of Trust (LoT) based on decisions and the kind of applied 

countermeasures (containment or eradication plans).  

 
Figure 5-22. Local and central loops of Scenario 5.3.  

It is worth mentioning that LoTAF is made up of two phases [HEX22-D14]. Stage 1 intends to 

assess the achievable LoT; in contrast, Stage 2 is centred on evaluating the achieved LoT once a 

network service is being leveraged. Owing to the fact that Scenario 5.3 is principally focused on 

monitoring, analysing and handling log4shell threat, only the LoTAF Stage 2 is going to be 

showcased since the main objective of Stage 1 is to discover from available network services, 

which one may ensure a set of an end user's security and privacy requirements.  

5.3.3.2 Software Components  

The software components used in this scenario are all represented in Figure 5-23 in green boxes: 

• The UERANSIM [UER] (bottom-left in Figure 5-23) is a tool provided by Free5GC that 

allows a simulation of both a UE and a RAN. As an output, this component produces the 

equivalent of a RAN output, which includes both NAS and AS messages.   

• VPP [VPP] (bottom middle in Figure 5-23) is an open-source software packet processor 

based on a Cisco commercial product. VPP presents very high performances, suitable to 
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handle the data plane traffic. The Control Plane (not represented in Figure 5-23) is made 

of a custom 5G Control Plane. 

 

Figure 5-23. Software components used in Scenario 5.3.  

•  Suricata [SUR] (bottom centre and middle left in Figure 5-23) is open-source software 

that can be used either as an Intrusion Prevention System (IPS) or an Intrusion Detection 

System (IDS). The system uses both modes: the IDS as a monitoring tool and the IPS as 

a firewall. Used as a firewall, Suricata offers the advantage of being able to analyse traffic 

up to the application layer. Regarding monitoring, Suricata has been chosen as it comes 

with adapted rules to detect the log4shell attack. Additionally, the detection is very fast 

compared to another well-known monitoring tool, Zeek [ZEE], which works with batches 

of packets. However, it should be noted that the proposed solution allows to easily plug 

other monitoring systems in parallel with Suricata, if needed. The vulnerable application 

is an application built on purpose to demonstrate the log4shell attack in a K8s context. It 

has been taken from [VIC].  

• Apache Kafka [KAF] (middle of Figure 5-23) is then used to exchange the necessary 

messages between the user plane and the security control loops and between the security 

control loops components. This platform has several advantages for our architecture. First 

of all, it can receive and distribute events with high performances and built-in scalability, 

which is important when it comes to handling network traffic. Secondly, the messages 

can be isolated in a different topic, which allows the creation of a pipeline where each 

module consumes from one topic and produces to another.  

• The decision engines in both local and central loops are based on Drools [DRO], an open-

source Business Rules Management System (BRMS) written in Java. This tool relies on 

a set of rules - a knowledge base to determine an action based on a given input. The local 
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execution module is custom to this scenario and mainly consists of a Kafka consumer 

coupled with an SSH client.  
• Analysis modules in both local (bottom left in Figure 5-23) and central (top right of Figure 

5-23) loops are both custom modules. In this scenario, their role is limited to applying a 

correct format to the alert since the alert is fully qualified by Suricata IDS and does not 

require further analysis.   

• The local execution module (middle right in Figure 5-23) is a custom module. It is 

composed of a Kafka consumer and an SSH client connected to Suricata IPS VM. This 

module can push new rules into Suricata IPS and perform live-reload. 

• The global execution module (top right of Figure 5-23) is a custom Kafka consumer to 

receive messages from the decision engine, a K8s client to search for the pod targeted by 

the attack, a library to look for other vulnerable applications (pods) and an SSH client. 

The SSH client is used to automatically trigger the log4shell hot patch solution proposed 

by the AWS Coretto team [COR]. The library used to scan for vulnerabilities is the one 

provided by Trivy [TRI]. Trivy is a scanner tool that can, among other things, detect 

vulnerabilities on container images. 

This system is open to further evolution: while, in this demo, we have only one component to 

fulfil each function (one component for monitoring and one component for analytics, and so on), 

Kafka allows for easy introduction of other components in parallel with existing ones, as several 

components can consume/produce in the same topics. Hence, if further attack scenarios require a 

specific component, for example, an AI-based analytic engine, this tool can easily be plugged into 

the pipeline. Similarly, other components that are not directly part of the cybersecurity loop can 

also consume the topics for their own purposes. In this scenario, it is the case for the LoTAF 

module. 

5.3.3.3 Functional Behaviour  

As detailed in Section 5.3.3.1, the objective of this scenario is to demonstrate the ability of the 

proposed architecture to automatically detect, contain and eradicate cyber-attacks, specifically 

here, the log4shell attack. Furthermore, the outputs generated during the detection, containment 

and eradication steps are going to be used for adjusting the LoT of a network service, in this case, 

an edge resource. To reach this objective, each module relevant to this use case must be 

implemented and properly configured. This includes the different modules of the local and global 

closed loops, as well as the communication system that connects them. In addition to the security 

system, which represents the core of this demonstration, a 5G system must be deployed, as it 

represents the vector and target of the attack. The different modules, as well as the implementation 

option chosen for this scenario, are represented in Figure 5-23. Note that the 5G core CP is not 

represented as it is not strongly relevant for this demo: all the attack takes place in the UP. 

A sequence diagram representing the interactions of the different modules involved in this 

scenario is represented in Figure 5-24. As shown in this diagram, the different modules can be 

divided into three main categories: data path, local loop, and central loop. Kafka, which binds 

together all the modules of the local and central loops, is not represented in the diagram. In this 

section, the three categories will be detailed separately. However, it should be noted that the 

different interactions can happen in parallel. For example, the local loop starts to react to the 

attack as soon as the first attack packet is detected, and it does not have to wait for the attack to 

be completed. 

The data path is the regular data path for a communication system without any specific 

autonomous security system. In this scenario, the functional behaviour of this category of modules 

goes as follows:  

• The malicious traffic containing the log4shell attack payload is first generated by a 

regular UE registered in the network (1). This UE, as well as the RAN stack, are simulated 

by a customized version of the UERANSIM tool. 

• The traffic will then reach 5G core UP, the UPF, implemented via VPP. The UPF 

forwards the traffic toward the IPS (2). At this point, the traffic is also mirrored into a 

dedicated Kafka topic (4). This monitoring traffic is consumed by the local loop. 
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• The traffic goes through the IPS and reaches its destination: the vulnerable app (3). At 

this point, the attack is successful. For demonstration purposes, the realization of the 

attack is materialized by the creation of a file in the vulnerable app. 

 

Figure 5-24. Scenario 5.3 sequence diagram  

The data path is the regular data path for a communication system without any specific 

autonomous security system. In this scenario, the functional behaviour of this category of modules 

goes as follows:  

• The malicious traffic containing the log4shell attack payload is first generated by a 

regular UE registered in the network (1). This UE, as well as the RAN stack, are simulated 

by a customized version of the UERANSIM tool. 

• The traffic will then reach 5G core UP, the UPF, implemented via VPP. The UPF 

forwards the traffic toward the IPS (2). At this point, the traffic is also mirrored into a 

dedicated Kafka topic (4). This monitoring traffic is consumed by the local loop. 

• The traffic goes through the IPS and reaches its destination: the vulnerable app (3). At 

this point, the attack is successful. For demonstration purposes, the realization of the 

attack is materialized by the creation of a file in the vulnerable app. 

The local loop is a cybersecurity autonomous closed loop that monitors data path traffic, detects 

incoming attacks and applies containment actions upon attack detection. In this scenario, the 

functional behaviour of this category of modules goes as follows: 

• Via a dedicated Kafka topic, the local loop receives a copy of the data plane traffic going 

through the UPF. This traffic is directly fed into the IDS (4). When the malicious packet 

reaches the IDS, a log4shell alert is raised and sent to the local Analysis module (5). The 
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format of the alert depends on the IDS, here Suricata. While Suricata is used here as an 

IDS, other IDS could be used, either instead of Suricata, or in parallel. 

• The local Analysis module format the alert and forwards it to the local Decision engine 

(6). At the same time, the alert is observed by the central loop (9). In more complex 

scenarios, the Analysis module would have a more important role, typically gathering 

several alerts to deduce the nature of the attack. 

• The local Decision engine emits a containment plan for Log4Shell (7). 

• The local Execution engine connects to the IPS via SSH. The private key of the IPS is 

pre-provisioned to the Execution module for this purpose. The local Execution engine 

applies the containment plan, which consists in adding a rule into the IPS to block any 

log4shell-realted signature. The rules are then live-reloaded. At this point, the 

containment measures are fully applied, and the UE cannot attack the vulnerable 

application anymore. Note that the rules were not present in Suricata IPS in the first place 

as the attack probability was considered to be low, and since the IPS is on the data path, 

it has to remain as lightweight as possible to avoid inducing delays to the UP traffic. 

While the vulnerable app is now safe from an attack coming from UEs, the root vulnerability 

remains, and attacks from other sources (e.g., from a compromised application) remain possible. 

Consequently, eradication measures are required. The central loop is a cybersecurity autonomous 

closed loop that monitors local loops, detect incoming attacks and applies eradication actions 

upon attack detection. Generally speaking, the central loop could monitor any information 

generated by the local loop. Here, the central loop only monitors the alerts emitted by the Local 

Analysis module. In this scenario, the functional behaviour of this category of modules goes as 

follows: 

• The central analysis module gathers the log4shell alert emitted by its local counterpart 

(9). As the attack is here straightforward, the module does not have to perform further 

analysis and can directly handle the alert to the central Decision engine (10). 

• The central Decision engine emits an Eradication plan for log4Shell. This action is 

actually divided into two plans. 

• Patch the vulnerable application (11) 

• Find all other vulnerable applications within the domain (15) and patch them (18). This 

is the extended Eradication plan. The rationale behind this plan is that since the attack 

happened once, its likelihood in the domain increased and justifies preemptive measures. 

• Upon reception of the patch request for the vulnerable application, the central Execution 

engine first determines which pod is running the vulnerable application (12) using the IP 

and PORT targeted by the attacker. Once the pod is known, the central Execution engine 

uses the K8s API (13) to apply the patch to the vulnerable application (14). At this point, 

the vulnerable application is no longer vulnerable to log4shell, and the eradication process 

is completed. To push further the resolution of the problem, the central Execution module 

can send a notification to the human administrator to suggest an update of the vulnerable 

application (step not represented in the sequence diagram). The update itself cannot be 

automated and requires the contribution of the developers of the application. 

• Upon reception of the vulnerability identification request (15), the Central Execution 

module uses its K8s access to identify other vulnerable application pods (16). This 

identification is performed by the Trivy vulnerability scanner which is able to detect the 

log4shell vulnerability in container images. The list of vulnerable images is sent back to 

the central Decision engine (17). 

• Upon reception of the subsequent patch request for that application (18), which 

constitutes the extended Eradication plan, the local Execution engine applies the patch to 

the vulnerable pods. This back-and forth-between Decision and Execution engines 

demonstrate the ability of the system to perform additional investigations if required. This 

specific example consists of not only applying the patch to the directly affected 

application but extending the procedure to other applications. Such back and forth could 

also take place between the response block and the decision & analysis one, for example, 

if the existence of a specific attack or step of attack may involve the existence of other 

attacks that should be looked for. 
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•  All the messages between the different entities are exchanged through Kafka topics 

(when it is not specified otherwise, for SSH connections, for example). As said 

previously, this allows the later addition of new monitoring/analysis/ decision/actuation 

engines to cover a wider variety of attacks and provide a complete overview of the 

security situation system to the administrator. Likewise, Kafka enables other components, 

for instance, other security functions, to consume the information generated by local and 

central closed loops to support their decisions or actions to be taken. For the sake of 

simplicity, all topics are handled here by a single Kafka system; however, the different 

topics are well isolated and could be handled by different Kafka instances to match the 

general architecture presented in Section 5.3.3.1. The information produced during the 

local and central loops may be consumed by other security functions instantiated through 

Service, Network or Infrastructure Layers of the M&O architecture design [HEX22-

D62]. In this specific scenario, the LoTAF, under the Service Layer, leverage outputs 

coming from the analysis, decision and execution modules of local and central loops. The 

principal objective of LoTAF is to demonstrate how real-time cyber security threats, like 

the log4shell, may have an impact on the Service Provider (SP) LoT and the agreed 

security and privacy requirements.   

Since all the messages between the different entities involved in local and central loops are 

exchanged through Kafka topic, LoTAF needs to deploy a Kafka Consumer to subscribe to the 

topics it is interested in, specifically, local_analysis, central_analysis, local_decision, 

central_decision. Due to the fact that the local loop carries out quicker and simpler 

countermeasures than the central loop, the LoTAF needs to be informed of all types of 

countermeasures that are applied when a threat appears. First and foremost, the LoTAF recaps the 

information of the Local Analysis module to find out whether the current threat is one of the 

possible threats detected by LoTAF at Stage 1. As previously mentioned, the likelihood of the 

log4shell attack has not been considered severe enough, so it was not under the possible threats 

of the instantiated network service. In consequence, the next step of LoTAF is to figure out how 

a new threat may compromise the security and privacy requirements agreed upon between an end-

user and an MNO. In this specific scenario, LoTAF assumes the Detection, Analysis and 

Remediation modules were instantiated before the event. Therefore, there are no signals that 

security and privacy requirements were compromised, but they might be compromised if 

containment and eradication plans are not fully effective. In this vein, the containment plan linked 

to the Local Response module makes use of blocking the traffic that matches the log4shell 

signature by installing the proper rules in Suricata IPS. This containment action aims at dwindling 

and stopping the log4shell threat by dwindling the likelihood of suffering such an attack. Yet, the 

vulnerability is still in the application or applications (meaning of yellow colour in ovals); 

therefore, the LoTA should assess the feasible risk. 

Figure 5-25 displays, on the right side, the security and privacy requirements that the MNO needs 

to ensure to end-user (ovals) as well as a set of countermeasures related to the local closed loop. 

Note that the pink boxes represent both the loop and the countermeasure being used at this 

moment. In order to reassess the LoT, LoTAF makes use of a reward and punishment method to 

adjust it based on the selected containment and eradication plans. As part of this method, LoTAF 

also leverages a rule-based decision engine to determine countermeasure effects in the initial LoT 

as well as reassessment-based learning techniques. As a result, the reward and punishment method 

determines the affinity (membership degree) between a pre-defined set of thresholds, the 

countermeasure effects, security and privacy requirements previously agreed and optimization 

functions. Figure 5-25 displays, on the left-hand side, the affinity of the new LoT with the 

thresholds using a trapezoidal fuzzy model. In particular, the new LoT has a membership degree 

of 0.6 with the Trustworthy level and 0.38 with the Moderately Trustworthy level.  

Owing to the fact that the central closed loop has not still applied the eradication plans, which 

guarantee logh4shell attack is not currently a threat to the running applications under the network 

service, LoTAF makes a conservative decision when evaluating LoT. Thus, it considers both the 

likelihood that current filtering rules might not be effective for future deltas of the log4shell attack 

and the impact of the attack on the end-user requirements. Therefore, the LoT is updated to the 
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Moderately Trustworthy level so as to watch out if integrity, confidentiality or availability 

requirements might be compromised until the eradication plan is finally applied.  

 
Figure 5-25. Level of Trust update based on containment plan for Scenario 5.3.  

Since there is no defined time until the eradication plan is finally applied, because it requires more 

complex and consuming-time tasks than the containment plan and even the administrator 

interaction to perform a specific patch or a full upgrade of the applications, the LoT is updated 

after eradication actions are carried out. To this end, the LoTAF will apply the same reward and 

punishment method, but this time the countermeasures, the likelihood and the impact of log4shell 

are totally different. In this sense, the rule-based decision engine and the reassessment-based 

learning techniques determine that the risk of suffering such a threat has been properly tackled 

(meaning of green colour in ovals), and in consequence, the LoT is slightly increased until 

reaching the initial Trustworthy Level (see Figure 5-26).  

 

Figure 5-26. Level of Trust update based on eradication plan for Scenario 5.3.  
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5.3.3.4 Deployment  

As represented in Figure 5-23, the system relies on two management and orchestration tools: 

OpenStack and K8s. K8s itself is installed on VMs managed by OpenStack. Table 5-4 details the 

requirements of the different components. 

Table 5-4. Scenario 5.3 VM-based component list.  

Name Function Type vCPUs RAM (GB) 

UERANSIM  UE + RAN simulator  VM  2   4  

UPF  5G User Plane  VM  4   8  

Suricata IPS  Firewall  VM  4   8  

Master  K8s master node  VM  4   8  

Worker-1  K8s worker node  VM  8  20  

Worker-2  K8s worker node  VM  8  20  

The deployment is made manually: VMs are first created following size requirements. Then, 

components based on VMs (K8s included) are installed, and finally, containerized components 

are deployed using Helm charts. Table 5-5 details how the different components are installed – 

the containerized components do not require additional resources.  

Table 5-5. Scenario 5.3 container-based component list.  

Name Function 

Local Suricata IDS Local Monitoring 

Local analytic module Local analysis 

Local Drools Local decision engine 

Local execution Local execution 

Central analytic module Central analysis 

Central Drools Central decision engine 

Central execution Central execution 

Kafka Broker 1 Communication between components 

Kafka Broker 2 Communication between components 

Zookeeper Support for Kafka 

Vulnerable application Target application to demonstrate the attack 

LoTAF Level of Trust Assessment Function 

 Scenario 5.4: MLOps techniques to deploy AI/ML service components  

5.3.4.1 Scenario description  

MLOps is a concept devised to refer to the full lifecycle management of ML (and its variants, 

Deep Learning, Reinforcement Learning, etc.) in production7. In short, MLOps can be understood 

as a particularization of the already well-known DevOps paradigm [EAD14], aimed at addressing 

the challenge of developing and deploying in production AI/ML-based software artefacts with an 

approach similar to that used in DevOps. The main challenge that the MLOps approach seeks to 

 
7 The MLOps term was originally coined by Dr. Nisha Talagala back in 2018 (see https://www.linkedin.com/in/nisha-

talagala-6a6b20, https://www.forbes.com/sites/nishatalagala/?sh=4b2ac4b63de9 or https://www.slideshare.net/ 

NishaTalagala/ml-ops-pastpresentfuture. 

https://www.linkedin.com/in/nisha-talagala-6a6b20
https://www.linkedin.com/in/nisha-talagala-6a6b20
https://www.forbes.com/sites/nishatalagala/?sh=4b2ac4b63de9
https://www.slideshare.net/
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address is the integration of the processes of collecting and formatting the training data typically 

needed by the AI/ML models, as well as the training process itself, as these processes are not 

considered in the regular DevOps workflows8.  

The MLOps concept comes from the IT industry. However, the target in the context of this Hexa-

X project is to explore how this concept could also be applied in the telco-grade industry, 

specifically, regarding the future 6G systems, wherein AI/ML techniques are expected to play a 

relevant role. In this regard, it is especially relevant the integration of the different stakeholders 

typically operating in the telco sector. Scenario 5.4 intends to take an initial step in this direction, 

trying to showcase how the MLOps practices could be applied in the scope of 

telecommunications. The scenario considered in this demo targets a specific use case where a 

single SW Vendor develops, trains, and deploys an AI/ML-based model on the MNO 

infrastructure9. Specifically, a supervised learning model has been chosen to showcase the whole 

MLOps cycle, trying to address the problem of sharing the data needed to train the model between 

two different administrative entities: the SW Vendor and the MNO. In particular, the ML model 

used in the demo aims at providing AI capabilities in network management and orchestration, 

specifically to avoid network slice and service performance degradations caused by limited UPF 

resources at the edge [HEX23-D43]. The model serves for the optimal auto-scaling of UPFs 

placed at the network edge in support of low-latency communication services. The scenario also 

covers a simple model drift management use case, which automatically redeploys the model when 

a drift situation is detected. Figure 5-27 shows the overall approach for this scenario, representing 

both the SW Vendor Domain (left) and the MNO Domain (right), with the latest composed of two 

different environments, staging and production. 

 
Figure 5-27. Scenario 5.4 block diagram.  

These domains and environments have been instantiated on different VMs to simulate the 

separation between these domains and environments that would actually occur in a real-life 

scenario. As can be seen, the overall MLOps workflow (purple dashed line) consists of different 

sub-workflows in the SW Vendor Domain (the Development Workflow) and the MNO Domain 

(the Validation Workflow in the Staging Environment and the Deployment and Operation 

 
8 Please, be aware that MLOps (the topic addressed here) is not the same as AIOps (another commonly related topic). 

In short, AIOps can be considered as the application of AI/ML techniques to DevOps, while MLOps would be the 

application of the DevOps methodologies to develop and deploy AI/ML-based artifacts [Ler17]. 

9 To consider just a single SW Vendor is indeed a simplification made in the context of the demo. It is well known that 

in the telco-grade environment this is not always the case, as network services to be deployed on the MNO 

infrastructure are often developed by different vendors. However, though it is considered that such multi-vendor 

scenario could be interesting for future research (it would require more complex workflows taking into account the 

coordination of the different suppliers), it has been considered better to start with this simplified approach with just 

a single vendor, as an initial step in the context of this Hexa-X project regarding the MLOps approach. 
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Workflow in the Production Environment). The Development Workflow is intended to simulate 

the development stage that occurs at the SW Vendor domain, and that, in this case, also includes 

the AI/ML-model design and training phases. The Validation Workflow occurs already at the 

MNO Domain, in its Staging Environment, and basically comprises the verification phase of the 

model delivered by the vendor, which is always necessary prior to its acceptance and deployment 

in the production environment. Then, the Deployment and Operation Workflow covers the 

necessary tasks to put the model in production (once validated) and its continuous monitoring. 

These workflows, together with the means that have been used for their implementation, is 

described in more detail in the corresponding subsections below.  

5.3.4.2 Functional Behaviour  

This subsection addresses the description of the overall MLOps workflow itself, which, as said, 

consists of different sub-workflows: one of them executed at the SW Vendor Side (the 

Development Workflow), and the other two on the staging and the production environments of 

the MNO (Validation Workflow and Deployment & Operation workflows respectively). In the 

following, each of these sub-workflows is described.  

SW Vendor Side Workflow  

As mentioned, the Development Workflow targets the AI/ML model development itself (being 

the equivalent of the “Dev” part in the regular DevOps approach). Of course, it is assumed that, 

in a real-life scenario, prior to the execution of this workflow, there would be a Service Level 

Agreement (SLA) set up between the MNO and the SW Vendor. As for regular non-AI/ML-based 

services, that SLA would come after a negotiation process between the two parties, after which 

the requirements of the service (based on an AI/ML model in this case) should be well defined. 

For the demo, we will omit this SLA development stage, which is considered to have already 

occurred before the model development work itself begins. As can be seen in Figure 5-27, this 

Development Workflow consists of seven stages, namely:  

1. Get anonymized/encrypted training data from the MNO scope. This step has been 

represented in the figure by the right-to-left arrow entering into the SW Vendor Domain. 

In a real-life scenario, this could be understood as a recurrent process having multiple 

iterations. The first iteration would be the initial communication process between the 

Vendor and MNO operational teams, where that second party would communicate the 

necessary initial data to start designing, developing and performing the first training tests 

on the AI/ML model. Probably, these 1st iterations would be a mix of offline and online 

communications between the Vendor and MNO. However, in later iterations, once the 

data model is well established, that communication process could happen in a more 

automatic way or even could be fully automated. For the demo implementation, the 

process has been simplified by defining a fixed data model and using a defined data set 

that the MNO transfers to the Vendor. As can be seen, the communication is performed 

by exposing the MNO Datasets DB (see Figure 5-27), in line with the API Management 

Exposure concept introduced in the M&O architectural design from the previous 

Deliverable D6.2 [HEX22-D62]. As mentioned above, for real-life scenarios, the fact that 

the training data exposed to the Vendor must be anonymized or encrypted would be of 

utmost importance since the MNO would be obliged to keep the user data confidentiality 

(e.g., by the GDPR [GDPR], or by specific obligations with other parties). However, the 

training of the model shall be possible even when the data is encrypted and/or 

anonymized so that, once trained, it can make inferences in the MNO environment by 

using the non-anonymized (or encrypted) data once in production. The demo targets 

specifically this approach, which is considered relevant in the telco-grade environment 

for those cases where the training data from the MNO must be shared with external parties 

(e.g. when using the supervised and/or unsupervised learning paradigms). Specifically 

for the demo, the Micro-aggregation (MA) method has been used before storing the 

training data on the Exposed Dataset DB. This technique makes it possible to train the 

models using anonymised data [STO+20].  
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2. ML Model Design. In this step, the AI/ML-model development team decides on the 

specific AI/ML approach to be used to better solve the design requirements. In a real-life 

case, at this stage, it is decided, for example, which neural network topology to use, the 

specific learning algorithm to apply, the size and composition of the data sets for training 

and testing, etc. Of course, typically, this happens only at the beginning of development. 

In future iterations of the MLOps workflow, this can be omitted unless a complete re-

design is necessary. For the demo, this stage has been simplified, considering a network 

topology already pre-designed. Specifically, a Long Short-Term Memory (LSTM) 

flavour model was used, consisting of a graph convolution layer followed by LSTM and 

dense layers. Evaluation of the model performance was done through the symmetric 

Mean Absolute Percentage Error (sMAPE) on test data.  

3. Data Validation and Preparation. This stage comprises the filtering and normalization 

of the data that is typically necessary prior to the AI/ML model training. For the demo, 

for the data validation, an analysis of the input data is performed, checking out anomalies 

in the provided data. 

4. ML Model Training. Here is where the model is trained to perform the requested 

function. In this case, an LSTM model [SRO+19] is trained using time series data to 

predict the future state of the UPF load.  

5. ML Model Testing. This is the testing stage. As can be seen in Figure 5-27, depending 

on the testing results, the previous data validation/preparation and the training itself could 

be repeated over and over until the results are according to the requirements in the SLA. 

In the demo, this stage has been implemented by means of setting constraints on the 

evaluation phase of the pipeline.  

6. Store in the local repo. This step just represents the successful finalization of the 

previous testing process and the storing of the generated AI/ML model in the SW 

Vendor's local repositories. The model is stored there until its propagation to the MNO 

scope.  

7. Propagate the model towards the MNO scope. This is the last step in the Development 

Workflow, represented by the left-to-right arrow getting out from the SW Vendor Domain 

in Figure 5-27. However, although a “last step” in the Development Workflow, this is 

just an intermediate step in the whole MLOps workflow that, in fact, can be executed as 

part of multiple MLOps cycles. As with DevOps, the goal here is also to perform 

Continuous Delivery, propagating new versions of the model as soon as they are made 

available by the vendor in a highly automated way. Although in a real-life scenario, the 

initial deliveries of the model could probably be semi-automated or even manual, the 

objective here is to automate the process as much as possible in such a way that deliveries 

can be performed in a continuous way. As it can be seen in Figure 5-27, the delivery is 

performed using an Exposed Models Storage, also following (as with the getting for the 

training data exposure in step 1) the API Management Exposure concept introduced in 

[HEX22-D62], and specifically, by exposing to the SW Vendor the access to the Exposed 

Models Storage REST APIs (to store and later update the models, the training pipeline 

artefacts, or any other relevant metadata).  

MNO Side Workflows  

Figure 5-28 shows the main steps of the workflows executed at the MNO domain, happening in 

the MNO Staging Environment (the Validation Workflow) and in the Production Environment 

(the Deployment & Operation Workflow). As can be seen, both environments (staging and 

production) contain basically the same set of components:  

• The Models Serving Instance, which basically provides the “execution environment” 

for the AI/ML model developed and used in the demo.  

• The ML Models Monitoring Function, monitors the performance of the ML models, 

evaluating their runtime accuracy. It includes methods for identifying potential drifts in 

the model inferences as well as in the inference data.  

• The Monitoring Data DB is used to store and maintain different types of data relevant 

to the MLOps cycles: the training data, the inference runtime data, and the model 
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monitoring and evaluation data. In practice, it stores all the required data to implement 

(on the Vendor side), validate (at the MNO staging side), serve (on the MNO production 

side) and monitor/evaluate (on the MNO production side) the models. Specifically, the 

Monitoring Data DB is the main source of data for the Exposed Dataset DB.  

• The M&O System is used to orchestrate the MLOps workflow in each MNO 

environment.  

Besides these main components, there are also the two exposed databases in the staging 

environment described in the previous section (those used to send training data to the SW Vendor 

and to receive the models from it) and also, the Models Storage DB in the Production 

Environment, which basically mimics the functionality of the Exposed Models Storage in the 

staging environment, but within the MNO production domain itself. Another difference is in the 

Anonymisation Component, which, as can be seen, is deployed only in the production 

environment. The duplication of components in staging and production environments is obviously 

intentional, trying to reproduce what actually happens in real life to provide a testing environment 

as similar as possible to the production environment. From a conceptual perspective, this MLOps 

approach with separation of staging and production environment is applicable to real-life 

scenarios where the MNO hosts multiple production environments (e.g., to support different types 

of services or customers). The Validation Workflow (the 1st workflow executed after the AI/ML 

model is received from the vendor) implements the validation process that typically takes place 

in real life for the network services delivered to the MNO by external parties. AI/ML-based 

services are not different to this in the regard that they also need to be validated before their 

deployment in the production environment. The steps of this Validation Workflow are encircled 

with the numbers ‘1’, ‘2’ and ‘3’ in Figure 5-28.  

 
Figure 5-28. Main steps of the MLOps workflow in the MNO Domain.  

As can be seen, the first step consists of the deployment of the model from the Exposed Models 

Storage on the Models Serving Instance. This is triggered by the Staging M&O System (dashed 

line). The objective here is to have the AI/ML-model deployed in an execution environment 

similar to the production environment to perform the necessary validation and testing on it (step 

2) to accept the model or inform the SW Vendor in case some updates are required (this last 

interaction is not represented in the diagram, but it would basically consist on re-executing the 

Development Workflow at the SW Vendor Side to re-engineer the model to avoid drifts or faults 

found during the testing). The performing of Step 2 (testing and validation) is done differently 

depending on the maturity of the delivered model. In the initial stages, human-conducted testing 

(i.e., manual testing) could be necessary. However, in later iterations, this process could be highly 

automated using testing automation tools with the appropriate collection of test batteries. In the 

demo, this testing process has been implemented through the ML Monitoring Function, which 

basically evaluates the model accuracy for a given number of inferences (i.e., UPF load 
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predictions) by measuring how much the prediction differs from the actual future data in the 

Monitoring Data DB and detecting potential drifts based on pre-defined thresholds. The results 

of the validation are stored in the Monitoring Data DB for manual inspection; however, the choice 

of validation merit is determined automatically by the ML Monitoring Function using a threshold, 

and the information is passed to the Staging M&O system for action. In any case (manual or 

automatic), this testing stage in the workflow is intended to be based on testing data from two 

different main sources:  

• The data in the Exposed Dataset DB, i.e., the same data that is provided to the SW Vendor 

for it to generate the model.  

• The Monitoring Data DB in the Staging Environment (top-right DB in the figure). This 

DB is intended to contain monitoring data, not only from the staging environment itself 

but from the production environment also. This data coming from the production 

environment is used to test the response of the AI/ML model under realistic service 

circumstances and not only using staging data or the datasets shared with the SW Vendor 

to train and validate the model. That production data can be stored in this Staging 

Monitoring Data DB through automatic data collection processes (from the Monitoring 

Data DB on the production side) or be manually stored by the MNO operations team 

members.  

Step 3 happens once the testing process in the staging environment has been successfully 

completed. It basically consists in storing the validated AI/ML model in the Models Storage 

database, already in the production environment. Together with this, the M&O System at the 

production stage also receives a notification (step 4), meaning that a new AI/ML model (or a new 

version of an existing model) is ready to be deployed in the production environment. This 

notification shall have associated the information and metadata necessary to orchestrate the just 

released AI/ML-model, such as the model name and version, its main features and capabilities, 

its data requirements, its validity execution times, relation to other models, or whatever other 

metadata is necessary to properly execute it. In the context of the demo, the model tested and 

validated in the staging environment is stored in the production Model Storage DB by the staging 

M&O system through the exposed database REST APIs. On the other hand, the staging M&O 

system notifies the production M&O system by using a publish/subscribe mechanism based on a 

message bus.  

Once the AI/ML model is deployed in the production Models Storage DB, the Deployment & 

Operation Workflow at the production environment can start. The 1st step in this environment 

(Step 5 in Figure 5-28) is the deployment of the to make the model available to the production 

Models Serving instance, which in practice will mean putting the model into production. As in 

the staging environment, this is triggered here by the production M&O system (dashed line). In 

real life, this step could be done under human supervision but also fully automated, targeting the 

Continuous Deployment paradigm. This second case, however, would be valid only for certain 

well-defined circumstances, which would be well defined in the orchestrator. For the demo, the 

production M&O system takes care to properly configure the Model Serving instance in order to 

have access to the proper model version. This is done in accordance with the metadata available 

in the Models Storage DB and which describes the capabilities and characteristics of the model. 

As soon as the AI/ML model is deployed, a continuous monitoring process is started driven by 

the ML Monitoring Function. This function has been developed from scratch and is executed as 

a containerized function. The Monitoring Function continuously takes relevant metrics from the 

deployed model (step 6 in the figure) and stores them in the Monitoring Data DB. It also compares 

the previously predicted output of a model with the real-time data for UPF load to check for drift, 

as described below under Drift Management. Those metrics are also anonymized and sent to the 

Exposed Data DB in the staging environment (step 7) in order to make them available for future 

testing on that environment and also to share them with the SW Vendor in case a new re-design 

and/or re-training iteration were necessary. For the anonymization process, the Micro-aggregation 

(MA) method has been used. In MA, first, the original values of a given dataset are partitioned 

into micro-clusters, and then they are replaced by each micro-cluster’s centroid value. The basic 

idea is to generate homogeneous clusters over the original data in a way distance between clusters 

is maximized in order to minimize the information loss. One of the main reasons of using this 
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method is that allows making inference on the trained model without applying the MA method 

on the inference data [STO+20]. 

Drift Management  

The monitoring process mentioned in the preceding paragraph is aimed at detecting any 

malfunction of the AI/ML model, either to alert the MNO operations team (e.g., by an alarm 

signal on a console) and/or to trigger the appropriate automatic response to solve or minimise the 

effects of the failure. In AI/ML models, a common source of failures is what is typically known 

as “drift”, which refers to the loss of accuracy of AI/ML models that can occur when the data to 

which the model is exposed in the production environment differs from the dataset used for 

training. This, of course, can negatively affect the business, so it should be avoided. Drift can 

happen for different reasons, e.g., because of changes in the way users behave or use the network 

services because the MNO tries to use the model in a new context or due to a lack of precision in 

selecting the training data sets. MLOps can help to overcome this situation by implementing the 

appropriate drift detection and remediation strategies that could be executed in a highly automated 

way. In the demo, a specific use case addressing an example of drift management has been 

implemented as part of the Deployment & Operation workflow previously mentioned. Figure 

5-29 shows this specific approach for the demo (steps ‘a’ and ‘b’ in the figure) that simply 

assumes that there is an alternate version of the AI/ML which can be used to remediate the drift 

situation. The use case is simple: the ML Model Monitoring Function detects the drift situation 

(a) and triggers the M&O system, which in turn causes the deployment of the alternate AI/ML 

model. Although simplified, this approach can be valid for real use cases in the telco-grade 

environment where, for instance, there may be different service usage patterns depending on the 

time (e.g., time of day or day of the week). Based on this, the Models Storage DB could have 

different versions of the AI/ML model, each suited to a specific situation. In the demo, a drift is 

detected through continuous comparison of the previously predicted output of a model with the 

real-time data for UPF load. This is handled through the ML Monitoring function. When the 

Monitoring detects a degradation in the prediction accuracy, it passes the information to the M&O 

system for action. The M&O system then triggers the evaluation of the available model versions, 

similar to the model validation process described in Step 2 above. When a model version is found 

which meets the requirements of the SLA, the M&O system deploys the model to production, as 

described in Step 3. It is not included in the demo, but if no suitable model version is found, the 

M&O system will trigger a re-training of the model. If the SLA cannot be met by the newly trained 

model, a message is sent to the SW vendor to request a new model development.  

 
Figure 5-29. MLOps Workflow - Drift Management.  
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Of course, other more complicated drift management scenarios could be considered. E.g., there 

could be considered a re-training of the model in the staging environment (aligned with the 

Continuous Training concept [TBF+22]) or even to request for the development of a completely 

new version of the model to the SW Vendor (e.g., through the MNO BSS systems). However, in 

terms of demonstration, it has been considered that the simplistic approach in Figure 5-29 is far 

enough for an initial step to introduce this concept.  

5.3.4.3 Implementation Details  

Figure 5-30 shows the specific software components that have been used to implement the demo; 

below is a description of these components.  

SW Vendor Domain  

Four main components have been used here:  

• K8s. In the context of the demo, this is used as it allows to scale and manage containerized 

software components and execute them as cloud-native applications. An additional 

reason is that the orchestration platform described in the next paragraph can only run on 

top of K8s.  

• Kubeflow. This is an open-source system for making deployments of ML workflows on 

K8s [KUBb]. In short, it offers an ML toolkit where the SW Vendor workflow pipeline 

can be developed, executed, and tested. In the context of the demo, it has been used to 

orchestrate the Development Workflow itself, as it offers a machine learning toolkit not 

only for orchestrating pipelines but also to develop them with notebooks servers and katib 

components, or even make experiment tracking in contrast with other orchestrating tools 

like Apache Airflow [AIR]. Additionally, it allows multi-user isolation by creating the 

resources in different namespaces for each user. The orchestration function itself has been 

implemented by the orchestration component provided by Kubeflow, called “Kubeflow 

Pipelines” [KUP].  

• The MinIO database [MIN]. This is the vendor's local database just mentioned. It is a 

K8s-native objects storage.  

• TensorFlow Extended (TFX)[TFX] is an extension of the well-known TensorFlow 

framework [TFL], which is typically used to create and manage ML production pipelines. 

As can be seen in Figure 5-30, TensorFlow Extended is used in the demo to implement 

three of the steps in the Development Workflow, namely:  

o The Data Validation and Preparation step is performed by means of the default 

TFX pipeline components oriented to make this preparation and validation. The 

first one is the ExampleGen component which ingests the data into the TFX 

pipeline; it is the first component present in the pipeline. The second is 

StaticsGen which generates features statics over the ingested data. The third is 

SchemaGen, which is in charge of generating a schema with information about 

the types, categories and ranges from the training data. Finally, the 

ExampleValidator compares the data statics generated by the StaticsGen 

component against the schema produced by the SchemaGen component to detect 

anomalies in the input data. All these aforenamed components make use of the 

TensorFlow Data Validation [TFDV] library.  

o The ML Model Training step, which is performed by the Trainer component, 

takes three mandatory inputs. The examples generated by the ExampleGen, a 

module file that defines the trainer logic that is basically a python script where 

the model is defined, and finally, a definition of the trainer args (e.g. the number 

of training steps).  

o The ML Model Testing step, which is performed by the Evaluator component, 

which takes as input the trained model produced by the Trainer component and 

the data from the ExampleGen component. This component allows setting 

statistical metrics such as Mean Squared Error, Accuracy etc. It also helps ensure 

that the model is "good enough" to be pushed to a production environment. To 

that end, the component uses the TensorFlow Model Analysis [TFMA] library to 

perform the analysis.  
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As seen in Figure 5-30, the initial and final steps in the Development Workflow (i.e., the ML 

Model Design and the Storage in the Local Repo) are outside the TensorFlow Extended 

framework. The initial one is obviously because the design is typically executed in an offline 

manner by a design team. In the demo, a pre-designed model is used. The final one (the storage 

in the local repository) is just a simple commit operation that, in the demo, is executed by simply 

storing the generated model in the local database.  

 
Figure 5-30. MLOps Scenario functional blocks and software components.  

MNO Domain  

The following software components have been deployed here:  

• MinIO. The same objects’ storage as in the SW Vendor Domain. In this case, two 

different instances have been deployed: one in the Staging Environment and another one 

in the Production Environment. The first one (implementing the Exposed Models 

Storage) is used to store the ML models provided from the vendor side, while the second 

one (the Models Storage) is used to store those models that have been already validated 

in the Staging Environment. As shown in Figure 5-30, the Exposed Models Storage relies 

on an Exposed ad-hoc API to allow the vendor to store the AI/ML models on it. This ad-

hoc API has been implemented using the python client API provided by MinIO, which 

supports uploading files into a specific bucket with previous authentication making use 

of access and secret keys generated by the MNO.  

• InfluxDB [INF]. This is another database, specifically a time-series database, that is used 

for different purposes: This is another database, specifically, a time-series database that 

is used for different purposes: 

o To implement the Exposed Dataset DB in the staging environment, i.e., the DB 

the MNO uses to share the necessary training data with the external SW 

Vendor. To make the vendor able to access its data, an Exposed ad-hoc API has 

also been implemented here. In this case, this ad-hoc API uses the HTTP API 

provided by InfluxDB that allows writing on buckets and query data; as with 

the MinIO instance, authentication is required. 

o To also implement the Monitoring Data DB in both environments: staging and 

production.  

In all these cases, the usage of a time-series database is justified because the type of 

data collected are asynchronous timestamped metrics, and the downsample and 

aggregation functionalities of a time-series database can be exploited to reduce the 

computation needed during data preparation stages.  

To implement the Exposed Dataset DB in the staging environment, i.e., the DB the MNO 

uses to share the necessary training data with the external SW Vendor. To make the 

vendor able to access its data, an Exposed ad-hoc API has also been implemented here. 
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In this case, this ad-hoc API uses the HTTP API provided by InfluxDB that allows writing 

on buckets and query data; as with the MinIO instance, authentication is required. To also 

implement the Monitoring Data DB in both environments: staging and production. In all 

these cases, the usage of a time-series database is justified because the type of data 

collected are asynchronous timestamped metrics, and the downsample and aggregation 

functionalities of a time-series database can be exploited to reduce the computation 

needed during data preparation stages.  

• Anonymization Component. This component performs anonymization over the dataset 

which is used by the SW Vendor Domain. This application is hosted in a K8s pod 

between the Monitoring Dataset DB and the Exposed Dataset DB in order to deliver the 

anonymized data into the Exposed Dataset DB. The application uses the Micro-

aggregation (MA) method [STO+20] that performs data anonymization allowing to use 

of the data to train ML models.  
• TensorFlow Serving [TFS]. This is a flexible serving system for ML models. For the 

demo, this is a sort of “execution environment” where the AI/ML models are deployed 

and are made available for inferencing requests through an API (in the context of the 

demo, a REST API is used). As can be seen in Figure 5-30, two identical instances are 

deployed for the staging and the production environments, respectively. This component 

is executed as a containerized function.  

• AI Agent. This module, along with TensorFlow Serving, is part of the Model Serving 

instance. It retrieves the run-time data from the Monitoring Data DB and sends a request 

for inference to TensorFlow serving. It also contains the logic for predicting a need for 

altering the resources allocated to the UPF. This information is passed to the M&O for 

action. This component is executed as a containerized function.  

• The M&O System, which is based on the open-source Vertical Slicer software [5GR21-

D24], was developed by Nnextworks for the management of vertical services and end-to-

end network slices across RAN, core and transport domains. A new dedicated 

functionality for managing and orchestrating the AI functions used in this demo has been 

implemented. Two instances are deployed (in the production and the staging 

environments), which are used to orchestrate the different steps of the Validation 

Workflow (in the Staging Environment) and the Deployment and Operation Workflow 

(in production).  

• ML Model Monitoring Function: This custom component performs the continuous 

monitoring of the deployed model’s accuracy. As described above, it uses a comparison 

of the previously predicted output of a model from the AI Agent with the real-time data 

for UPF load. This component is executed as a containerized function. As can be seen in 

Figure 5-30, there are two instances for the staging and the production environments, 

respectively.  

Regarding the deployment of the demo, it has been done according to what has been represented 

in Figure 5-31.  

As seen, the deployment has been done on two physical nodes (NUC1 and POP3-Amanita in 

Figure 5-31), representing the two separated domains in the demo: the SW Vendor Domain and 

the MNO Domain. On the SW Vendor Domain, the “hexax-atos” K8s namespace has been created 

to host the components to implement the Development Workflow in the form of a local Kubeflow 

pipeline. On the other hand, in the MNO Domain, two VMs have been instantiated: one VM 

hosting the Staging Environment components to implement the Validation Workflow (NXW-AI-

STAGING in the figure), and another VM implementing the Development and Operation 

Workflow (NXW-AI-VM)10  

 
10 There is in fact a third VM in this MNO domain (NXW-UPF-VM) hosting the UPF component itself, which provides 

runtime data for the AI/ML model deployed by means of the MLOps workflow explained through this section. 

However, this component has been left out of the diagrams, as it plays no role in terms of the MLOps workflows 

itself. 
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Figure 5-31. Scenario 5.4 deployment diagram.  

6 Complementary lab experiments 
As already introduced in Section 3.2 (Methodology), a set of complementary lab experiments 

have also been performed too, as the name suggests, complement the work addressed in Demos 

#4 and #5, previously described. Specifically, these experiments are intended (i) to explore one 

of the quantifiable targets assigned to this WP6 in the Hexa-X work plan (QT 3d – Improvements 

on the Network Energy Efficiency – see Section 7.1.3.4) and (ii) to explore also some other topics 

that were considered interesting in the WP6 consortium, including the automated extreme-edge 

resources discovery mechanisms (closely related with the extreme-edge volatile resources 

orchestration), and the possible integration of the radio part in Scenario 5.1 (though the radio part 

is not in the scope of WP6, it was considered this scenario could be even more realistic taking in 

account the radio-related aspects, at least with a small-scale complementary experiment). In the 

following subsections, all these complementary lab experiments are described. Although, for the 

sake of simplicity, they are not treated in the same level of detail as the demos described above, 

they are considered to provide interesting complementary information to support the evaluation 

of the M&O mechanisms addressed in this document.  

6.1 Network energy efficiency 

The main motivation for this experiment is the validation of one of the Quantifiable Targets (QT) 

assigned to this WP6 in the Hexa-X project plan, specifically the QT “3d”, regarding the 

improvement of the network energy efficiency using predictive orchestration. This QT is 

specifically evaluated in Section7.1.3.4, but the experiment that has been carried out to address 

that evaluation is described here. 

The chosen experiment is based on a V2X scenario that is assumed to be deployed on the edge 

domain. As it is well-known, deploying resources at the edge of the network can provide shorter 

response times than those provided by a central cloud located farther away. This is particularly 

relevant for V2X scenarios, given the stringent delivery requirements of URLLC-type services. 

To efficiently provide these types of URLLC services, resources should be scaled up/down 

optimally as traffic load increases/decreases while guaranteeing the QoS. This is challenging due 

to the importance of being energy efficient. On the one hand, if all resources are active, the QoS 

is guaranteed, but wasting high levels of energy. On the other hand, if few resources are available, 

the system will be more energy-efficient but cause QoS disruption.  

Experiment description 
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A V2X scenario is considered where vehicles send packets to a MEC server, e.g., Road-side Unit 

(RSU), to match URLLC-type service requirements. Although the scenario assumes a MEC 

deployment, it is not bound to any particular type of technology, provided that the server is 

relatively close to the users for latency considerations. The RSU can deploy as many servers as 

needed on demand to guarantee V2X services. Vehicles send packets at a certain rate, and these 

packets have a certain service time. Servers are modelled following an M/M/k queueing system 

[GDH+13]. Vehicles implement a Tele-operated Driving (ToD) application where part or all the 

tasks in the act of driving a vehicle are performed by a remote server. When an autonomous 

vehicle detects the need for remote support, it will share all the camera and sensor data (from 

RADAR or LIDAR sensors) to provide the server with adequate information about the 

environment. The server can then provide appropriate instructions to help the autonomous vehicle 

resolve the issues. For this purpose, the reliability and latency requirements to operate this service 

are 99.999% and 100ms, respectively [5GA21].  

The energy consumption model is presented next. The edge deployment is modelled with carrier-

grade servers, which consume 270W at their peak power and 150W while in idle mode [DPE]. 

The total power consumption is computed as the sum of (i) the power of having active servers 

(i.e., in idle mode); and (ii) the power associated with the server load. In this way, if an algorithm 

is capable of providing the same performance guarantees (reliability and latency) using fewer 

resources by accurately anticipating changes in demand (both to activate and to deactivate 

resources accordingly), it will result more efficient. 

To simulate realistic road traffic in the experiment traces from Corso Agnelli Street in Torino 

(Italy) [MKV+22] on the last day of January 2022 have been used. This trace consists of traffic 

flow measurements reported each 5 min by a road probe. The 5-minute average number of 

vehicles is depicted in Figure 6-1, which corresponds to a typical workday pattern, with two 

periods of heavy traffic over the day.  

This experiment consists of the simulation of a carrier-grade server’s farm architecture with 150 

servers, each one supporting up to 16 simultaneous requests. In this architecture, the following 

four scenarios were considered: 

1. Peak-load dimensioning (i.e., no orchestration). This is the worst-case scenario, where all 

servers consume the maximum energy. In this case, all servers are active regardless of 

the traffic demand. This causes a complete waste of resources even though the QoS is 

guaranteed.  

2. Oracle. In this case, the exact number of servers needed to match the QoS requirements 

are calculated. Therefore, the orchestrator accommodates the current traffic demand with 

a sufficient number of resources resulting in a more efficient approach. However, it is 

considered that this method is not realistic (or applicable in all cases) since knowing the 

current load can be challenging.  

3. Predictive orchestration. In this case, the traffic load is predicted based on the load 

history. This implementation is intended to be more realistic than the previous one. This 

approach is based on using an LSTM Recurrent Neural Network (RNN) [YSH+19] [LST] 

to perform the load predictions.  

The network energy efficiency model is evaluated by performing simulation experiments using a 

discrete event simulator, namely Ciw [PKH+19]. The simulations have been executed on an 

Intel(R) Core(TM) i7-1065G7 CPU @ 1.50 GHz based computer. Finally, the different KPIs 

considered in this experiment are described in Section 7.3.3. 

Results 

Results are depicted in Figure 6-2. For the peak-load dimensioning scenario, the minimum 

number of resources to accommodate the peak-load demand is calculated. This results in a 

2551.90 W of power consumption. For the oracle scenario, the exact number of resources for 

each traffic demand is calculated. This yields a 158.73 W power consumption, resulting in a very 

effective approach in terms of power consumption. For the predictive orchestration scenario, 
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the next traffic demand and scale-up resources are predicted. This results in a 324.769 W, getting 

very close to the optimal solution in the oracle scenario. 

 
Figure 6-1. Vehicular rate at Corso Agnelli street in Torino during a day. 

 
Figure 6-2. Power consumption results. 

6.2 Extreme-edge nodes discovery 

The dynamic discovery of extreme-edge nodes is a feature implemented in the resource 

orchestrator (operating at the infrastructure layer) developed for Scenario 5.1 (see Section 5.3.1). 

It allows keeping the resource inventory continuously aligned with the real-time availability of 

resources that can be used to run the services in the extreme-edge domains. The information 

provided by the resource inventory is used to feed the resource allocation decisions at the upper-

layer service orchestrator (operating at the network and service layer) during the provisioning and 

runtime phases. This also enables the automated migration of application components in response 

to changes in the availability of volatile computing nodes at the extreme-edge, which can be 

considered a control loop action. As such, the discovery of extreme-edge nodes can have a role 

in the monitoring stage of a control loop. The information about nodes joining or leaving the 

infrastructure can be notified to components working at the network and/or service layers within 

the analysis and decision stages of the control loop, which can rely on AI/ML-based algorithms.  

The resource discovery component is able to work on top of different kinds of clusters 

(Kubernetes, OpenStack, etc.), exploiting the abstraction layer that unifies the interaction with the 

various cloud platforms. For K8s-based scenarios, the discovery capability exploits the internal 

functionalities offered by K8s-like platforms to manage the nodes of the controlled clusters, 

exploiting their open APIs to watch over different clusters and detect when nodes join, leave or 

are marked as not available. More in detail, the resource discovery component acts as a K8s client, 

and it registers with the clusters in order to receive notifications about events related to their 

nodes. It should be noted that the current implementation targets a single administrative domain 
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organized in multiple clusters, where each of them can be based on different technologies and 

rely on a specific type of edge platform. In this scenario, the resource inventory is maintained as 

a centralized component of the infrastructure layer, and it exposes APIs, with both query and 

subscribe/notify patterns, to enable the synchronization with upper-layer elements that are 

supposed to belong to the same administrator, with full visibility on the infrastructure topology. 

Extensions to support federation would require more advanced access control mechanisms at the 

inventory APIs, combined with procedures for abstracting, aggregating and regulating the 

exposure of information, also on a per-node basis, towards different administrative domains. 

In order to test, validate and measure the performance of the node discovery feature, the K3d 

[K3D] tool is used to emulate a scenario with a K8s cluster composed of a master node and five 

worker nodes, each representing volatile extreme-edge resources (see Figure 6-3). K3d is a 

lightweight wrapper to run K3s in Docker, and it allows to creation of clusters on demand and 

add/remove worker nodes in a programmable way. In order to resemble the dynamicity of a real-

world scenario where worker nodes can join/leave the master node, K3d was used to quickly 

spawn and delete worker nodes as Docker containers: nodes join the cluster and remain there for 

a given time interval, then leave the cluster for another time interval. Each extreme-edge node has 

been modelled with its own behaviour in terms of mobility and volatility, changing the frequency 

and the time intervals of the presence, as shown in Table 6-1. 

 

Figure 6-3. Node discovery test scenario. 

In the current test, it is assumed nodes are joining and leaving the cluster at regular intervals, with 

cycles of 10 joining/leaving actions. Analysing the timestamps of the commands sent to K3d and 

the ones associated with the related update of the resource inventory, the statistics of the time 

intervals required by the system to synchronize with the nodes’ events have been elaborated. 

Table 6-1. Modelling of extreme-edge nodes’ volatility. 

Extreme-edge node Time in the cluster Time out of the cluster 

Worker-1 30 s 5 s 

Worker-2 35 s 10 s 

Worker-3 40 s 15 s 

Worker-4 45 s 20 s 

Worker-5 50 s 25 s 

 

Results 

It has been measured that the average time needed to spawn a node with K3d, including the time 

to discover the new node itself, is 4.9 s, with a maximum of 6.7 s and a standard deviation of 0,46. 

The leaving time is 1.4 seconds on average, with a maximum of 2.7s and a standard deviation of 
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0.39 (see Table 6-2). The additional overhead required to synchronize the resource inventory is 

negligible (in the order of milliseconds). 

Table 6-2. Synchronisation time for nodes’ joining and leaving actions. 

Event Average time Max time Std Deviation 

Node joining the cluster 4.9s 6.7s 0.46 

Node leaving the cluster 1.4s 2.7s 0.39 

Finally, assuming to switch off the nodes without sending the K3d leave command and relying 

entirely on K3s internal procedures to detect the nodes’ unavailability (marking them as Not 

Ready), the time interval for the leaving detection mostly depends on the internal timers set for 

the nodes’ heartbeats in K3s (the 40 s in the default configuration). These timers are configurable, 

with the default values set to achieve a good trade-off between accuracy, the load of the heartbeat 

traffic, and system stability. Reducing the timers increases the number of notifications about the 

changes in nodes’ status, and it may lead to some inconsistency and unstable conditions, 

especially in case of poor connectivity between the worker and the master nodes, even if the 

workers are alive and correctly running since they tend to lose the connectivity with the master. 

It should be noted that the information related to the missing availability of nodes can be used at 

the upper-layer service orchestration to trigger migration actions, and, in case of poor accuracy, 

they may lead to unnecessary delays or breaks in the service execution and continuity. The 

internal migration strategy implemented by K8s/K3s starts to monitor the nodes declared as “Not 

Ready” and, if they do not become available within 5 minutes (configurable down to 20 seconds), 

automatically triggers a migration action, whose duration depends on the characteristics of the 

containers. As an alternative, the migration can be initiated by the service orchestrator operating 

at the upper layer or specifying some parameters in the application description. However, the 

overall system logic should be able to guarantee maximum service continuity, using service 

migration only when extremely necessary. In this sense, it becomes important to have a realistic 

and updated view of the status of the various nodes where the service is running. A possible 

solution to improve the accuracy of extreme-edge nodes’ discovery and monitoring is the adoption 

of an adaptive heartbeat mechanism which is dynamically configured to better match the 

behaviour and the profile of the various nodes, e.g., adjusting the heartbeat timers and the 

availability decisions with per-node criteria, on the basis of the nature and behaviour of each node.  

6.3 Simu5G in Scenario 5.1 

The evaluation of the impact that the B5G/6G RAN might have on Scenario 5.1 is of paramount 

importance in order to clarify future scenario enhancements aiming at achieving a higher TRL 

and full integration with the B5G/6G mobile networks stack, i.e., adding a real RAN to the 

scenario, implementing it on a real-life scenario, etc. This experiment was created as first-step 

research towards these objectives. As explained in Section 5.3.2.2, Simu5G [NSS+20] allows the 

creation of a wide range of network topologies that include UPFs, PGWs, gNBs and UEs 

components as desired by the simulated network designer.  

The UE and gNB components and the communications between them are modelled as OMNeT++ 

components, and, consequently, they can be parametrised as preferred in order to fit in a given 

scenario. Within the scope of this experiment, Simu5G is used to simulate a realistic 

implementation of a 5G transport network within the building blocks that comprise Scenario 5.1 

(see Section 5.3.1) and to study the delays that emerge due to the integration of the transport 

network, and its potential impact on the Scenario components. It is important to remark that the 

Sumo Extreme-edge and Traffic Lights Control Logic components (see Figure 5-4) work on the 

extreme-edge domain; thus, they are constrained by low delay requirements in order to be able to 

act as real-time components. 
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Figure 6-4. Simu5G mapping to Scenario 5.1 software components. 

Simu5G simulated scenario 

As depicted in Figure 6-4, all the components from Scenario 5.1 (i.e., the Sumo Extreme-edge 

instances, the Traffic Lights Control Logic instances and the Reinforcement Learning Agent 

instance) have been mapped to modelled pairs on Simu5G, in such a way that even the domain 

placement of those resources has been replicated on Simu5G.  

Table 6-3. Scenario 5.1 components modelling11. 

Component Rate 

[msg/s] 

Size 

[bytes] 

Inter-packet-time 

[ms] 

 Min Max Min Max Min Max 

sumoee1 63.80 90.70 52 1450 11.03 15.67 

sumoee2 55.00 74.10 52 1450 13.50 18.18 

sumoee3 56.40 80.20 52 1450 12.47 17.73 

sumoee4 63.40 88.60 52 1450 11.29 15.77 

ai_agent 41.20 125.80 52 364 7.95 24.27 

tl_ctrl_1 1.00 30.20 52 282 33.11 1000 

tl_ctrl_2 1.00 28.90 52 260 1000 34.60 

tl_ctrl_3 1.00 29.10 52 254 1000 34.36 

tl_ctrl_4 1.00 29.30 52 261 1000 34.13 

As it can be seen, the Sumo Extreme-edge and the Traffic Lights Control Logic instances are 

located at the extreme-edge domain, while the Reinforcement Learning Agent component has 

been allocated on a server behind the UPF at the edge domain. To model each of the 

aforementioned components, a delay profile that replicates their behaviour on Scenario 5.1 has 

been generated per component. Table 6-3 reflects the network behaviour of each component 

instance from a message rate and message size perspective. To obtain a more realistic 

configuration, the simulated network is loaded with a variable number of vehicles deployed as 

UEs within the network. Said UEs represent the active users in the scenario, i.e., those who are 

 
11 ‘sumoee1’ to ‘sumoee4’ represent the four Sumo Extreme-edge component instances. ‘ai_agent’ is the Reinforcement 

Learning Agent component instance. ‘tl_ctrl_1’ to ‘tl_ctrl_4’ represent the four Traffic Lights Control Logic 

component instances.  
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downloading or uploading data using the network, thus actively using it. More in detail, each user 

is consuming a video-streaming service, which continuously transmits a video in 720p format, 

having a bit rate of 2.4 Mbps and a frame rate of 25fps. The video-streaming service is modelled 

in the simulator as a UDP application, which transmits packets of variable size every 40ms. The 

size of each packet is chosen randomly from a uniform distribution, between 22593 and 25406 

bytes, to follow the behaviour of a realistic traffic trace. Each experiment is repeated three times 

to achieve statistical soundness. Confidence intervals at 95% are reported when visible.  

Table 6-4. Scenario 5.1 main simulation parameters. 

Parameter Name Value 

Carrier frequency 2 GHz 

System Bandwidth 50MHz 

gNB Tx Power 46 dBm 

gNB antenna gain 8 dBi 

gNB noise figure 5 dB 

UE antenna gain 0 dBi 

UE noise figure 7 dB 

CQI reporting period 40 TTIs 

Path loss model [TR873] 

UE mobility Linear Mobility 

UE speed U[36,72] km/h 

Background Traffic type Video streaming 

Experiment Results 

First of all, the impact of Scenario 5.1 traffic on a B5G/6G RAN is analysed. Figure 6-5 shows 

the average number of resource blocks consumed in uplink and downlink, respectively, by the 

traffic of Scenario 5.1. 

       

Figure 6-5. Average number of resource blocks in Uplink (left) and Downlink (right) 

The two plots show that the impact on network resources is very low in both cases, having a 

slightly larger impact in the downlink direction as compared to the uplink direction. The former 

direction is indeed carrying the traffic from the Reinforcement Learning Agent towards the traffic 

lights, which can occur at more frequent timings (~8ms), thus generating more traffic. Moreover, 

it also carries the downlink leg of the traffic between the traffic lights and the sumo controllers. 

Figure 6-6, Figure 6-7, and Figure 6-8 show the performance of the traffic management service 

from the perspective of its three service components, i.e., the RL Agent, the Traffic Lights Control 

Logic and the SUMO Extreme-edge component. Note that the aforementioned traffic is generated 
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respectively by the three mentioned components. Three different experiments have been carried 

out, considering an increasing number of background traffic sources, namely 0 (no background 

traffic), 5 and 10 users. As it can be seen from the three plots, the service delay is always below 

16ms, even for the higher traffic loads, thus confirming the feasibility of the proposed 

methodology. 

 

Figure 6-6. Average delay of the communication 

between the SUMO Extreme-edge components 

and the RL Agent. 

 

Figure 6-7. Average delay of the 

communication between the Traffic Lights 

Control Logic and the SUMO Ext. Edge. 

 

Figure 6-8. Average delay of the communication between the RL Agent and the Traffic Lights 

Control Logic components. 

7 Evaluation 
This section presents the “Evaluation” part of the document, which includes the WP6 contribution 

to the Hexa-X objectives (Section 7.1), which hence describes the main WP6 outputs towards the 

objective in scope in this deliverable (Objective 3, in Section 7.1.1), the main measurable results 

(Section 7.1.2) and the results regarding the WP6 quantifiable targets (Section 7.1.3). The 

evaluation also considers the validation of the Hexa-X M&O architectural design, which was the 

main outcome of the previous Deliverable D6.2 [HEX22-D62], considering how this architectural 

design has been applied to implement both Demos #4 and #5 (Section 7.2). Also, in line with the 

work from D6.2, the evaluation also considers the main KPIs, KVIs and Core Capabilities defined 

in that document, and that have been considered in the scope of the demos and the lab experiments 

presented in this document (Section 7.3). Finally, the evaluation also considers the main lesson 

learnt (Section 7.4) and some hints for future work (Section 7.5) regarding the work performed in 

this WP6. 
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7.1 WP6 contribution to the Hexa-X objectives  

The Hexa-X project has defined a number of objectives in its work programme, from which two 

of them were linked to this WP6. They are the following: 

• Objective 1 – Foundations for an end-to-end system towards 6G, aimed to build a vision 

and roadmap for the B5G/6G end-to-end system. 

• Objective 3 – Connecting intelligence towards 6G, which aims to turn AI/ML to an 

essential component of B5G/6G technology12. 

To address these overall objectives different WP6-specific objectives were also defined in the 

Hexa-X work programme, namely: 

- Targeting Objective 1: 

o WPO6.1: Identification and selection of disruptive trends and technologies, and 

gap analysis of resource description, service management and orchestration 

towards future orchestrators. 

- Targeting Objectives 1 and 3: 

o WPO6.2: Provide necessary means for the automation and network 

programmability of B5G/6G infrastructures, to address the heterogeneity of 

service requirements, the extended complexity of the infrastructure and the need 

for utmost network efficiency in a sustainable network (service creation time, 

amount of used resources, reliability and network dynamicity with massive 

amount of network functions) without neglecting the performance, scalability, 

and resiliency of the network functions. 

o WPO6.3: Provide intent-based mechanisms for elaborating on requirements, 

diagnosing the performance of networks and services, modelling/abstracting 

services/networks, as well as implementing corrective actions through CI/CD.  

- Targeting Objective 3: 

o WPO6.4: Support orchestration of a wide variety of service definitions and 

decompositions, including (traditional) virtual appliances, microservices and 

containers, and serverless functions in all domains. 

o WPO6.5: Design and evaluate efficient cognitive-based service management and 

orchestration mechanisms based on optimised placement, resource optimisation 

and dynamic allocation. 

o WPO6.6: Demonstrate algorithms for data-driven device-edge-cloud continuum 

management. 

Objective WPO6.1 was addressed in the WP6 Task 6.1, being the main outcome the initial WP6 

Deliverable D6.1 [HEX21-D61], which describes the “gaps, features and enablers for B5G/6G 

service management and orchestration”. On the other hand, objectives from WPO6.2 to WPO6.4 

are in fact the objectives of the previous Deliverable D6.2 itself, targeting the design of the service 

M&O functionalities [HEX22-D62] (see Section 3.1 in that document). The fulfilment of these 

objectives is reported in such D6.2, being summarized in Section 12 (Conclusions) in that 

document. WPO6.5 is also partially addressed in D6.2, in what regards the “design” part, since 

that deliverable provides, as a whole, the Hexa-X M&O architectural design itself. However, the 

“evaluation” part, as well as the whole WPO6.6 (targeting demonstrations) are addressed right in 

this Deliverable D6.3 you are reading now, as part of the “final evaluation of service management 

and orchestration mechanisms” (the main topic of this document).  

As it can be seen in the previous bullets list, both WPO6.5 and WPO6.6 are targeting the overall 

Hexa-X Objective 3, so in the following subsections we will describe how that Objective 3 has 

been fulfilled, in what regards these WPO6.5 and WPO6.6 objectives, i.e., by means of the 

demonstration activities described in the previous sections 4, 5, and 6 in this document.  

 
12 Other Work Packages in the project are also addressing these (and other) objectives from their respective work 

scopes. 
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 WP6 output towards Objective 3  

As mentioned, Objective 3, as a whole, targets "connecting intelligence towards 6G”, aiming to 

turn AI/ML to an essential component of B5G/6G technology. More specifically, the objective 

targets three aspects: (i) the role that AI will have in transforming the conventional air-interface 

design; (ii) the methods and algorithms for ensuring that AI, at infrastructure or service level, will 

be secure/ trustworthy, sustainable (e.g., operating with energy-efficiency), explainable and 

efficient, with respect to resource consumption and performance delivered; (iii) AI-powered 

means for enhancing the orchestration operations, and, ultimately, for empowering enhanced 

mobile services. From these three aspects, WP6 addresses of course item (iii) in what regards 

enhancing orchestration operations, and partially item (ii) also, in what regards 

security/trustworthiness and sustainability, also in liaison with M&O aspects.   

As commented, part of these aspects, in what regards the evaluation of the state-of-the-art and the 

design activities, have been already addressed in [HEX21-D61] and [HEX22-D62], while the 

demonstration and the evaluation part rely on this deliverable, targeting the evaluation of 

“cognitive-based service M&O mechanisms based on optimised placement, resource optimisation 

and dynamic allocation” (WPO6.5) and the demonstration of “algorithms for data-driven device-

edge-cloud continuum management” (WPO6.6).  

Specifically, cognitive-based service M&O mechanisms based on optimised placement, resource 

optimisation and dynamic allocation have been addressed in both, Demo #4 and Demo #5. In 

Demo #4 this has been specifically addressed in Scenario 4.2, which showcases how AI/ML can 

be used to improve resource optimization, targeting anomaly detection and performance 

degradation, based on the optimised network functions placement along with increased 

automation and programmability (see Section 4.3.2). On the other hand Demo #5 also addresses 

this objective in Scenario 5.2 (Prediction-based URLLC service orchestration and optimization), 

which aims at demonstrating the usage of AI/ML algorithms to anticipate the resource needs of 

the network, and pre-emptively activate the related services to avoid delays in using an URLLC 

application. In this case the AI/ML-driven resource optimization function is used to proactively 

activate or deactivate new resources or re-route network traffic accordingly (see Section 5.3.2). 

Regarding the “algorithms for data-driven device-edge-cloud continuum management” 

(WPO6.6) this is also addressed in both, Demo #4 and Demo #5. Demo #4 addresses the “device-

edge-cloud continuum management” topic in Scenario 4.1 (see Section 4.3.1), which is 

specifically devoted to this. Also, since this Scenario 4.1 is the basis on which Scenarios 4.2 and 

4.3 rely, and since both Scenarios 4.1 and 4.2 are based on using AI/ML techniques (for the 

functions placement and to perform predictive orchestration – see Sections 4.3.2 and 4.3.3), it can 

be stated that objective WPO6.6 is fully addressed by means of this Demo #4. On the other hand, 

Demo #5 also address specifically the “device-edge-cloud continuum management” using a data-

driven approach in Scenario 5.2 (see Section 5.3.2), already mentioned above, since the 

prediction-based orchestration actions in that scenario are performed considering the resources in 

the continuum from the devices (extreme-edge) up to the cloud.  

However, besides those specific topics mentioned in objectives WPO6.5 and WPO6.6 (which are 

considered fulfilled as described above), we consider the demonstration activities performed in 

this WP6 go even beyond, in the aim of actually “turning AI/ML to an essential component of the 

B5G/6G technology”, as stated in the overall Hexa-X Objective 3 definition. For instance, AI/ML 

is applied also in Demo #5 – Scenario 5.1 (Continuum orchestration of AI/ML-driven Traffic 

Lights Control Service – Section 5.3.1). Although in this case the AI/ML components are not part 

of the M&O processes themselves (just part of the road-traffic managed service), we consider it 

is a good example on how AI/ML could be used in future 6G networks. Also, Scenario 5.4 

(MLOps, in Section 5.3.4) addresses the challenge of developing and deploying AI/ML 

components on the MNO scope, which can be considered of course something essential to make 

AI/ML part of the future 6G technology. Finally, AI/ML is also considered in one of the 

complementary lab experiments in Section 6, specifically the one evaluating the usage of AI/ML 

techniques to improve the network energy efficiency (Section 6.1). 
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 WP6 measurable results towards Objective 3 

According to the Hexa-X workplan, measurable results linked to Objective 3 are: 

a) Designs for data-driven wireless transceiver of low complexity, either “block-per-block”, 

or, by means of “end-to-end” optimisation.  

b) Frameworks for data-centric hardware impairment mitigation and adaptivity to the 

wireless environment.  

c) Concepts and mechanisms to support and manage collaborative AI components across 

the network, also leveraging Federated Learning (FL) and deployment of eXplainable AI 

(XAI) models.  

d) Development and assessment of intelligent orchestration methods, such as predictive 

orchestration.  

e) Implementation of continuum management of device, edge, RAN, and cloud.  

f) Development of interfaces and abstractions to increase the full network programmability 

and E2E seamless integration management mechanisms that includes data-driven 

optimisation and adaptative monitoring. 

As it can be appreciated some of these measurable results are out of scope for this WP6, namely 

(a) and (b), since they address hardware related topics which are in the scope of other WPs (as 

known, WP6 focuses on M&O). Item (c) partially matches the WP6 scope, in what regards the 

overall statement about the “concepts and mechanisms to support and manage collaborative AI 

components across the network”, though the specific FL and XAI technologies are out of scope 

in our case, since they are specifically addressed in other WPs (WP4 and WP5). Obviously, items 

(d), (e) and (f) fully match the WP6 scope. In the following paragraphs we describe compliance 

with these measurable results in what regards WP6, i.e., regarding items (c), (d), (e) and (f) in the 

Objective 3 definition.  

Item (c): Concepts and mechanisms to support and manage collaborative AI components 

across the network.  

The fulfilment of this measurable result is in the scope of the previous Deliverable D6.2 [HEX22-

D62], addressing the M&O architectural design of the novel orchestration and management 

mechanisms for Hexa-X. Specifically, the support for “the management of collaborative AI 

components across the network” was included in that deliverable as a functional requirement for 

the M&O architectural design itself (see Section 5.2.2 – Item 5 in [HEX22-D62]) and, in fact, 

such collaborative AI components are represented in the provided architectural design (Section 6 

in [HEX22-D62]). In summary, from the M&O perspective, those collaborative AI components 

(that could be FL-based, XAI-based, or relying on any other technology) would be just a specific 

kind of “managed objects” (Section 6.1 in [HEX22-D62]), which could be managed using the 

M&O mechanisms described in Section 7 (also in [HEX22-D62]). M&O actions could be also 

supported by specific AI/ML Functions in the Network Layer (Figure 6-1 in [HEX22-D62]). 

Item (d): Development and assessment of intelligent orchestration methods, such as 

predictive orchestration.  

This item was also addressed in the previous [HEX22-D62], as part of the M&O architectural 

design, although in this case some of these “intelligent orchestration methods” (such as predictive 

orchestration) have been demonstrated also in Demo #4 (Scenarios 4.2 and 4.3) and Demo #5 

(Scenario 5.2), as it has been already explained in the previous Section 7.1.1. The mapping of 

these practical demonstrations with the architectural design in [HEX22-D62] basically consists 

on implementing the intelligent orchestration methods as part of the AI/ML Functions block, 

which support the Management Functions block itself (see Figure 6-1 in [HEX22-D62]). 

Item (e): Implementation of continuum management of device, edge, RAN, and cloud. 

Again, this is one of the main innovation topics addressed in [HEX22-D62] (see Section 5.3 in 

that document), targeting the integration of the extreme-edge domain as an additional set of 

infrastructure resources from the M&O perspective.  In this case, this has been also one of the 

main work items in Demos #4 and #5, and also in one of the complementary lab experiments in 

Section 6, specifically the one devoted to the extreme-edge nodes discovery (Section 6.2). The 
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integration of the RAN has been also explored in the experiment regarding using Simu5G in the 

Demo #5 Scenario 5.1 (Section 6.3). 

Item (f): Development of interfaces and abstractions to increase the full network 

programmability and E2E seamless integration management mechanisms that includes 

data-driven optimisation and adaptative monitoring. 

This topic was also addressed in the previous Deliverable D6.2 [HEX22-D62] as part of the M&O 

architectural design provided in that document, and specifically, in what regards the API 

Management Exposure concept (Section 6.2.3 in such document), which represents the functional 

block enabling and regulating communication among the different M&O resources, within and 

across administrative domains, making possible the full network programmability and the E2E 

seamless integration management mechanisms. Also, beyond D6.2, a small-scale implementation 

of this API Management Exposure concept has been performed in Demo #5 – Scenario #4 

(MLOps) to enable the communication between the simulated SW Vendor (the stakeholder 

providing the AI/ML models) and the MNO (Section 5.3.4). 

 WP6 quantifiable targets towards Objective 3  

Following the Hexa-X workplan, Objective 3 requires to verify eight Quantifiable Targets (QT), 

namely:  

• QT 3a: Network reconfiguration (creation, composition and scaling times) to be 

performed by (>10%) of the prediction horizon. 

• QT 3b: Improvement by (>90%) in time to onboard new resources from other domains 

and manage the addition/removal of elements from the network. 

• QT 3c: Increase the service continuity by reducing the downtime by (>80%). 

• QT 3d: Increase network energy efficiency by (>50%) applying predictive 

orchestration. 

• QT 3e: Increased AI algorithm robustness to system parameter volatility; significant Bit 

Error Rate (BER)/Block-Error Rate (BLER) gain, as compared to classical approaches. 

• QT 3f: Number of dynamically collaborating AI components in the network (>1000). 

• QT 3g: The accuracy of an XAI model within (<10%) of “black box” solutions (e.g., 

Deep Neural Networks DNNs). 

• QT 3h: Energy reduction of a factor of (>10) at the infrastructure level and a factor of 

(>100) at the user devices’ side, as a result of AI-based workload offloading. 

Of these, WP6 has been responsible for verifying the four of them with a clear relationship with 

the M&O topic (i.e., those from QT 3a to QT 3d), while the other four (from QT 3e to QT 3h) 

have been addressed in other WPs. 

However, it has to be stated that, although these WP6-related QTs are defined with specific 

numerical values, it was found that their precise validation was not entirely possible. The reason 

for this is the lack of a clear baseline in the QTs definition. In other words, although specific 

improvement percentages are defined for the different aspects mentioned in each QT, it is not 

clearly defined "with respect to what" these improvement percentages are expected to be applied. 

I.e., it cannot be stated “in a general way” that certain KPIs will be improved in a specific 

percentage if the technology benchmark is not clearly stated. However, in order to address the 

defined QTs, it was considered that anyway, it could be demonstrated that the requested 

improvements could be achieved at least in particular cases, and that, although these particular 

cases cannot be generalised, they can at least give an idea about whether the targets could be 

actually met. This is the approach that has been taken to address the four QTs mentioned above, 

defining specific particular testing cases for each of them. In some cases, these tests have been 

performed in the context of Demos #4 and #5, while in other cases, some of the lab experiments 

described in Section 6 have been used for that.  

It is worth noting that this procedure does not allow claiming QT fulfilment in general, i.e., with 

respect to any orchestration system or any kind of orchestrated network service; however, this 

procedure at least gives an idea of whether the proposed targets can actually be achievable. 
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According to this approach, the following subsections describe the work performed for each of 

the quantifiable targets, together with the corresponding results. 

7.1.3.1 QT 3a: Improvement in network reconfiguration times 

This QT requests to validate the feasibility of achieving network reconfiguration (regarding 

creation, composition, and scaling times) to be performed by (>10%) on the prediction horizon. 

From the WP6 standpoint, this objective relates to making predictions (e.g., using data-driven 

AI/ML-enabled mechanisms) to perform the mentioned network reconfiguration actions 

(creation, composition, and scaling regarding complete services), providing a 10% improvement 

in terms of time. Also, the understanding is that the baseline should be those scenarios where 

predictive mechanisms are not used. As previously mentioned, it is considered not feasible to 

validate this QT in a general way, i.e., it should be hard to claim that applying predictive 

orchestration could “always” produce per se a 10% gain in time regarding the mentioned network 

reconfiguration mechanisms without considering specific services, specific M&O platforms, or 

the specific network resources in scope. So, following the approach explained above, specific 

testing cases have been selected to evaluate this QT. Specifically, two approaches have been 

considered for this case: one of them evaluates the work performed in Demo #4 (since this demo 

addresses the usage of predictive algorithms), while the second one considers the work also 

performed in Scenario 5.2 (that also focuses on predictive orchestration). The following describes 

the approach and results for each of these approaches. 

Validation in Demo #4  

Regarding Demo #4, the target set by QT3a is interpreted as being able to perform predictive 

orchestration actions at least 10% of the prediction horizon earlier than a predicted event. 

Specifically, as mentioned in Section 7.1.1, the prediction horizon, based on the model 

characteristics and accuracy, is set at 8-10 minutes. This prediction horizon leads to an acceptable 

time window for action, according to QT3a, of at least 48-60 seconds before an event is predicted 

to occur. Additionally, the workflow time, which is the time needed to complete all the 

orchestration actions necessary for the reconfiguration, should also be reduced by more than 10%. 

In this demo, there are three scenarios, the first of which will be the base on which the other two 

will be used to validate the proposed M&O mechanisms. Namely, the “Cloud – Edge – Extreme-

edge Continuum Orchestration”, which allows the other two mechanisms, the “Function 

Placement” and the “Predictive Orchestration”, to showcase the enhancements they provide to 

the M&O operations. The validation goals of this demo are to showcase how these mechanisms 

enhance M&O operations by improving the operation times and reducing service downtime in 

case of unexpected events. For the validation of these mechanisms, three versions of the M&O 

workflows are used, one for each scenario: 

• typical M&O workflow (notification, action); 

• reactive orchestration with placement optimization (using performance diagnosis and 

Function Placement); 

• predictive orchestration (using performance/status prediction and reactive orchestration 

as a fallback). 

The first workflow is used as the baseline against which the improvements from the other two are 

quantified and validated. As such, even though a lot of options exist to configure and fine-tune 

the existing M&O components, like the K8s controller manager, the default configurations are 

used for uniformity of expected results across different clusters. These three workflows are used 

to handle four types of events that can occur during automated operations in the industrial context 

of the demo. For each of these types, ten instances of “unexpected” behaviour are triggered 

manually, following the typical operational patterns of the industrial automation service. These 

four events are: 

1) Redeployment of functionalities to existing resources caused by robot malfunction. 

2) Scaling of functionalities to new resources caused by increasing load/low battery. 

3) Deployment of functionalities to new resources caused by robot malfunction. 



Hexa-X                                                                                                                   Deliverable D6.3 

Dissemination level: public Page 92 / 129 

 

4) Redeployment of functionalities to the maximum number of resources caused by 

significant load increase. 

For each of these types of events, the following time periods were measured: 

• Notification time: the time it takes for the monitoring system to check for the status of 

the component/node. 

• Detection time: the time it takes for the monitoring system to detect that there is an issue 

(including timeouts, retries, etc.). 

• Reaction time: the time it takes for the corrective actions to be triggered on the respective 

components. 

• Operations time: the time it takes for the corrective actions to be completed (functionality 

reallocation, scaling by commissioning resources, etc.). 

• Application time: the time it takes for the service to be restored (mostly due to service 

initialization or management operations, in case it became unavailable) 

• Downtime: the time that the service was unavailable. 

• Workflow time: the time it takes from the unexpected event appearance until the service 

is available again. 

In Figure 7-1 the averages of the collected time measurements from the 40 injected events are 

displayed in detail. 

 

Figure 7-1. Collected time measurements during unexpected events. 

The noticeable difference between the type of events is that for events (1) and (3), the robot went 

offline due to malfunction, which sets in motion the K8s workflow to identify, wait for a response 

and finally evict the unavailable pods from that node to an available one. This uses, by default, a 

timeout of 300 seconds to prevent unnecessary eviction of pods due to random short-lived 

network unavailability. Also, for these two events (1) and (3), for the first M&O workflow, it is 

assumed that the additional required nodes and compute resources are already available in the 

cluster due to a lack of automated commissioning. For the Reactive and Predictive orchestration 

workflows, the dynamic commissioning of resources from already available resources is handled 

by the intelligent orchestration set of functionalities so as to optimize energy efficiency and load 

distribution. In Figure 7-2, the average duration of each workflow is shown for each event type. 
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Figure 7-2. Average workflow time for each event type. 

For the first two workflows, which are primarily reactive, the most time-consuming operation is 

the notification and detection steps. The monitoring system polls the infrastructure and services 

at various intervals, and information from multiple sources needs to be collected usually before 

identifying an issue. In contrast, the predictive orchestration workflow requires no notification 

step since the future values are predicted beforehand, thus moving on to the identification step 

immediately. The other steps require about the same time for action triggering and operations. 

For the final step, the application time is intrinsic to the service operations and is constant on the 

application’s start-up, in case of a single instance, every time the service is migrated. While there 

is not a significant difference in the operations time, the main benefits from the introduction of 

the proposed mechanisms become apparent when we examine the service downtime. For the first 

two reactive workflows, the service is down for the complete duration of the operations exactly 

because these actions are triggered after the disruptive event has occurred. For the predictive 

workflow, on the other hand, the service is unavailable only for the time required for the actual 

service to initialize, as shown in Figure 7-3, meaning that this time could be close to or equal to 

zero, depending on the service. 

 

Figure 7-3. Average service downtime for each event type. 

This improvement relies on the successful prediction of these “unexpected” events. To 

accomplish that, a kind of periodicity in these events is needed in order to be able to predict the 

future state of the infrastructure and services in a sufficient prediction horizon. Based on the 

examined services and tasks taking place in this industrial context and their time duration and 

relative periodicity, the prediction horizon was set at 8 – 10 minutes with the achieved prediction 

accuracy of around 80%. To fulfil the quantified target, i.e., to apply the orchestration actions at 

least 10% of the predicted time window before these events are predicted to happen, this would 

be at least 48-60 seconds earlier. This time limit is used as a constraint to signal the end of the 
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time period in which a predicted event is deemed “possible”. While the status of the examined 

event is deemed “possible”, but the limit is not yet reached, the accuracy of the predictions is still 

verified by the latest measurements. When these new measurements validate the predictions 

enough, the predicted value error is minimal, while still in the acceptable time window, the 

predicted event is deemed as “sure”, and orchestrations actions are triggered to prevent it. If the 

predicted values fail to validate the event, then the predicted event is ignored, the predicted values 

are discarded, and a new prediction round begins. In that way, in the best case, the event is 

prevented successfully, and in the worst case, the event is considered to be not possible and is 

ignored. In the case that event finally occurs, it is subsequently be handled by the reactive 

orchestration mechanism as in the first two workflows.  

The previously described and validated predictive orchestration approach focuses more on the 

predictive maintenance of the hardware components, also known as condition-based maintenance. 

Manufacturers utilize predictive maintenance to predict equipment failures based on specific 

parameters and factors, which then activates the necessary steps to prevent these failures through 

corrective or scheduled maintenance. This research focused on analysing the consumption of 

different components such as motors, servos, sensors, etc., and thus the discharge characteristic 

of lithium batteries in autonomous mobile robots, which can serve as a model to predict future 

states based on the number of services running. As the robots and their services are deployed in a 

cloud-native extreme-edge environment where system dynamics are constantly changing, this 

leads to unexpected situations. In order to improve the planning and 24/7 operations of these 

devices, it is crucial to have a good understanding of the battery consumption and capacity 

degradation. To achieve this goal, three different data sets were collected, each with a different 

focus on the services running on the robots: 

a. All services running on a robot, including image and video processing and object 

detection.  

b. Some selected services run on a robot, with an emphasis on services with high 

computational cost, such as image processing.  

c. Only the essential services required for movement and navigation run on a robot.  

Figure 7-4 depicts a plot of the battery consumption tests conducted on various services and 

robots. The plot displays the relationship between battery consumption and the services running 

on the robots. The data points on the graph highlight the variability in battery consumption for 

different service combinations. The visual representation of the data allows for easy analysis and 

interpretation, providing a clear understanding of the impact of service selection on battery 

performance and illustrating the different patterns. This information can be used to inform 

decision-making processes around service placement and resource utilization, helping to ensure 

smooth and efficient operations in battery-powered systems. The goal of this research was to 

create a predictive approach to reallocating critical services to other robots, edge compute devices, 

or the cloud, to avoid service disruptions and improve overall operations. 

With the training score of 0.04 RMSE and a test score of 0.21 RMSE, the predictive orchestration 

model for (a), shown in Figure 7-4, has a low root mean squared error on the training data and a 

moderate root mean squared error on the test data. The lower the root mean squared error, the 

closer the predicted values are to the actual values, indicating a more accurate model. Trying to 

further analyse the data and smooth them with average and median filtering to remove the noise 

from the battery levels that have been collected, the models can be trained again. The LSTM 

model for battery consumption predictions for (a) has a training score of 0.02 RMSE and a test 

score of 0.19 RMSE. This means that the model is able to accurately predict the battery 

consumption with a small error margin during training, but its performance is not perfect on 

unseen data (test data) but good enough to trigger the orchestration mechanisms when needed, 

e.g., before the level of the battery hits a critical point. An RMSE score of 0.19 indicates that, on 

average, the model's predictions are off by 0.19 units. It's important to consider this result in the 

context of the specific problem, where the accuracy levels are not so important and with more 

live data, historical data and real-time training, these results will be even better. Similar results 

were observed when analysing additional metrics such as motor stress, navigation error, etc. 
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Figure 7-4. Battery consumption collected data sets. 

 

Figure 7-5. Battery consumption prediction horizon. 

This predictive approach, as demonstrated in Figure 7-5, can save valuable time by proactively 

reconfiguring service and network components, avoiding production stops, and minimising 

maintenance costs compared to the reactive approach of fixing or replacing faulty components 

after they fail. In short, this demonstration concludes that the predictive orchestration approach is 

able to fulfil the QT of achieving network reconfiguration times to be performed by >10% of the 

prediction. An additional performance improvement caused by the introduced components and 

architecture is the reduction of service downtime by more than >10%.  

Validation in Scenario 5.2  

Regarding Scenario 5.2, the target is interpreted as being able to provide (at least) a 10% 

improvement in the required orchestration actions. It should be noted that any comparison, i.e., 

any improvement, should also take into account if the performance obtained by the application 

(during this orchestration) does not fall below its minimum requirements for a satisfactory 
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operation. This is relevant since variations in the network state or load can derive in poor network 

performance, and therefore the intelligence of the network is critical to ensure that the URLLC 

requirements are always fulfilled. To analyse and put in context the resulting performance of the 

orchestration actions, four different methods have been implemented (the first three methods are 

benchmarks, while the fourth one is the proposal): 

• Pure reactive: the orchestration is triggered only when servers are full. 

• Oracle: complete knowledge of the future.  

• Threshold-based: orchestration is triggered based on an occupation threshold. 

• AI-based prediction: the proposed scheme. 

Their performance is analysed as follows: it is assumed a B5G network scenario with a varying 

number of users, which dynamically request services to an edge system. The latter is composed 

of two MEC hosts (mecHost1 and mecHost2 in Figure 7-6) that can be activated dynamically. 

Each MEC host can serve the users' requests, exhibiting a service performance that depends on 

the total number of services currently on the host itself. Time is divided into slots with fixed 

durations (1s in the following examples).  

 

Figure 7-6. Simulated deployment for the experiment of Scenario 5.2. 

The figures below depict the resulting performance of each method. For each plot,  

• the red line represents the actual traffic in the system in terms of the number of active 

services; 

• the green line represents the activation decision taken by the orchestration algorithm, with 

values 1 (activate a node), -1 (deactivate a node) and 0 (do nothing); 

• the blue and yellow lines represent the number of services allocated respectively to the 

hosts mecHost1 and MecHost2 (if active). 
 

The performance is compared in terms of the average delta reconfiguration time (DRT) of an 

orchestration solution, which is defined as the time distance in the number of slots between the 

instant of the orchestration decision and the optimal reconfiguration instant (as selected by the 

oracle). The results are as follows:  

• The pure reactive approach has a DRT of 1 slot, although it fails to guarantee performance 

to the URLLC application, so it cannot be considered for comparison. 

• The threshold-based solution has a DRT of 5.5 slots and is able to guarantee performance, 

although it performs significantly more orchestration actions. 

• The proposed AI-based Prediction approach has a DRT of 0.25 slots.  
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Figure 7-7. Behaviour of the pure-reactive 

baseline in Scenario 5.2. 

 

Figure 7-8. Behaviour of the Oracle (theoretical 

optimum) baseline in Scenario 5.2. 

 

Figure 7-9. Behaviour of the Threshold-based 

baseline in Scenario 5.2. 

 

Figure 7-10. Behaviour of the AI-based prediction 

in Scenario 5.2. 

Based on these results, it can be concluded that the proposed approach reduces by > 90% (0.25/5.5 

slots) the delay to perform the optimal orchestration decisions, so the QT can be fulfilled.  

7.1.3.2 QT 3b. Improvement in time to onboard/remove resources from other domains 

This QT requests to validate the feasibility of improving by (>90%) in time the onboarding of 

new resources from other domains and managing the addition/removal of elements from the 

network. As for the other QTs, it is considered not possible to provide a general answer to this 

target without defining a clear baseline, so a specific test case has been used to demonstrate that 

the target can be achievable, at least in a specific scope. In this case, the tests performed have 

been in the context of what is addressed in Scenario 5.4 (MLOps), where two different domains 

are considered (as requested in the QT statement): the MNO and the SW Vendor domains (see 

Section 5.3.4), and where the cloud-native DevOps practices are applied to showcase the 

onboarding of an AI/ML model from the SW Vendor domain into the MNO domain, using 

automated workflows for that13. So, for this QT, the considered baseline is hence the legacy 

approach, i.e., the deployment of a service without using these cloud-native DevOps 

methodologies, which are compared with the results obtained by applying the MLOps techniques 

in the aforementioned Scenario 5.414. For this baseline, the information provided in a previous 

project granted by European Commission (NGPaaS) are used, specifically in [NGP18-D31], 

where the MNO participating in that project provided detailed information about their general 

service deployment workflow (see Section 2.2 in [NGP18-D31] - Today's Networks Development 

Model from a Telco Provider), including their interactions with the SW Vendors. As mentioned 

 
13 Although the QT statement mentions onboarding and removal, the focus is on the onboarding stage here, since it is 

considered the most challenging one: in the DevOps approach the onboarding includes also de development phase 

(performed at the SW Vendor domain), while the removal is just about to eliminate the service at the MNO scope, 

which of course requires much less time than the onboarding of a new service.  

14 Please note that in this context the terms DevOps and MLOps are used in an analogous way. This is because, in what 

regards this QT, MLOps can broadly be considered just as a particularisation of DevOps, targeting the development 

and operation of AI/ML-enabled services. In both cases (MLOps and DevOps) one of the key features is the high 

degree of automation in implementing the development and operational workflows, which is what is considered the 

key aspect regarding the achievement of this QT. 
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in that reference, “the process, without applying any DevOps strategy, can take a considerable 

amount of time and could last up to 3 years from the initial code development until the live 

deployment phase”. 

 In the experiments conducted in Scenario 5.4, the total time required to complete the cycle and, 

therefore, have a model being served in the production environment depends on two main 

workflows, namely the development and validation workflows (see Figure 5-27 in subsection 

5.3.4.1). In our lab experiments, the development workflow takes 4 hours approximately. 

However, it has to be clarified that this does not include the “ML Model design” since the demo 

assumes a pre-designed model. Of course, in a real-life scenario, this process can take a highly 

variable amount of time, depending on the specific problem to be solved, the development team 

in charge, and other factors.  

Regarding the validation workflow, the approach should be similar: in the demo, this is done in 

quite an agile way based on automatic test batteries, taking a few minutes for it (the demo is 

intended to be showcased in a short span of time). However, in real-life scenarios, testing 

procedures can obviously last for much longer times, especially if non-automated tests are also 

carried out. In addition, considering the times measured in the demos, it can be seen that the 

duration of the whole process could be reduced to just a few hours (4 hours for de 

development/training plus a few minutes for the testing) without considering the offline 

executions (design and possible other offline testing procedures). Anyway, the result is well below 

those three years reported by BT.  

The large time difference between both scenarios suggests that the proposed target (gain greater 

than 90%) may indeed be achievable, at least in certain specific cases. In fact, the same project 

mentioned above (NGPaaS), which also considered the application of DevOps-like techniques in 

the telco-grade environment, reported times also in the range of a few seconds or minutes for the 

KPIs regarding the service development and deployment workflows, considering services for 

different scenarios (5G and IoT) and several network service components (an AMF, an HSS and 

an IoT component) [NGP19-D32]. This also reinforces the idea that the target is, in fact, 

achievable. However, further research should be done on more specific ways the DevOps 

methodologies could be applied in the telco-grade environment since the regular DevOps 

approach is typically applied “within” single organizations, promoting the joint work of their 

operational and development teams. The telco-grade ecosystem is different in this sense since, in 

this case, different independent corporations and stakeholders have to work together to develop 

and deploy the network services to be provided by the MNO. In this regard, this way of “working 

together” the development and operational teams promoted from the DevOps approach can be 

more challenging in the telco-grade environment (as it has been approached in Scenario 5.4), 

which probably would require a clearer definition of how the interactions among the different 

stakeholders should be performed, mainly when different SW providers must be involved to 

develop and deploy complex services.  

7.1.3.3 QT 3c: Improvement regarding service continuity 

As explained in Section 5.3.3, 6G communication networks can be subject to cyber-attacks. Those 

attacks may directly disturb service continuity, and this is typically the case with DoS and DDoS 

attacks. But the service can also be willingly shut off by the owner due to other forms of attacks, 

such as data leakage or intrusion causing unexpected behaviour. In any case, being able to detect 

and remediate the attack as fast as possible minimizes service disruption and improves service 

continuity. To optimize the reaction time, a layered security architecture is proposed, with the 

lower layer deploying fast but not necessarily optimal mitigation actions with the upper layer 

working in parallel to deploy more complex eradication strategies. In this deliverable, the 

improvement in service continuity is considered from the security point of view: the objective is 

to react as fast as possible to a security event to limit its impact on the service. Indeed, an attack 

may cause the service to be unavailable for a given time, either due to the effect of the attack itself 

or due to the service owner willingly stopping or reducing the service to avoid potential damages 

caused by the attack. This is taken into consideration in Scenario 5.3. As described in Section 
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5.3.3.3, this fast reaction response need is a primary concern for the proposed solution: while the 

central loop focuses on providing a long-lasting solution for the incident through eradication, in 

parallel, the local loop is dedicated to providing a temporary solution as fast as possible through 

mitigation. In order to measure the effectiveness of this system, we measured the relevant 

response times of our system:  

• Local Mean Time To Detect (Local-MTTD). 

• Global Mean Time To Detect (Global-MTTD). 

• Local Mean Time To Respond (Local-MTTR).  

• Global Mean Time To Respond (Global-MTTR). 

• Extended Mean Time To Respond (Extended-MTTR). 

In the context of Demo #5, Local-MTTD (resp. Global-MTTD) is the elapsed time between the 

emission of the attack packet by the rogue UE and the production of the corresponding event by 

the Local (resp. Global) Monitoring and Analysis on the relevant Kafka topic, which characterizes 

the attack and makes the alert public for any relevant consumer.  

 

Figure 7-11. Scenario 5.3 results 

As events produced in Kafka are timestamped by default, the measure relies on Kafka's 

timestamp. In the specific attack considered in Scenario 5.3, local- and Global-MTTDs are very 

close since the global analysis module does not perform additional analysis to further characterize 

the attack. Thanks to the efficiency of Kafka, the results show that the difference between local 

and global MTTDs is actually less than a millisecond; hence both will simply be referred to as 

MTTD in the remainder of this Section. The Local-MTTR is the elapsed time between the 

emission of the attack packet by the rogue UE and the activation of a rule to reject log4j packets 

in Suricata IPS. This activation is considered effective when Suricata’s log indicates that the rule 

set has successfully been reloaded (after the addition of the new rule). Global-MTTR measures 

wait for the patch to be active. As the patch is applied by a K8s Ephemeral container, the patch 

activation is validated by the log output of the Ephemeral container itself. Since the timestamps 

of the different events used to evaluate our metrics are collected in different machines, those 

machines need to be strongly synchronized to have precise measures. To do so, the different 

machines in OpenStack are synchronized using Network Time Protocol (NTP). The reference 

clock is an external one, and its values are retrieved by the UPF. The results obtained are 

represented in Figure 7-11Figure 7-11. As we can see, the different metrics are quite close in time. 

This was expected, as the eradication action is fairly simple, considering that the pod to be patched 

is a demonstration pod. To dive more into the details of our results, we can note that:  

• The time elapsed between the attack launch and the report of this attack in Kafka by the 

analytic engine, which constitutes the MTTD, is around 62.3s. This time is almost entirely 

spent in Suricata. 

• It takes approximately 300ms to complete the containment once the attack report is 

published (Local-MTTR – MTTD). 
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• It takes approximately 1.3s to complete the eradication once the attack report is published 

(Global-MTTR – MTTD). 

 

7.1.3.4 QT 3d. Improvement of the network energy efficiency using predictive 

orchestration 

This QT requests to validate the feasibility of increasing the network energy efficiency by (>50%) 

applying predictive orchestration techniques. As for the previous QTs, and as explained in 7.1.3, 

it is considered not feasible to validate that statement in a general way without specifying a clear 

benchmark. For this specific case, the quantitative result may depend on a multiplicity of factors, 

such as the technologies in use (e.g., the specific M&O software platforms), the deployed network 

services (energy usage can obviously vary from one service to another), the hardware resources 

on which the software components are deployed, or the specific predictive algorithms in use. I.e., 

it is obviously not possible to claim that applying “predictive orchestration” (in general) will 

“always” entail an improvement of the network energy efficiency in the requested percentage 

(>50%) without considering what specific services, specific M&O systems and mechanisms, 

hardware, or specific predictive algorithms are being compared. So, in order to address this QT, 

it was considered that anyway it could be demonstrated that the requested improvement in energy 

efficiency could be achieved considering a set of scenarios that, although it cannot be generalised, 

can at least give an idea about whether the target can be achieved. In order to do this, a specific 

lab experiment (the one described in the previous Section 6.1) has been performed.  

Based on that experiment, it can be stated that by adapting to the forecasted demand, it is actually 

possible to reduce the power consumption to approx. 324.769 W, which represents approximately 

88% of the original energy consumption, beyond the QT definition requires. However, as 

mentioned, this is just a specific lab experiment, difficult to generalize. Probably this 12% 

reduction can be harder to reach in other scenarios with multiple factors. Further research should 

be done once the 6G network stack is available, as well as the specific 6G M&O platforms. 

7.2 Validation of the Hexa-X M&O architecture 

This section focuses on evaluating whether the M&O architectural design provided in Deliverable 

D6.2 [HEX22-D62] has proved suitable for the demos' implementation. Although the complete 

E2E architecture will not be validated (due to the specific scope of each demo), it is considered 

that the results obtained here can be a good indication of the possible application of this 

architectural design in future 6G networks. 

 Demo #4 

It has been verified that the various functionalities implemented in this demo can be mapped with 

the M&O architectural design of D6.2, as illustrated in Figure 7‑1. The vertical application, 

Digital Twin App, is part of the Service Layer (1) as the main Verticals-focused layer. The 

components that are part of the intelligent orchestration group belong to both the Service Layer 

and the Network Layer (2, 3, 4, 5). These components are tasked with the orchestration, diagnostic 

and monitoring aspects of the demo. Finally, the Monitoring framework, along with the 

monitoring agents (probes), belong to both the Network and the Infrastructure Layers (4, 6, 7). 

For the purposes of this demo, different software components have been developed for the 

Service, Network and Infrastructure layers, as described below.  

• Service layer. In this layer, the Digital Twin application, developed for this demo, is located. 

This service is common across the three scenarios and is used to support the vertical’s 

industrial automation service.? The implemented service layer control loops are focused on 

validating the service requirements and SLAs and triggering quality assurance mechanisms 

when these are not honoured.  

• Network layer. It is partially implemented, meaning that there are no components deployed 

as part of Radio Access, Core Network, Transport Network and Third-Party Functions as they 

were out of the scope for the purposes of this demo. The orchestrator has been extended with 
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higher-level logic in order to allow the management of extreme-edge resources as part of the 

Management Functions. Part of these functions is also the Functions Placement mechanism 

that is responsible for deciding the optimal way to place the various functionalities based on 

predefined policies like power consumption, nodes in use, etc. The Service Registry and 

Service Repository are also part of the Management Functions block in this layer. They are 

responsible for the registration, storage and retrieval of the necessary information pertaining 

to the various services (requirements, descriptors, etc.). Additionally, the Monitoring 

Functions that have been implemented include the use of the MaaS framework that allows 

the advanced monitoring of various cloud, edge, and extreme-edge resources. This framework 

consists of a central monitoring solution that handles the deployment of probes on the 

distributed resources across the different managed domains. Finally, the AI/ML Functions that 

have been implemented include the Diagnostic component and the Predictive Orchestration 

mechanism. The Diagnostic component is responsible for detecting anomalies in the observed 

performance of the system under examination, service or infrastructure, detecting the root 

cause of that anomaly with sufficient information and triggering corrective actions. On the 

other hand, Predictive Orchestration uses historical data to predict the future state of the 

system and trigger proactive orchestration actions in order to minimize service downtime.  

• Infrastructure layer. This layer is implemented using the physical and virtual hosts described 

in Table 4-1 for the Cloud and Edge domains as well as the robots for the extreme-edge 

domain. 

 

Figure 7-12. Mapping of the Demo #4 functionalities to the architecture. 

 Demo #5 

As described in Section 4, Demo #5 aims at demonstrating a set of pertinent features, targeting 

the data-driven device-edge-cloud continuum M&O concept by means of four specific demo 

scenarios. Figure 7-12. maps the different functionalities implemented across these four scenarios 

into the Hexa-X M&O architectural design provided in [HEX22-D62], so as it can be seen, this 

architectural design can actually be used as a framework to support the different functionalities 

targeted in the demo. In the following, a detailed per-scenario description of the mapping is 

provided. 

Scenario 5.1 

This scenario incorporates resources across every Infrastructure Layer domain (circles ‘1a’, ‘1b’ 

and ‘1c’ in Figure 7-13.) because it needs to deal with elements that are allocated within the 

Extreme-edge domain (e.g., K3s), the Edge domain (e.g., AI agents and the message queue) and 

the Cloud domain (e.g., the service orchestrator). Moreover, at the Network Layer, the 

orchestration platform provides capabilities to cope with the scenario NFs LCM (5) and 

Monitoring (6). At the Design Layer level (7), the orchestration platform is able to provide Service 
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definition blueprints based on K8s deployments that aid in the service creation and its LCM (10). 

Finally, a Slice (8) is the communication baseline for all the services deployed within this scenario 

across all the aforementioned Infrastructure Layer domains. The orchestration platform deployed 

within this environment (the Vertical Slicer) implements the required M&O functionalities for 

this scenario, which are mainly focused on service deployment. 

 

Figure 7-13. Mapping of Demo #5 functionalities to the Hexa-X M&O architecture 

Scenario 5.2 

This scenario has similarly mapped elements to the ones described in the previous scenario as it 

tries to complement it by adding Predictive Orchestration capabilities. As depicted in Figure 

7-13., all Infrastructure Layer Domains are emulated in this scenario (1a, 1b, 1c), but only the 

monitoring capability from the Infrastructure Layer (2) has been added to the M&O function in 

this scenario. The Management (5) and Monitoring Functions (6) building blocks have also been 

deployed as part of the so-called Orchestration Engine at the Network Layer. Furthermore, on a 

regular basis, the so-called Intelligent Orchestrator component, which maps to AI/ML Functions 

(9), receives input from the Orchestrator Engine component, and within the simulated network, 

several AI-based orchestration actions are taken. At the Service Layer, the modelled URLLC 

Application (8) is deployed across UE devices and the edge server (see Section 5.3.2.2). To end, 

Simu5G allows the simulation/emulation of UPFs, PGWs and gNBs, which interact using a model 

of the NR protocol stack. These components are used within this scenario as part of the Radio 

Access Functions (4). 

Scenario 5.3 

Scenario 5.3 is focused on validating the Hexa-X M&O architecture from a security perspective 

at each layer. Specifically, it addresses the implementation of the LoTAF [HEX22-D14] at the 

Service Layer (3) and the deployment of local (1a) and central security orchestration functions 

(1b, 1c) at the Infrastructure Layer. When it comes to the application of AI for security (9), the 

Central Security Orchestrator also centralises AI/ML training tasks. The information produced by 

the Local and Central Control Loops might be consumed across every layer in the M&O 

architecture (3). 

Scenario 5.4 

Scenario 5.4 studies the feasibility of applying MLOps for a particular use case where an SW 

Vendor develops, trains and deploys an AI/ML-based model on the MNO infrastructure. The 

resources involving the implementation of the MLOps platform have been deployed both at the 
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edge domain (1b) and the cloud domain (1c). The main focus in this scenario is, in fact, to 

demonstrate the integration of the Design Layer (7) as part of the M&O architectural design, with 

the deployment of an AI/ML model using MLOps techniques, i.e., the demo is designed precisely 

to demonstrate one of the innovative features of the architecture proposed in D6.2. As can be 

seen, the Hexa-X M&O architecture can be used as a reference M&O architecture for B5G/6G 

use cases, and it is flexible enough to cope with the different requirements and constraints of each 

particular use case. Specifically, in the scenarios comprising Demo#5, several building blocks 

comprising this architecture have been validated, and therefore, the utility of this architecture for 

future 6G mobile networks has been probed. 

7.3 KPIs, KVIs and Core Capabilities 

Below are the main KPIs (from those in the previous D6.2 [HEX22-D62]) measured on each 

demo and lab experiment. The KPIs are also related to the relevant KVIs and Core Capabilities 

defined globally in the Hexa-X project. 

 Demo #4 

The three scenarios of this demo, while having different objectives, all share the same target KPIs, 

KVIs and Core Capabilities. Below is the information for each of these three scenarios’ objectives 

in this demo. Afterwards, the KPIs, KVIs and Core Capabilities are described in a concise way. 

Scenario 4.1 

The main objective of this scenario is to analyse the impact of Scenario 4.1 software components 

on a B5G/6G platform. The analysis revolved around the extended programmability provided by 

a unified Cloud – Extreme-edge continuum. The focus of this evaluation is on the following: 

a) the level of automation that can be achieved utilizing the extended programmability 

offered by the various implemented software components; 

b) the inclusion of extreme-edge nodes in the orchestration workflows and their performance 

during the industrial context workflows. 

Scenario 4.2 

The main objective of this scenario is to analyse the impact of Scenario 4.2 software components 

on a B5G/6G platform. The impact has been studied for its feasibility of utilizing advanced 

monitoring and diagnostic as well as Function Placement mechanisms in order to optimize 

performance related to the workflow time pertaining to service orchestration actions. These 

actions are based on the observed performance and aim to minimize the downtime of said services 

due to M&O operations. The focus of this evaluation is on the following points: 

a) similar to Scenario 4.1, the level of automation that can be achieved utilizing the extended 

programmability offered by the various implemented software components; 

b) the performance of the extreme-edge nodes, and robots, when running industrial 

automation tasks; 

c) the performance of the diagnostic mechanisms to detect anomalies and optimize Function 

Placement. 

Scenario 4.3 

The main objective of this scenario is to analyse the impact of Scenario 4.3 software components 

on a B5G/6G platform. The impact has been studied for its feasibility of utilizing predictive 

mechanisms in order to optimize performance related to the workflow time pertaining to service 

orchestration actions. These actions are based on the predicted performance of the services and 

aim to minimize the downtime of said services due to M&O operations. The focus of this 

evaluation is on the following main points: 

a) as in both of the previous scenarios, the level of automation that can be achieved by 

utilizing the extended programmability offered by the various implemented software 

components; 

b) the performance of the predictive mechanism when predicting the future state of the 

service, performance degradations and upcoming maintenance cycles. 
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The KPIs, KVIs and Core Capabilities for the three scenarios are presented below. 

 

KPIs 

Programmability [%]: In Scenario 4.1, the programmability of the compute infrastructure in 

the extreme-edge, edge and cloud domains is utilized in coordination with the monitoring 

platform of the virtual resources available in each node and for the management of the service 

components in the various clusters. Moreover, the interfaces exposed by the orchestration 

platform handling the compute resources located on top of the industrial robots enable the 

registration of nodes belonging to the related cluster and the continuous monitoring of their 

status, reachability and availability. In Scenario 4.2, the utilization of the infrastructure 

monitoring and diagnostics mechanisms is exploited in order to drive the optimization of the 

Function Placement across the domains. Moreover, the M&O operations are examined in order 

to evaluate the performance of the newly introduced intelligent orchestration processes. In 

Scenario 4.3, the programmability of the cloud - extreme-edge continuum, and especially the 

utilization of the predictive orchestration mechanism, is exploited to optimise the Function 

Placement across the domains. Moreover, the performance of M&O operations is examined in 

order to evaluate the efficiency of the predictive mechanism. All the M&O mechanisms exploit 

the provided programmability of infrastructure and service components, and as such, the level 

of programmability can be considered at 100%.  

Processing Capacity [Number & Type of processing units]: For all three scenarios, the 

industrial automation service is deployed across extreme-edge, edge and cloud nodes, 

involving in particular:  

• Three robots (equipped with quad-core Intel processors @ 3.6GHz and 8GB RAM), 

running Ubuntu v20.04, and organized in an extreme-edge K3s cluster.  

• Two cloud/edge nodes based on two general-purpose HP computers (Z2 Mini G4) 

used for VM-based and container-based components, respectively.  

Creation time [s]: In Scenarios 4.1 and 4.2, the lifecycle management of the industrial 

automation service is automated through the orchestrator and does not require human 

intervention, thus reducing the orchestration actions workflow time. The instantiation time of 

the service ranges between 3 and 60 seconds. Typically, it takes 60 seconds when starting the 

service in a new context, meaning a new node that it has not been used on before and does not 

have the images available locally. After the service has started on that node at least once and 

the images are available, the instantiation time falls to a stable 3 seconds. In either case, 

additional 2 seconds are required for the service configuration bringing the total to around 5 

seconds. Additionally, in Scenario 4.3, since in this scenario, a proactive orchestration 

approach is used, the creation time does not impact the service, in performance or downtime, 

because all the required actions are taken while the status of the examined services follows 

their requirements. 

Automation [degree]: All the steps of the demonstration are fully automated and coordinated 

through the orchestrator, with the only exception of the service instantiation request, which is 

triggered manually via a REST API. For this use case, the available extreme-edge nodes are 

considered already registered on the platform and so are taken into account by the orchestrator 

as available resources. At the service level, the industrial automation service is a predefined 

set of functionalities, separated between controller tasks and worker tasks, that target different 

domains to be deployed on. The selection of the appropriate domain and target infrastructure 

for the deployment is handled by the intelligent orchestration set of mechanisms that is 

demonstrated in the next scenarios. For Scenario 4.1, the functionalities are allocated 

uniformly across all the available resources. The configuration of the service is handled 

internally by the service itself, which adjusts its operation based on the available resources. In 

scenario 4.2, manual injection of impairments are utilized to emulate the real impairments that 

would have happened without manual intervention. These impairments trigger the diagnostic 
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and Function Placement mechanisms that further demonstrate the high degree of an automated 

process that is responsible for rectifying the anomalous condition and restoring the service to 

its correct state.  

In scenario 4.3, the AI models used to predict the future state of services have been trained 

during the normal industrial task cycles and are utilized in order to evaluate the prediction 

mechanism. The inference, decision for actions and feedback operations of the predictive 

mechanism all operate automatically without human intervention. All the aforementioned 

mechanisms and processes bring the automation degree to a “high”. 

 

KVIs 

Trustworthiness: It is based on the high level of automation in the management of the 

resources in the continuum and in the provisioning and lifecycle management of the end-to-

end service across all three scenarios. 

Sustainability: This KVI is targeted by three features:  

• First, in Scenario 4.1, the automation of the M&O of the resources removes the 

requirement for human intervention while providing the capability for it if need be.  

• Second, in scenario 4.2, the utilization of the Function Placement mechanism 

optimizes the resource usage across the available domains while targeting specific 

policies like minimizing power consumption, resource usage or any other provided 

requirement.  

• Third, in Scenario 4.3, the utilization of the predictive orchestration mechanism 

optimizes the M&O actions required to prevent "predicted" anomalous events based 

on the trained observed performance patterns as well as operation and maintenance 

cycles.  

 

Core Capabilities 

Integrated intelligence: Scenario 4.1 demonstrates the logic integrated into the orchestrator, 

which handles the service lifecycle management, including the coordination of the instantiation 

and configuration steps and the management of the resources in the continuum, with extreme-

edge resource registration and monitoring of the available resources. Scenario 4.2 demonstrates 

the logic integrated into the orchestrator, which is responsible for handling anomalies in the 

observed performance and also optimizing the Function Placement of services and their 

components based on desired policies. Scenario 4.3 demonstrates the logic integrated into the 

orchestrator, which is responsible for predicting the future state of the service performance 

along with the operation and maintenance cycles and also optimizing the Function Placement 

of services and their components based on these predictions.  

Usage of Embedded devices: Scenario 4.1 has been selected to showcase the M&O of 

resources running on industrial robots as extreme-edge nodes organized in a K3s cluster. 

Scenario 4.2 demonstrates the logic integrated into the orchestrator, which is responsible for 

handling anomalies in the observed performance and also optimizing the Function Placement 

of services and their components based on desired policies. Finally, Scenario 4.3 has been 

specifically designed to demonstrate the possibility of optimizing the operation and 

maintenance cycles of the extreme-edge devices (robots) based on the predicted performance 

state during said cycles leading to reduced costs, minimized service downtime and optimal 

service performance. 

Flexibility: The orchestrator demonstrated in Scenario 4.1 is flexible enough to operate over a 

variety of extreme-edge, edge and cloud domains, deploying K3s, K8s and OpenStack 

platforms. Moreover, the orchestrator can successfully instantiate and configure end-to-end 

services based on a mix of container-based and VM-based components. As demonstrated in 
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Scenario 4.2, the orchestrator can successfully optimize the placement of industrial automated 

tasks on the available resources based on the service requirements. Finally, in Scenario 4.3, the 

orchestrator can successfully predict the future performance state of the examined services, 

along with the operation and maintenance cycles of the infrastructure nodes and utilize these 

predictions to perform the necessary M&O actions to ensure optimal performance. 

 Demo #5 

Below is the information for each of the three scenarios of Demo #5. 

Scenario 5.1 

As described in Section 5.3.1, the main objective of this demonstration scenario is to validate the 

feasibility of dynamically deploying a distributed virtual application, implementing AI/ML 

techniques in a 6G-enabled infrastructure continuum that integrates extreme-edge, edge and cloud 

nodes organized in different clusters. The focus of the evaluation is on three main features: (i) the 

level of automation that can be achieved by exploiting the programmability of the computing 

nodes when creating and orchestrating a new service; (ii) the performance of extreme-edge nodes 

when running virtual application components; and (iii) the performance of the AI/ML functions 

when deployed in a distributed edge/cloud environment. Below, the KPIs, KVIs and Core 

Capabilities that are considered relevant in this scenario are described.  

 

KPIs 

Programmability [%]: In this scenario, the programmability of the computing infrastructure 

in the extreme-edge, edge and cloud domains is exploited for the monitoring of the virtual 

resources available in each node and for the dynamic instantiation of the application 

components in the various clusters. Moreover, the open interfaces exposed by the K3s platform 

handling the small-scale Raspberry Pi computers enable the dynamic discovery of nodes 

belonging to the related cluster and the continuous monitoring of their status, reachability and 

availability. In this scenario, all the M&O procedures directly exploit the programmability of 

infrastructure and service components; as such, the level of programmability can be considered 

at 100%.  

Processing Capacity [Number & Type of processing units]: The service is deployed across 

extreme-edge, edge and cloud nodes, involving in particular: 

• Four Raspberry Pi cards (brand Broadcom, model BCM2711, with a 64-bit quad-core 

Cortex-A72 -ARM v8- @ 1.5GHz, and with 8GB RAM), running Ubuntu v20.04.5 

and organized in an extreme-edge K3s cluster.  

• Two cloud/edge nodes based on a general-purpose PowerEdge T550 Dell server and 

an Intel NUC small-form computer (NUC8i7HVK), used for VM-based and container-

based components, respectively. 

AI/ML models training time [s]: Something relevant to be considered here is that, due to the 

application of the Reinforcement Learning paradigm, there is not a clear split between the 

learning and the inference stages, i.e., RL models learn at the same time they are interacting 

with the environment on which they are integrated (the urban road traffic scenario in this case), 

so they can continue learning indefinitely. However, from a practical point of view, the RL 

agents are considered to be “acceptably trained” once the road traffic flow is perceived much 

better than when the traffic control is performed based on the legacy approach, i.e., based on 

fixed time patterns to control the traffic lights. In practice, it has been seen this happens after 

about 34.000 simulation steps. On the other hand, though the simulation step duration can be 

interactively modified during the simulation (to increase or decrease the simulation speed as 

desired), it has been seen that setting about 150 milliseconds as the simulation step, the vehicles 

move with speed similar to how they would move in real life. So, considering these 150 

milliseconds and the 34.000 simulation steps needed for the training, that gives 85 minutes as 
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the needed model training time. Of course, this number should not be considered narrowly 

since, as explained, the calculated value is based on a subjective assessment of the simulation 

result. However, it can give an idea of what the value of this KPI might be in a real-life 

implementation.  

Creation time [s]: The entire provisioning of the traffic-light control service is entirely 

automated through the orchestrator, removing the need for manual intervention and thus 

reducing the creation time to less than 1 minute. In detail, the average creation time is in the 

order of 20 seconds, reaching a maximum of 45 seconds. Within this time interval, only 5 

seconds are required for the instantiation of the containers, while the rest is for starting and 

configuring the application software. 

Automation [Degree]: All the steps of the demonstration are fully automated and coordinated 

through the orchestrator, with the only exception of the service instantiation request, which is 

triggered manually via REST API. In particular, at the infrastructure layer, the nodes in the 

three domains are automatically discovered, and their availability is continuously monitored. 

At the service and network layer, the service request issued by the user is automatically 

elaborated on the basis of the service blueprint and translated into a set of components which 

are deployed by the orchestrator on the target domains across the extreme-edge, edge, cloud 

continuum. The selection of the target clusters and nodes is automated on the basis of the 

availability of the resources. The configuration of the application is also automated according 

to the service blueprint and the parameters declared by the user in the instantiation request.  

 

KVIs 

Trustworthiness: It is based on the high level of automation in the management of the 

resources in the continuum and in the provisioning and lifecycle management of the end-to-

end service.  

Sustainability: Sustainability is increased in two aspects: the automation of the resource and 

service management limits the need for manual intervention, while the adoption of resource 

allocation algorithms optimizes the usage of the resources in the various clusters and domains. 

 

Core Capabilities 

Integrated intelligence: the scenario demonstrates the logic integrated into the orchestrator, 

which handles the service lifecycle management, including the coordination of the 

instantiation and configuration steps and the management of the resources in the continuum, 

with resource allocation algorithms and automated discovery and monitoring of the available 

nodes. 

Usage of Embedded Devices: the scenario has been specifically designed to demonstrate the 

possibility of deploying and successfully running part of the end-to-end service in four 

Raspberry Pi cards (with Ubuntu v20.04.5) organized in a K3s cluster.  

Flexibility: the orchestrator demonstrated in this scenario is flexible enough to operate over a 

variety of extreme-edge, edge and cloud domains, deploying K3s, K8s and the OpenStack 

platform. Moreover, the orchestrator can successfully instantiate and configure end-to-end 

services based on a mix of container-based and VM-based components, with the possibility to 

define specific characteristics, constraints and configuration parameters in the service 

blueprint. 

Scenario 5.2 

As described in Section 5.3.2, the main objective of this scenario is to demonstrate the feasibility 

of a predictive-orchestration approach, which manages resources in the cloud-to-extreme-edge 

continuum. The scenario has been implemented using a hybrid simulation/emulation approach, 
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allowing for the comparison of several baselines against the proposed solution. Below, the 

relevant KPIs, KVIs and Core Capabilities are described. 

 

KPIs 

Programmability [%]: In this scenario, the programmability of the computing infrastructure 

in the extreme-edge, edge and cloud domains is exploited for the dynamic 

activation/deactivation of (simulated) edge servers and for the relocation of edge services. All 

these operations are performed in an automated manner within the emulated environment. As 

such, the level of programmability can be considered at 100%.  

Processing Capacity [Number & Type of processing units]: The service is deployed across 

extreme-edge, edge and cloud nodes, involving in particular: 

• A Qotom MiniPC, with Ubuntu 20.04, CPU Intel i7, 8 GB RAM, 128 GB hard disk. 

• A Qotom MiniPC, with Ubuntu 20.04, CPU Intel Celeron, 8 GB RAM, 58 GB hard 

disk. 

• One Raspberry Pi card (brand Broadcom, model BCM2711, with a 64-bit quad-core 

Cortex-A72 -ARM v8- @ 1.5GHz, and with 8GB RAM), running Raspian OS.  

• One server node, running the orchestration environment, with Ubuntu 20.04, CPU 

Intel i7, 16 GB RAM, 1 TB hard disk. 

• One Laptop MacBook Pro, with macOS Big Sur, CPU Intel i5, 8GB RAM, 250 GB 

hard disk. 

Creation time [s]: Resource creation time is improved through prediction. The 

activation/scaling of resources is indeed made proactive, allowing the system to reduce the 

effects of activation times.  

Automation [Degree]: All the steps in the demonstration are fully automated through the 

simulator’s environment and are also coordinated through the orchestrator. The only exception 

is the user application, which has to be started manually on one of the nodes.  

 

KVIs 

Trustworthiness: It is based on the high level of automation in the management of the 

resources in the continuum.  

Sustainability: Sustainability is increased through the adoption of predictive resource 

orchestration, which optimizes the usage of the resources avoiding the allocation of 

unnecessary ones.  

 

Core Capabilities 

Integrated intelligence: The scenario demonstrates the AI-based prediction integrated into 

the orchestrator, which is able to predict the onset of a load increase and thus proactively 

activates resources. 

Usage of Embedded Devices: The scenario allows the orchestrator to offload the service to a 

Raspberry Pi device.  

Flexibility: The orchestrator can execute several alternative algorithms, including the 

proposed predictive orchestration. The AI-logic, in turn, can be executed independently from 

the orchestration logic, allowing re-training of the AI itself. 

 

Scenario 5.3 
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As described in Section 5.3.3, the main objective of this scenario is to demonstrate the possibility 

of applying automated security management at different layers of the infrastructure to reach an 

adequate security level for all services. This includes services running on extreme-edge premises, 

which are geographically isolated and that have few resources spared for security processes. 

Below, the relevant KPIs, KVIs and Core Capabilities considered for this scenario are presented. 

 

KPIs 

Programmability [%]: In this scenario, the security processes are fully programmable. In this 

specific case, the core of the programmability is primarily supported by the Decision Engine, 

Drools, which allows the administrator to define what action plans should be followed after 

the detection of a specific attack. The Execution engine, in parallel, relieves the administrator 

from the difficulty of actually implementing the details of the execution of the plan. Since 

programmability is at the core of the proposed system, it can be considered to be 100%. 

Processing Capacity [Number & Type of processing units]: For the needs of this scenario, 

6 VMs were used. The details of the resources are displayed in Table 5-4 but sum up to 30 

vCPU and 68 GB of RAM, including six vCPUs and 12 GB of RAM to deploy the data plane, 

which is not part of the security solution itself. It should be noted that this scenario relies partly 

on open-source components which have minimal resource requirement that allow them to 

handle much more traffic than what is needed in the scenario, but which would be useful in a 

real-life situation.  

Creation time [s]: Considering only the deployment of the module related to the security 

system and not the ones related to regular user plane functions, the deployment of the whole 

system is automated using the helm tool. Except drools and Kafka, most of the components 

can be deployed in parallel, and take less than 10s to be running. Drools must wait for Kafka 

to run and takes 40s to be running. Kafka itself takes 80s to be fully operational in our system. 

Consequently, the whole security system is up and running within 2 minutes. 

Automation [Degree]: The whole system is built around the concept of automated closed 

loops: traffic is analysed, attacks are identified, and responses are applied in an automated way. 

In parallel, the LoT is automatically adjusted, following the evolution of the automated security 

processes. However, given that security is a highly sensitive domain, automation can willingly 

be reduced to include human intervention. 

MTTR (Mean Time To Respond): as detailed in Section 7.1.3.3, the system displays low 

MTTR compared to traditional human intervention. This is a major KVI as it is one of the key 

aspects to determine how good the security system ensures service continuity. Here the system 

reacts within a minute. Moreover, while most of the time is spent in analysis (MTTD), the 

system further improves its reaction time through its two levels reaction: while the first 

reaction, the containment, is applied ~1.5s after attack detection, the slower reaction 

(eradication) is applied after ~2.5s. Whereas both reactions display very low response time 

compared to non-automated security responses, the demonstration displays the feasibility and 

interest in decoupling different types of reactions when dealing with an attack to further gain 

time. Finally the proactive protection against future attacks (extended eradication) is applied 

~9.5s after detection. 

 

KVIs 

Trustworthiness: In this scenario, trustworthiness can be evaluated at two levels. On the first 

level, the autonomic security system is designed to maintain an adequate security level, 

matching at least the security requirements established by the client. To do so, the system has 

been designed to react to attacks both in a fast and efficient way by making use of containment 

and eradication actions, respectively. On the second level, the actual LoT of the system is 
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constantly monitored. If the security system cannot maintain the required security level, this 

reflects in the LoT, and the service orchestrator can take action, e.g., by requesting other 

available function and service networks with higher LoT, which allow serving its clients. 

Sustainability: Sustainability is increased through the security improvement brought by the 

solution. By limiting the damages caused by cyber-attacks, the whole system becomes more 

sustainable. 

 

Core Capabilities 

Integrated intelligence: In this scenario, the intelligence resides primarily in the decision 

engine, which has to select a proper action to take upon threat identification. However, this 

intelligence can logically be extended to the analysis engine in future developments. 

Usage of Embedded Devices: While this scenario does not directly deploy services on 

embedded devices, it is designed to address such use cases, as it focuses on decoupling fast, 

simple security actions and long, resource-consuming ones. The second can naturally be hosted 

on a central data centre, while the first one will remain either in or as close as possible to 

devices hosting the services. 

Flexibility: The security system runs primarily on legacy containers and is deployed via 

automated tools. By changing the configuration of those tools, the system can easily be 

deployed in different environments. 

 

Scenario 5.4 

Below, the KPIs, KVIs and Core Capabilities, which are considered relevant for this scenario, are 

presented. 

 

KPIs 

Programmability [%]: All the AI/ML functions have been developed with REST APIs that 

are used to handle their dynamic configuration and activation under the coordination of the 

orchestrator.  

Creation time [s]: The average provisioning time for the AI/ML functions is in the order of 

20 seconds, including their configuration and activation.  

Reliability [%]: The reliability of the service is guaranteed at two levels. The availability of 

the AI/ML functions is continuously monitored by the orchestrator, that, in case of failures, 

can react to deploy new functions and update the overall service configuration accordingly. 

Moreover, the AI/ML models are continuously evaluated (in this particular example, 

comparing the predicted with the actual values), and, in case of drift, they are automatically 

re-trained on the latest version of the datasets. 

AI/ML models training time [s]: Depending on the resources assigned to the VM where the 

target model is trained, the training time can require up to 4 hr (for 1000 epochs).  

Maintainability [Degree – e.g., high, medium, low]: The high level of maintainability is 

guaranteed by the orchestrator's capabilities to easily restore the service as a whole or the single 

AI/ML functions. Moreover, the automated MLOps procedures allow immediate re-

configuring of the most suitable version of the trained models in case of any disruption of the 

software instances. 

Automation [Degree]: The entire MLOps process is automated, starting from the initial 

training of the model in the software developer environment and up to the model’s transfer in 

the MNO’s staging and production environment, where it is continuously validated against the 
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real-time data. In case of drift, also the re-training procedure and the update of the model’s 

version for the service runtime are handled in an automated manner under the coordination of 

the orchestrator. 

 

KVIs 

Trustworthiness: It is enhanced by relying on the high level of reliability and maintainability 

of the service, as well as its degree of automation.  

Sustainability: The MLOps chain is fully automated, thus requiring a minimum level of 

manual intervention. 

 

Core Capabilities 

Integrated intelligence: The scenario demonstrates the MLOps orchestrator logic, which 

integrates the coordination between the deployment of the AI/ML functions in the target 

environments (staging and production) and the configuration/activation of the various modules 

and trained models. Moreover, based on the feedback received from the continuous evaluation 

of the models, the orchestrator is also able to trigger re-training actions whenever a drift is 

detected.  

Flexibility: The MLOps procedures demonstrated in this scenario are flexible enough to be 

adopted for various ML models and functions, with the only constraint of the availability of 

the required datasets and the programmability of the custom AI/ML functions. 

 Small-scale lab experiments 

Experiment 1: Network Energy Efficiency. 

This experiment focuses on providing the required levels of reliability and latency for a particular 

V2X scenario. It also considers minimizing energy consumption while ensuring the requirements. 

For such a case, a recurrent neural network is implemented and compared again to a purely 

reactive and Oracle-based approach. Below, the set of KPIs, KVIs and Core Capabilities relevant 

to this experiment is presented.  

 

KPIs 

Latency [s]: In this experiment, we measure end-to-end latency between vehicles and servers 

to ensure that it is below certain levels. For example, for the teleoperated driving service 

considered in the experiment, the latency must always be below 100ms. This can be extended 

for other vehicular services, such as cooperative driving or hazard warning, which require other 

levels of latency. 

Reliability [%]: In this experiment, we measure reliability as the percentage of packets that 

are below a certain level of end-to-end latency. For the teleoperated driving service considered 

in this experiment, it is necessary to ensure a reliability of 99.999%. This means that 99.999% 

of the packets satisfy the end-to-end latency of 100ms.  

Energy efficiency [W]: In this experiment, we focus on energy efficiency as one of the most 

important KPIs to evaluate. We define energy efficiency as the power consumed by the 

deployment of resources. Thus, efficient deployment of resources results in a more energy-

aware approach. To evaluate this, we compare an AI/ML approach with a purely reactive and 

oracle-based approach.  

 

KVIs 
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Trustworthiness: It is improved by the high levels of reliability ensured by the vehicular 

service. It is also enhanced by the high degree of automation in deploying resources at the 

edge.  

Sustainability: The use of AI/ML techniques to deploy resources at the edge result in a more 

sustainable network due to the high levels of automation.  

Integrated intelligence: The experiment demonstrates that AI/ML-based orchestration 

mechanisms can be integrated into the network to predict the upcoming traffic load and 

proactively scale the corresponding number of resources.  

Flexibility: The automatic deployment of resources by AI/ML orchestration algorithms 

enhances the flexibility of the network. The orchestrator can also execute many different 

algorithms. 

 

Experiment 2: Extreme-edge nodes discovery 

This experiment focuses on a particular aspect of the demonstration scenario 5.1, i.e., the dynamic 

discovery of extreme-edge nodes. As such, it mainly addresses the aspects related to the 

programmability of the platform and its level of automation for resource orchestration. It should 

be noted that since this experiment has been performed with emulated nodes, the considerations 

about the processing capacity of extreme-edge nodes are not applicable. Below are the KPIs, KVIs 

and Core Capabilities that are considered relevant in the scope of this experiment.  

 

KPIs 

Programmability [%]: In this scenario, the programmability of K3s-based computing 

infrastructure in the extreme-edge domain is exploited to automatically discover the available 

nodes, detect new nodes entering the clusters and monitor the status and the reachability of the 

existing ones. In this sense, the level of programmability can be considered at 100%.  

Automation [Degree]: All the extreme-edge nodes are automatically discovered, and their 

behaviour is continuously tracked as input for the resource allocation algorithms.  

 

KVIs 

Trustworthiness: This is achieved through the high level of automation in the discovery and 

management of extreme-edge nodes.  

Sustainability: This is increased through the automation of resource discovery, which limits 

the need for manual configurations.  

 

Core Capabilities 

Integrated intelligence: The scenario demonstrates the logic integrated into the orchestrator 

for the management of the extreme-edge resources for discovering, monitoring and dynamic 

allocation purposes. 

 

Experiment 3: Usage of Simu5G 

As reflected in Section 6.3, the main objective of this experiment is to analyse the impact of the 

Scenario 5.1 software components on a 5G/B5G RAN. This impact has been studied in terms of 

the number of resources consumed on the uplink and downlink and, besides, in terms of 

performance related to the network delay introduced experienced by each modelled SW 

component. Thereupon, below, a list with the KPIs/KVIs and Core Capabilities related to this 
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scenario are given. Below are the KPIs, KVIs and Core Capabilities that are considered relevant 

in the scope of this experiment. 

 

KPIs 

Latency [s]: As mentioned, this KPI is used as the reference point in this experiment. The 

network delay experienced by each SW component is studied under different circumstances 

(i.e., the concentration of UEs) in order to understand the viability of deploying Scenario 5.1 

components within a 5G/B5G RAN, considering its inherent network latency.  

 

KVIs 

Trustworthiness: It applies to this experiment regarding the availability and performance of 

the modelled SW components within a simulated 5G/B5G RAN. 

 

Core Capabilities 

Usage of Embedded Devices: The sumoee and the tlctrl SW component instances in this 

scenario are modelled to reflect the behaviour of those components when they are deployed on 

extreme-edge devices (i.e., Raspberry Pis). Therefore, although from a simulated point of 

view, it considers the integration of extreme-edge resources and, moreover, the integration of 

the ee-edge-cloud continuum as there are modelled devices on the various compute domains 

(e.g., extreme-edge, edge and cloud). 

Flexibility: The extracted experiment results help to understand if this deployment is flexible 

enough to be added to a 5G/B5G environment. Flexibility can be envisioned in this experiment 

as a consequence of disaggregation and softwarisation of the involved SW components. 

7.4 Lessons learnt  

Implementation of demos has implied to use of multiple technologies, simulators and other tools. 

This process included the integration of multiple platforms. During experiments, the monitoring 

of some processes and components has been done. As a result of the implementation, the 

following experience has been gained:  

Generic experience gained 

• The usage of Open Source has been demonstrated to be crucial to validate new 

technological enablers such us the extreme-edge, distributed AI at the EDGE, data mesh 

implementation, and others. The challenge is to make these frameworks carrier-grade, to 

make them able to support telco workloads and the upcoming 6G use-cases.  

• Experience in designing and developing a real-time monitoring tool for the extraction of 

metrics in Demo #4. 

Continuum Orchestration related experience 

• Learning techniques and tools to implement the unified orchestration across the “extreme-

edge, edge, cloud” continuum, mainly regarding the integration of the extreme-edge 

scope in the M&O workflows. This has been explored in both Demos #4 and #5 and also 

in the “extreme-edge nodes discovery” lab experiment.  

• Learning on requirements and limitations to connect infrastructure in separate networks 

and from different providers and domains under a common orchestration plane.  

• Learning about designing and developing B5G microservices environment. This has been 

performed and validated in Scenario 5.1. 

• Learning on integrating a simulated 5G RAN within Scenarios 5.1 and 5.2. 

Extreme-edge related experience 
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• Platform development for arm64 architectures focused on low-power devices (Raspberry 

Pi specifically). The development of containers/pods for these devices requires specific 

developments based on arm64 architecture instead of amd64, as the typical bare metal 

servers.  

• Studying the impact of the orchestration and monitoring actions on battery-powered 

extreme-edge nodes (experiment 6.2). 

• Studied the impact of multithreading-based applications on extreme-edge containerised 

network functions. This has been explored in the context of Scenario 5.1. 

AI/ML-related experience 

• Learning on designing and developing orchestration mechanisms for provisioning, 

updating and re-configuring ML functions, combined with ML models' re-training and 

distribution, in the context of multi-domain scenarios involving the SW Vendor and the 

MNO scopes (addressed in Scenario 5.4). This particular structure has led to challenges 

that are not present in a typical MLOps approach, with just a single entity being the main 

ones: 

o Having some of the components exposed from one entity to the other so that both 

can access them (in line with the API Management Exposure concept). 

o Applying anonymization techniques to data before it is shared from one entity to 

another in order to avoid compromising privacy. 

o Identify in which environments it should be possible to make changes to the 

software package delivered by the SW Vendor to the MNO (and in which not) in 

order to anticipate the agreement between the two entities set out in the Service 

Level Agreement. 

• Gaining experience in using AI/ML to predict short- and long-term variations in the 

deployed service that can effectively support the orchestration of edge resources and 

enable proactive approaches instead of reactive ones. It has also been seen that, in this 

context, a mixed simulation/emulation approach can provide valuable insights into 

evaluating the performance of the system at various scales. 

Security related experience 

• Learning on designing and integrating the Level of Trust Assessment Function (LoTAF) 

in the M&O architecture. This has been explored in the context of Scenario 5.3, where 

LoTAF has been presented as a Security Function together with the Security Closed 

Control Loops.  

• Gained new knowledge in Physical Layer Security, a field in which the consortium had 

no prior experience. 

• Improvements regarding the comprehension of various mechanisms involved in security, 

such as trust, automatization frameworks and cybersecurity frameworks.  

• From a practical point of view, developing the security-related scenario in Demo #5 leads 

to searching, comparing, testing, deploying and developing tools to implement the 

cybersecurity frameworks and secure the user plane. This includes tools for monitoring, 

analysing, taking decisions and applying those decisions, intrusion protection systems, 

targeting vulnerable applications, using dedicated solutions to connect all those 

components, and management and orchestration tools such as OpenStack and K8s. 

7.5 Future work 

This deliverable includes a description of the implementation of two extensive demos, namely 

Demo #4 and Demo #5 and three complementary lab experiments. Many mechanisms of the 

Hexa-X M&O architecture, as described in previous subsections, have been evaluated. It doesn’t 

mean that the evaluation is complete. In future work, we see the following topics: 

a) More work should be performed regarding the specific tools and technologies that could 

be used to implement the proposed architecture and the possible standards to align with.  

b) Some additional work on the API Management exposure. It includes: 
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o The alignment between the API Management Exposure concept and some 

reference solutions that could be used for implementing this concept, such as the 

Common API Framework for 3GPP northbound APIs (CAPIF) [CAP], should be 

checked.  

o Evaluation of how the API Management Exposure Concept can be used in the 

context of the CAMARA project [CAM] to (i) make “service” APIs discoverable 

and consumable to targeted customers, including B2B and B2B2C customers, 

with optional aggregators (hyperscalers and CPaaS providers’ marketplaces) 

mediating in between; and (ii) provide entry-points for operators to constitute 

federated environments.  

o Possible integration of CAPIF framework for data and API exposure in MLOps 

scenarios to facilitate the secure and controlled exchange of data from the 

operator to the service provider domains and between staging and operational 

environments, as needed to guarantee meaningful datasets for ML training 

purposes.  

c) All the innovations mentioned in D6.2 have been explored, except this one, i.e., intent-

based networking that needs implementation and validation. 

d) Investigating MLOps techniques for the deployment of other well-known ML paradigms 

(e.g., RL and FL) beyond the current approach based only on deploying supervised 

learning models. Explore also other anonymization and encryption techniques for the 

showcased supervised learning model (or other similar models). Also, considering other, 

more complex multi-vendor approaches regarding the MLOps approach, towards the 

increasing level of automation, targeting full zero-touch automation (ZTA) whenever 

possible.  

e) More research regarding the extreme-edge nodes discovery and the integration of the 

radio. 

f) Improving resource orchestration of extreme-edge nodes in end-to-end scenarios, e.g., 

considering the impact of their mobile connectivity on the management interactions 

between platform and worker nodes, enhancing the resource allocation logic with 

constraints related to per-node characterization, and using ML techniques to predict the 

time-variable attributes. 

g) Coordinate management actions for data collection/transfer/storage and ML pipeline 

automation in distributed and multi-domain environments, taking into account data 

characteristics (ownership, sharing policies, privacy, etc.), also associated with MLOps 

scenarios. 

h) Coordination of automation and closed-loop decisions and actions across multiple 

domains, infrastructure layers and time scales. 

i) Evaluation of a large-scale orchestration of different types of edge resources, having 

diverse resource capacity, performance, operation cost and availability, and providing 

services to heterogeneous user applications. To analyse the impact of the prediction 

algorithm and forecast (with the corresponding uncertainty) on performance.  

j) Using localization information, possibly linked to the node discovery functionality, to 

enhance the operations of resources and network functions placement. 

k) Extending the reach of the performance diagnosis and functions placement mechanisms, 

shown in Scenario 4.2, from the services all the way to the network and the M&O 

components as well. 

l) Further study on ‘network-of-networks’, coordinating the monitoring and control actions 

upon flexible topologies/networks, functions placement, and unified orchestration for the 

purpose of being able to provide ad-hoc networks to new orchestratable resources on-

demand. 

m) Further research, design and development in the two stages of the Level of Trust 

Assessment Function (LoTAF). Scenario 5.3 spotlights some high-level characteristics 

of the second LoTAF stage. Nevertheless, LoTAF also encompasses management and 

automation actions, such as network service selection based on user’s security and 

privacy requirements, intelligent optimization functions or technology-based threat 

analysis, which are considered interesting for future work. 
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8 Conclusion 
This report, as the final deliverable of the Hexa-X Work Package 6 (WP6), evaluates service 

management and orchestration (M&O) mechanisms for Hexa-X, described in Hexa-X D6.2 

[HEX22-D62]. It introduces the implementation of novelties described in D6.2, such as (1) 

unified orchestration across the "extreme-edge, edge, core" continuum, (2) unified management 

and orchestration across multiple domains owned and administered by different stakeholders, (3) 

increasing levels of automation, (4) adoption of data-driven and AI/ML techniques in the M&O 

system, (5) adoption of the cloud-native principles in the telco-grade environment.  

This deliverable's main part consists of describing two demos (Demo #4, Demo #5) and other 

complementary lab experiments. Both demos have addressed Hexa-X Objective 3 (Connecting 

intelligence towards 6G). Specifically, Demo #4 was focused on unified management and control 

using Cloud – Edge – Extreme-edge continuum orchestration on a Digital Twins service (Scenario 

4.1), handling unexpected events using dynamic functions placement (Scenario 4.2), and 

improving service downtime and reducing costs using predictive orchestration (Scenario 4.3). On 

the other hand, Demo #5 has implemented and evaluated AI/ML-driven operations supported by 

continuum orchestration (Scenario 5.1), prediction-based service orchestration and optimization 

(Scenario 5.2), reactive security for the edge (Scenario 5.3), and the application of MLOps 

techniques to deploy AI/ML service components (Scenario 5.4). Other lab experiments have 

aimed to address network energy efficiency, extreme-edge nodes discovery as well as the impact 

of the RAN on Scenario 5.1. Both demos have been presented in the document in a uniform 

fashion, consisting of (i) Demo overview, (ii) Innovations related to the demo and (iii) Demo 

implementation, of which the last one additionally describes individual scenarios related to each 

particular demo. All of the scenarios are again presented in a uniform fashion, consisting of (a) 

scenario description, (b) software components, (c) functional behaviour and (d) deployment.  

In the second main part of this document, the evaluation of proposed service management and 

orchestration mechanisms has been performed. The evaluation includes a description of the WP6 

contribution to the overall Hexa-X objectives, focusing on Objective 3 and considering the M&O-

related topics linked to that Objective. This includes the main WP6 output towards such Objective 

3, the Objective 3 measurable results and the WP6-related quantifiable targets. The evaluation 

also includes the validation of the Hexa-X M&O architectural design provided in the previous 

Deliverable D6.2 [HEX22-D62], the analysis of the main KPIs, KVIs and Core Capabilities 

related to the demos and the lab experiments, and provides the main lesson learnt and some hints 

and suggestions for future work. The evaluations show that the assumed objectives have been 

achieved. 
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Annex I. SUMO-related implementation details 
Figure AI - 1 shows the SUMO vehicular topology that has been generated for Scenario 5.1. As 

can be seen, there is a combination of simple roads (i.e., with one single lane per direction) and 

complex roads (i.e., with two lanes per direction).  

 

Figure AI - 1. Scenario 5.1 SUMO layout. 

In order to reflect real-life road conditions, each road has been configured with different 

maximum speeds and lengths. As reflected in Figure AI - 2, the south horizontal roads and the 

west vertical roads have a higher maximum admitted speed and are comprised of two lanes, while 

the north horizontal roads and the east vertical roads have been configured with a much lower 

maximum speed and as simple roads. The idea behind this design is to simulate two main roads 

with higher traffic volumes (e.g., roads coming from a highway exit that enter a city, deviation 

roads towards a highway, etc.) and also secondary roads that may pose an alternative route to 

reach a destination although they have lower speed and a higher probability of getting a traffic 

jam (e.g., city centre roads or secondary roads within the old town of a city). Additionally, the 

roads have been given different lengths to allow the vehicles that enter and exit the SUMO 

scenario to reach their maximum allowed speeds in zero traffic jam conditions. 

 
Figure AI - 2. Scenario 5.1. SUMO road speeds and length. 

On the other hand, SUMO allows its users to add traffic light objects to each existing crossroad 

on the designed vehicular topology [LBE+18]. From the SUMO perspective, there is only one 

traffic light object controlling the crossroad (see Figure AI - 3); however, this SUMO traffic light 

object is able to manage each lane that comes into the crossroad as an independent traffic light 

thanks to a tuple of parameters that simulate a per-lane traffic lane granular behaviour for the 
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traffic light phases15: (i) Duration, indicates the duration, in seconds, of a traffic light phase state; 

(ii) State, indicates to the SUMO traffic light object the state on each individual, per-lane and per-

destination, traffic light status (e.g., green, yellow or red) as a simple string. To further clarify this 

point, as it is key for the implementation of this scenario, Figure AI - 3 represents the SUMO 

traffic light object of the south-west crossroad represented in Figure AI - 1, which details how a 

traffic light object is interpreted by SUMO. As it can be seen, for each lane entering the crossroad, 

all the possible paths are coloured, reflecting the state of the potential independent traffic light 

that serves that path. For instance, the incoming northern lanes have four potential destinations, 

i.e., going forward on each lane, turning to left and turning to right; each individual path can be 

controlled as if a dedicated traffic light was serving that specific path. The State string that would 

reflect the traffic light state in Figure AI - 3 will be “GGGgrrrrGGGgrrrr”16; from the beginning 

of the string, the four first characters reflect the state of each individual path, from left to right, of 

the northern road. Then the following four characters reflect the state of each path of the eastern 

road, and the same pattern applies to the southern and western roads, respectively. The opposite 

traffic light state (green on the horizontal lanes and red on the verticals) will be achieved with the 

following traffic light state string “rrrrGGGgrrrrGGGg”. 

 

Figure AI - 3. Scenario 5.1 - SUMO TL object view. 

The SUMO TraCI API [LBE+18] enables different ways of managing each SUMO TL object 

when the simulation is running. The most relevant ones are listed below: 

1. State Change: This method sets the TL state to the string passed to the API. After this 

method is used to change a TL state, that TL will be set to “online”, and the state will 

remain as it is until the next to this method is received or a new program (i.e., a full set 

of TL phases – states plus the duration of each state) is loaded to the TL. 

2. Phase duration Change: Allows to set the remaining duration of the current TL phase 

to the desired value. 

3. Full traffic lights program load: Inserts a completely new traffic lights program into 

the desired traffic light. This means that each phase is edited in duration and state. 

In this scenario, the first method has been selected as it allows the AI/RL Agent functional 

component more freedom due to the fact that the state and the duration of a TL can be both 

managed with a single command and with high granularity. Besides, as the available GPIO ports 

on each Raspberry are limited, which means that the traffic light that can be emulated using 

 
15 In SUMO, a traffic light phase can be defined as the time that a traffic light holds the same light state. 

16 SUMO enables even more granular control of the traffic lights state by defining two types of “Green” states: one 

(represented with a capital “G”) means that vehicles following that path have the priority, and another one 

(represented with “g”), meaning that vehicles may pass the junction if no vehicle is with a higher priority, otherwise 

they decelerate for letting it pass. 
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physical LEDs is also limited, for this scenario, a single traffic light is considered for each 

crossroad, independently of the number of lanes and possible paths that this road may have 

towards other roads, i.e., in Figure AI - 3’s crossroad there are four traffic lights instead of the 16 

that SUMO enables. Moreover, SUMO comes with various default vehicle types, but they are 

limited and therefore, to make the simulation more realistic, custom vehicle types were 

implemented for this scenario. A vehicle type in SUMO allows the user to define the features that 

define the vehicle during the simulation: vehicle length/width, maximum speed, 

acceleration/deceleration, shape, colour, consumption model, emission model, driver’s driving 

imperfection, etc17. Table AI - 1 shows the features of each custom vehicle type. 

Table AI - 1. Scenario 5.1: SUMO vehicle types.  

Type Class Length 

(m) 

Colour Max. 

Speed 

(m/s) 

Accelera- 

tion (m/s2) 

Decelera- 

tion (m/s2) 

Sigma
18 

Emission 

Model19 

CarA Car 5.0 Yellow 60 3.0 6.0 0.6 PC_G_EU4 

CarB Car 6.5 Blue 50 2.4 5.0 0.5 PC_D_EU4 

CarC Car 4.5 Green 40 1.5 4.5 0.3 PC_D_EU1 

MbikeA Motor-

cycle 

1.8 Red 55 3.0 5.0 0.6 LDV_G_EU4 

Emer-

gency A 

Emer-

gency 

6.0 White 50 2.0 6.5 0.5 HDV 

Several vehicle emission models have been implemented with the objective of demonstrating how 

much the AI/RL agent functional component is able to optimize their respective consumptions. 

Besides, apart from the physical parameters of the vehicle types, different driving behaviours have 

been associated with each type of vehicle. For example, CarA vehicle type represents high-end 

vehicles, and it has been given a sigma of 0.6, while the low-end vehicle type, CarC, has been 

given a sigma of 0.3. Furthermore, SUMO requires vehicular routes to be defined in order to allow 

traffic displacements to occur during the simulation execution. Again, for the purpose of 

replicating a real-life scenario, all the possible routes from any existing junction to any other 

junction have been enabled in this SUMO simulation. Nonetheless, the traffic flows have been 

implemented in such a way that, at the start of the simulation, there is a light traffic volume, but 

as the simulation continues, more and more traffic starts to appear. This approach tries to reflect 

a vehicular situation where a traffic jam occurs when people start ending their workday and begin 

returning home. Finally, in order to simulate the field of vision of a camera attached to each road 

junction traffic light, a SUMO Lane Area Detector (LAD) object has been added to each lane on 

each road at the nearest point to the crossroad (see blue rectangles in Figure AI - 1). These objects 

cover a certain area and act as a geofence where different data from the vehicles within that area 

can be retrieved. All the LADs implemented for this scenario have a length of m in order to enable 

more than five vehicles, on average, to enter the same LAD. 

 
17 See [SUMV22] for a detailed view of the available vehicles’ customizable parameters. 

18 Driving imperfection: 0 equals to perfect driving and 1 worst possible driver. 

19 [SUME22] 
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Annex II. RL Agent implementation details 
The AI/ML application developed for the demonstration in Scenario 5.1 consists of four 

Reinforcement Learning agents which deal with the traffic lights control by changing its state 

after some simulation time steps. As introduced in Section 5.3.1.2, the agents implement the Q-

Learning algorithm [Wat89], a model-free algorithm that aims to learn the best actions to be 

performed in a defined environment (the urban environment with the traffic lights in the context 

of this demo) depending on the rewards it receives to the action it performs. Below are some more 

details about how the environment state is defined, how the rewards are computed, and how the 

actions are encoded: 

A) State: The state each agent receives contains the information of all the vehicles detected by 

the Lane Area Detectors (LADs) from the SUMO simulator. As can be seen in Figure 5-3, 

they have been defined on the traffic simulation topology, each one retrieving information 

about the number of vehicles in the respective LAD area. Specifically, the state for each LAD 

is a binary value (0 or 1), indicating if the number of vehicles in the LAD is above or below 

a certain threshold to represent traffic jams or smooth traffic situations. Putting together all 

these values, a 15-bits string is built-up, representing the whole state of the road traffic nearby 

all the traffic lights in the set-up. This 15-bit string is the state information sent to each agent.  

B) Action: Action commands are encoded per crossroad, considering that there are two different 

kinds: Type A (with four traffic lights – three of them) and Type B (with only three traffic 

lights – one of them, see Figure 5-3). Considering this and also discarding certain actions that 

are not desirable (e.g., putting all traffic lights on green or red at the same time), the following 

sets of actions have been defined per type of crossover20: 

C) Reward: Firstly, a base score is computed according to the following formula for each LAD:  

Table AII - 1. Actions for crossroad types A (light) and B (dark). 

 Traffic Light 

North 

Traffic Light 

East 

Traffic Light 

West 

Traffic Light 

South 

Action 1 Green Red Red Green 

Action 2 Red Green Green Red 

Action 3 Green Red Red Red 

Action 4 Red Green Red Red 

Action 5 Red Red Green Red 

Action 6 Red Red Red Green 

According to this table, actions on each crossroad are encoded as 3 or 4 bits numbers for 

crossroads of type B or A respectively, e.g., Action 2 for a crossroad type A would be encoded 

as red-green-green-red (or 0110) while for the crossroad type be it would be red-green-green 

(or 011). This would be the output from each RL Agent towards the Traffic Lights Control 

Logic module. 

D) Reward: Firstly, a base score is computed according to the following formula for each LAD:  

 

𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠_𝑠𝑝𝑒𝑒𝑑 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠_𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) 𝛼 

Where vehicles_speed is the mean speed of the vehicles, vehicles_waiting_time is their mean waiting 

time, and α is a constant factor intended to prevent the score value from swinging too wide (the 

concrete value has been obtained experimentally on the simulation). The waiting time and speed 

variables have been used to calculate the score in order to give a higher result if the vehicles speed 

 
20 Note the yellow colour is not indicated here. This is because it is only considered a transition state, which duration 

is directly controlled by the Traffic Lights Control Logic module.  
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in a certain LAD is high, which indicates that the fluidity is good. On the contrary, the score is 

lower or even negative if the vehicles are waiting so much time in a certain LAD, which indicates 

that the traffic fluidity is bad. To perform the learning process, the AI/ML component works in a 

synchronised way. It waits until the state information from all the crossroads is available at its 

input. Then, once the data is collected, the AI/ML component process the data to compute the 

actions on the different crossroads to the current iteration (i.e., the current state) and the rewards 

for the actions that were performed in the previous iteration.  

The reinforcement learning algorithm takes the decisions by using a so-called Q-learning table 

(where ‘Q’ comes from ‘quality’), where the so-called Q-values are stored for each state-action 

pair. This table is structured as follows: the first column (the table key) represents the state, with 

the 15-bits word mentioned above. Then, the remaining columns represent the possible actions 

for each crossroad, according to those in the previous Table AII - 1. The values stored in the table 

for each row (each state) represent how positive was the effect of applying each specific action to 

that state. The higher the value, the higher is considered the "quality" of the action. Table AII - 2 

shows the layout of this Q-learning table, where columns A1 … A6 represent the possible actions 

in Table II - 1. To select the specific action for each crossroad, each agent selects from the table 

the action with the highest Q-value (e.g., in the 1st row, for the 1st crossroad, action A6 would be 

chosen over A1). 

Table AII - 2. Q-table layout. 

 Crossroad 1 Crossroad 2 … Crossroad 4 

State A1 ... A6 A1 ... A6 … A1 ... A4 

001101001101000 7.2101 ... 9.9104 1.1132 ... 1.1211 ... 1.1143 ... 2.1051 

111010001100000 0.9112 ... 1.1111 5.1059 ... 9.1052 ... 4.3110 ... 0.0 

... ... ... ... ... ... ... ... ... ... ... 

 

The Q-values are updated according to the following formula: 

𝑞𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼)𝑞(𝑠, 𝑎) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎′

𝑞(𝑠′, 𝑎′)) 

where 

− 𝑞𝑛𝑒𝑤(𝑠, 𝑎) the new q value that will be updated on the table for a specific state-action 

pair. 

− 𝑞(𝑠, 𝑎) the previous q value in the table (if any). 

− α, the so-called learning rate. It regulates how the Q-Value calculated in the previous 

time step is going to affect over the new computed Q-Value. It is basically used to 

avoid overwriting the previous Q-Value. The learning rate can be set between 0 and 

1, the more close to one, the faster the agent will adopt the new Q-Value and vice 

versa. 

− γ, the discount rate. Set the importance of future rewards. A rate of 0 will make the 

agent to only consider the current rewards. While a rate close to 1 will take into 

consideration the previous ones. 

− 𝑅𝑡+1 the reward to the next iteration. 

− max
a'

q(s',a'), the optimal Q-Value for the next state-action pair. In practice, the 

maximum q-value in the table for the next state. 

Additionally, it should be remarked that since it takes some time for the actions to have a 

significant effect on the road traffic, it has been done that one iteration for the agents is equivalent 

to several simulation time steps. This makes reward values more significant. When the simulation 

starts, the table is initially empty, i.e., with no row. New rows are added while the simulation 

carries on, and new states are detected in the environment. It is worth mentioning that, although 

there are a maximum of 32,768 possible states (215, considering the 15 LADs), during different 
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demo executions, it has been seen that a quite good improvement in the road traffic quality was 

achieved once the table reached approximately 500 entries. In other words, RL Agents learned 

that, out of the 32.768 possible states, it was possible to manage the traffic already in an efficient 

way considering only about 500 states. Annex III shows the results in that situation, i.e., the 

learning process until the RL Agents had learned about those 500 states approximately.  
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Annex III. Results of the RL-based traffic lights control 

service 
This annex shows some of the results obtained in the AI/ML-driven traffic lights control service 

deployed in Scenario 5.1. Although, as said, the main interest of this scenario is not the AI/ML 

part itself, it is considered interesting to show here how the service behaves, even in summary 

form. The plots below show in a comparative way some interesting KPIs obtained through the 

SUMO simulator using the demo set-up in Figure 5-13. In all cases, the green line represents the 

results using the Reinforcement Learning approach to control the traffic lights activation, while 

the black line represents the “legacy” approach, i.e., the traffic lights control using the regular 

fixed-time pattern that is typically used in real-life cities. It is important to remark that this legacy 

behaviour is based on the timers defined by the SUMO simulator itself, i.e., not by the team in 

charge of executing the simulation. These timer values are automatically generated by SUMO 

considering different aspects (such as the type of crossroads and the number of lanes per road, 

among others [SUME22]), and estimating the values these timers could have in a similar real-life 

scenario. As can be seen, the following metrics are plotted: 

• Total vehicles over time (Figure AIII - 1). It represents the number of vehicles that were 

running within the reported simulation time step. 

• Halting vehicles over time (Figure AIII - 2). It represents the number of vehicles in the 

network with speed below 0.1m/s for a given simulation time step. 

• Vehicles mean travel time (Figure AIII - 3). It represents the mean travel time of all 

vehicles that have left the simulation within the previous and the reported time. 

• Vehicles mean waiting time (Figure AIII - 4). It represents the mean waiting time for all 

vehicles, up to the given simulation time step and within the reported time step, in order 

to be inserted into the simulation. 

• Cumulative emitted hydrocarbons (Figure AIII - 5). It represents the accumulated amount 

of hydrocarbons emitted by all the vehicles up to the reported simulation time step. 

• Cumulative fuel consumption (Figure AIII - 6). It represents the accumulated amount of 

fuel consumed by all the vehicles up to the reported simulation time step. 

Cumulative emitted CO2 ( 

• Figure AIII - 7). It represents the accumulated amount of CO2 emitted by all the vehicles 

up to the reported simulation time step. 

 

Figure AIII - 1. Scenario 5.1 - simulation total 

vehicles comparative. 

 

Figure AIII - 2. Scenario 5.1 - simulation 

halting vehicles comparative. 

As it can be seen, for all the metrics, the RL-based approach shows better results than the legacy 

approach, being very significant vehicle waiting times (much longer in the legacy approach), and 

also, the graphs related to gas emissions and vehicles consumption (lower when using the RL 

approach). Note also that, in all cases, the RL-based approach (green line) ends much sooner than 

the Legacy approach (almost 5000 steps sooner). This is because, in both cases, the number of 

vehicles generated by SUMO is the same, so this basically shows how the RL-based approach 
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gets all the vehicles in the simulation to complete their journey in a shorter time (the condition 

for the simulation to end is that all the vehicles have reached their expected destination). 

Thereupon, it can be concluded that the RL-approach greatly optimizes the overall traffic flows. 

 

Figure AIII - 3. Scenario 5.1 - simulation 

vehicles mean travel time comparative. 

 

Figure AIII - 4. Scenario 5.1 - simulation 

vehicles mean waiting time comparative. 

 

Figure AIII - 5. Scenario 5.1 - simulation 

vehicles HC comparative. 

 

Figure AIII - 6. Scenario 5.1 - simulation 

vehicles fuel comparative. 

 

Figure AIII - 7. Scenario 5.1 - simulation vehicles CO2 comparative. 
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