
Hexa-X Deliverable D6.3

Dissemination level: public Page 1 / 129

Call: H2020-ICT-2020-2

Project reference: 101015956

Project Name:

A flagship for B5G/6G vision and intelligent fabric of technology enablers connecting

human, physical, and digital worlds

Hexa-X

Deliverable D6.3

Final evaluation of service

management and orchestration

mechanisms

Hexa-X Deliverable D6.3

Dissemination level: public Page 2 / 129

Date of delivery: 30/04/2023 Version: 1.1

Start date of project: 01/01/2021 Duration: 30 months

Document properties:

Document Number: D6.3

Document Title:
Final evaluation of service management and orchestration

mechanisms.

Editor(s): Sławomir Kukliński (ORA)

Authors: Sławomir Kukliński (ORA), Rafał Tępiński (ORA), Gregorio

Martínez Pérez (UMU), Manuel Gil Pérez (UMU), José María

Jorquera Valero (UMU), Mohammad Asif Habibi (TUK),

Giada Landi (NXW), Giacomo Bernini (NXW), Erin

Elizabeth Seder (NXW), Pietro Piscione (NXW), Michael De

Angelis (NXW), Jorge Martín (UC3), Jesús Pérez (UC3),

Pablo Serrano (UC3), Antonio Virdis (UPI), Ignacio Labrador

Pavón (ATO), Adrián Gallego (ATO), Enrique Lluesma Marti

(ATO), Bessem Sayadi (NOK-FR), Frédéric Faucheux (NOK-

FR), Cedric Morin (BCO), Cao-Thanh Phan (BCO), Christos

Ntogkas (WIN), Ioannis Prodromos Belikaidis (WIN)

Contractual Date of Delivery: 30/04/2023

Dissemination level: Public

Status: Final

Version: 1.1

File Name: Hexa-X_D6.3_1.1.pdf

Revision History

Revision Date Issued by Description

V1.0 02.04.2023 HEXA-X WP6 Version for the General Assembly (GA) review

V1.1 28.04.2023 HEXA-X WP6 Includes the updates requested from the GA

Abstract

This Deliverable D6.3 contains the final evaluation of management and orchestration (M&O)

mechanisms of the Hexa-X project and concludes work in WP6, which addresses. This

document is built upon previous deliverable D6.2, which described the architectural design of

these mechanisms. It demonstrates the selected M&O mechanisms in the form of two demos

in alignment with selected Hexa-X Use Cases. The final assessment is performed through

measurements of improvements in areas such as energy efficiency, intelligent network

reconfiguration, onboarding time and service continuity.

Hexa-X Deliverable D6.3

Dissemination level: public Page 3 / 129

Keywords

B5G, 6G, M&O, MANO, OAM, management and orchestration, AI/ML-based service and

network management, continuum management and orchestration, extreme-edge, cloud-native,

SBMA, SBA, architectural design.

Disclaimer

The information and views set out in this deliverable are those of the authors and do not

necessarily reflect the official opinion of the European Union. Neither the European Union

institutions and bodies nor any person acting on their behalf may be held responsible for the use

which may be made of the information contained therein.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No. 101015956.

Hexa-X Deliverable D6.3

Dissemination level: public Page 4 / 129

Executive Summary

This report is the third deliverable of the Hexa-X Work Package 6 (WP6). It presents the

evaluation of service management and orchestration (M&O) mechanisms for Hexa-X. The

deliverable reflects the work done in WP6 from month 17 (May 2022) until month 28 (April

2023). This document introduces the implementation of novelties described in the previous

Deliverable D6.2 [HEX22-D62], such as (1) unified orchestration across the “extreme-edge, edge,

core” continuum, (2) unified management and orchestration across multiple domains owned and

administered by different stakeholders, (3) increasing levels of automation, (4) adoption of data-

driven and AI/ML techniques in the M&O system and (5) adoption of the cloud-native principles

in the telco-grade environment.

The main part of this deliverable focuses on the description of two demos (Demo #4, Demo #5)

and complementary lab experiments. Each of the demos is presented uniformly, consisting of (i)

Demo overview, (ii) Innovations related to the demo and (iii) Demo implementation, of which the

last one additionally describes individual scenarios related to a particular demo. All of the

scenarios are again presented in a uniform fashion, consisting of (a) scenario description, (b)

software components, (c) functional behaviour and (d) deployment.

Demo #4, “Handling unexpected situations in industrial contexts”, consists of a set of three mobile

robots in a simulated industrial environment, which are able to work as Digital Twins. The target

of this objective is to turn AI/ML into an essential component of B5G/6G technology. In order to

address this objective, Demo #4 presents three scenarios:

• Scenario 4.1 “Continuum (cloud, edge, extreme-edge) M&O of a Digital Twins

service”.

• Scenario 4.2 “Handling unexpected events using functions placement”.

• Scenario 4.3 “Improving service downtime and reducing costs using predictive

orchestration”.

These scenarios build upon each other in order to show how distinct enablers can be used together

to accomplish the targets of related objectives.

On the other hand, Demo #5, “Data-driven device-edge-cloud continuum management”, presents

four scenarios which, unlike scenarios in Demo #4, focus on specific facets each:

• Scenario 5.1, “Continuum orchestration of AI/ML-Driven Traffic Lights Control

Service”, aims at demonstrating how AI/ML-Driven approach can improve road traffic

mobility compared to the legacy non-AI/ML approach.

• Scenario 5.2, “Prediction-based URLLC service orchestration and optimization”, aims at

demonstrating how the predictive approach for resource allocation differs from reactive

methods.

• Scenario 5.3, “Reactive security for the edge”, aims at demonstrating the proposed

network management architecture’s effectiveness in handling cyber security threats

against a vulnerable application deployed at the extreme-edge.

• Scenario 5.4, “MLOps techniques to deploy AI/ML service components”, aims to

demonstrate the implementation of the MLOps practices in a telecommunications

environment by proposing an architecture in which vendor and operator coexist,

and communication between them is established.

Complementary lab experiments aim to independently address the topics of network energy

efficiency, extreme-edge nodes discovery, as well as the impact of B5G/6G RAN on Scenario

5.1.

In the second part of this document, the evaluation of the proposed service M&O mechanisms is

performed. The evaluation includes the following:

• The WP6 contribution to the overall Hexa-X objectives, focusing on Objective 3 (which

is the one related to this WP6 according to the Hexa-X workplan), and considering the

main outputs towards that objective, the main measurable results, and the evaluation of

the quantifiable targets.

Hexa-X Deliverable D6.3

Dissemination level: public Page 5 / 129

• The evaluation of the Hexa-X M&O architectural design, provided in the previous

Deliverable D6.2 [HEX22-D62], by means of the demos presented in this deliverable

(Demo #4 and Demo #5).

• The evaluation of those KPIs, KVIs and Core Capabilities identified as the most relevant

in the M&O scope also in the previous [HEX22-D62], and that have been evaluated in

the context of the demos and the complementary experiments in this document.

• A summary of the main lessons learnt.

• Finally, some hints and suggestions for future work.

Hexa-X Deliverable D6.3

Dissemination level: public Page 6 / 129

Table of Contents
Executive Summary .. 4

1 Scope .. 11

2 Abbreviations ... 11

3 Introduction .. 15

3.1 Objectives of the document .. 15

3.2 Methodology ... 15

3.3 Structure of the document ... 17

4 Demo #4: Handling unexpected situations in industrial contexts 17

4.1 Demo overview ... 17

4.2 Innovations related to the demo .. 18

4.3 Demo implementation ... 18

 Scenario 4.1: Continuum (cloud, edge, extreme-edge) M&O of a Digital Twins

service .. 18

 Scenario 4.2: Handling unexpected events using Functions Placement 26

 Scenario 4.3: Improving service downtime and reducing costs using Predictive

Orchestration .. 32

 Scenario Deployments ... 34

5 Demo #5: Data-driven device-edge-cloud continuum management 35

5.1 Demo overview ... 35

5.2 Innovations related to the demo .. 36

5.3 Demo implementation ... 37

 Scenario 5.1: Continuum orchestration of AI/ML-driven Traffic Lights Control

Service ... 37

 Scenario 5.2: Prediction-based URLLC service orchestration and optimization 54

 Scenario 5.3: Reactive security for the edge .. 60

 Scenario 5.4: MLOps techniques to deploy AI/ML service components 69

6 Complementary lab experiments .. 79

6.1 Network energy efficiency .. 79

6.2 Extreme-edge nodes discovery ... 81

6.3 Simu5G in Scenario 5.1 .. 83

7 Evaluation ... 86

7.1 WP6 contribution to the Hexa-X objectives ... 87

 WP6 output towards Objective 3 ... 88

 WP6 measurable results towards Objective 3 .. 89

 WP6 quantifiable targets towards Objective 3... 90

7.2 Validation of the Hexa-X M&O architecture ... 100

 Demo #4... 100

 Demo #5... 101

7.3 KPIs, KVIs and Core Capabilities .. 103

 Demo #4... 103

 Demo #5... 106

 Small-scale lab experiments .. 111

7.4 Lessons learnt.. 113

7.5 Future work ... 114

Hexa-X Deliverable D6.3

Dissemination level: public Page 7 / 129

8 Conclusion... 116

Annex II. RL Agent implementation details ... 120

Annex III. Results of the RL-based traffic lights control service.. 123

References .. 125

Hexa-X Deliverable D6.3

Dissemination level: public Page 8 / 129

List of Figures
Figure 4-1. Digital Twin interface. .. 19

Figure 4-2. VR control of Digital Twins. .. 19

Figure 4-3. Demo #4 software architecture. .. 20

Figure 4-4 Digital Twin Application Interface .. 21

Figure 4-5. Main components of the MaaS architecture. .. 22

Figure 4-6. Service registration & instantiation sequence diagram. ... 24

Figure 4-7. Main functionalities offered by the MaaS framework. ... 24

Figure 4-8. Tree-like organization of the monitorable quality attributes. 25

Figure 4-9. Example of MaaS monitoring goals. .. 25

Figure 4-10. Robotic scenario ... 26

Figure 4-11. An anomaly detected during robot operation. .. 27

Figure 4-12. Function Placement workflow .. 29

Figure 4-13. Monitored components. .. 32

Figure 4-14 Predictive orchestration workflow... 33

Figure 4-15. Demo #4 deployment overview. ... 34

Figure 5-1. Smart traffic lights to enable AI/ML-driven control. ... 38

Figure 5-2. Simulated urban environment synchronised with the real traffic lights. 39

Figure 5-3. Scenario 5.1 – streets layout. .. 39

Figure 5-4. Main functional components of Scenario 5.1. .. 40

Figure 5-5. Reinforcement Learning in Scenario 5.1. ... 42

Figure 5-6. High-level software for orchestration in Scenario 5.1. ... 44

Figure 5-7. Workflow for the discovery of extreme-edge nodes. ... 46

Figure 5-8. Over extreme-edge and edge continuum. ... 47

Figure 5-9. Scenario 5.1 functional flow diagram. .. 49

Figure 5-10. Scenario 5.1 deployment diagram. ... 50

Figure 5-11. Scenario 5.1. Extreme-edge implementation. ... 51

Figure 5-12. Scenario 5.1: Traffic Lights physical panel. ... 52

Figure 5-13. Elements for presenting Scenario 5.1. .. 53

Figure 5-14. A high-level view of Scenario 5.2 configuration. .. 54

Figure 5-15. Exemplary traffic trace used in Scenario 5.2. ... 54

Figure 5-16. Main software elements composing Scenario 5.2. ... 55

Figure 5-17. URLLC traffic flow in the Simu5G-based emulated network. 56

Figure 5-18. Real-time scenario visualization using a custom GUI. ... 57

Figure 5-19. Functional blocks of Scenario 5.2. ... 58

Figure 5-20. Deployment of Scenario 5.2 – architecture. ... 59

Figure 5-21. Deployment of Scenario 5.2 – real-life testbed. ... 59

Figure 5-22. Local and central loops of Scenario 5.3. .. 62

Figure 5-23. Software components used in Scenario 5.3. ... 63

Figure 5-24. Scenario 5.3 sequence diagram .. 65

Figure 5-25. Level of Trust update based on containment plan for Scenario 5.3. 68

Figure 5-26. Level of Trust update based on eradication plan for Scenario 5.3. 68

Figure 5-27. Scenario 5.4 block diagram. ... 70

Figure 5-28. Main steps of the MLOps workflow in the MNO Domain. 73

Figure 5-29. MLOps Workflow - Drift Management. .. 75

Hexa-X Deliverable D6.3

Dissemination level: public Page 9 / 129

Figure 5-30. MLOps Scenario functional blocks and software components. 77

Figure 5-31. Scenario 5.4 deployment diagram. ... 79

Figure 6-1. Vehicular rate at Corso Agnelli street in Torino during a day. 81

Figure 6-2. Power consumption results. .. 81

Figure 6-3. Node discovery test scenario. ... 82

Figure 6-4. Simu5G mapping to Scenario 5.1 software components. ... 84

Figure 6-5. Average number of resource blocks in Uplink (left) and Downlink (right)

 ... 85

Figure 6-6. Average delay of the communication between the SUMO Extreme-edge

components and the RL Agent. .. 86

Figure 6-7. Average delay of the communication between the Traffic Lights Control

Logic and the SUMO Ext. Edge. ... 86

Figure 6-8. Average delay of the communication between the RL Agent and the

Traffic Lights Control Logic components. .. 86

Figure 7-1. Collected time measurements during unexpected events. .. 92

Figure 7-2. Average workflow time for each event type. ... 93

Figure 7-3. Average service downtime for each event type. ... 93

Figure 7-4. Battery consumption collected data sets. .. 95

Figure 7-5. Battery consumption prediction horizon. ... 95

Figure 7-6. Simulated deployment for the experiment of Scenario 5.2. 96

Figure 7-7. Behaviour of the pure-reactive baseline in Scenario 5.2. ... 97

Figure 7-8. Behaviour of the Oracle (theoretical optimum) baseline in Scenario 5.2. 97

Figure 7-9. Behaviour of the Threshold-based baseline in Scenario 5.2. 97

Figure 7-10. Behaviour of the AI-based prediction in Scenario 5.2. .. 97

Figure 7-11. Scenario 5.3 results ... 99

Figure 7-12. Mapping of the Demo #4 functionalities to the architecture. 101

Figure 7-13. Mapping of Demo #5 functionalities to the Hexa-X M&O architecture 102

Figure AI - 1. Scenario 5.1 SUMO layout. ... 117

Figure AI - 2. Scenario 5.1. SUMO road speeds and length. .. 117

Figure AI - 3. Scenario 5.1 - SUMO TL object view. ... 118

Figure AIII - 1. Scenario 5.1 - simulation total vehicles comparative. 123

Figure AIII - 2. Scenario 5.1 - simulation halting vehicles comparative. 123

Figure AIII - 3. Scenario 5.1 - simulation vehicles mean travel time comparative. 124

Figure AIII - 4. Scenario 5.1 - simulation vehicles mean waiting time comparative. 124

Figure AIII - 5. Scenario 5.1 - simulation vehicles HC comparative. 124

Figure AIII - 6. Scenario 5.1 - simulation vehicles fuel comparative. 124

Figure AIII - 7. Scenario 5.1 - simulation vehicles CO2 comparative....................................... 124

Hexa-X Deliverable D6.3

Dissemination level: public Page 10 / 129

List of Tables
Table 3-1. Topics addressed by the demos and complementary lab experiments. 16

Table 4-1. Demo #4 deployment resources. .. 35

Table 5-1. Virtual Machines in the Atos cloud domain. ... 52

Table 5-2. Virtual Machines in the Nextworks cloud domain. ... 53

Table 5-3. Description of the nodes used in Scenario 5.2 ... 60

Table 5-4. Scenario 5.3 VM-based component list. .. 69

Table 5-5. Scenario 5.3 container-based component list. .. 69

Table 6-1. Modelling of extreme-edge nodes’ volatility. .. 82

Table 6-2. Synchronisation time for nodes’ joining and leaving actions. 83

Table 6-3. Scenario 5.1 components modelling. ... 84

Table 6-4. Scenario 5.1 main simulation parameters. ... 85

Table AI - 1. Scenario 5.1: SUMO vehicle types. ... 119

Table AII - 1. Actions for crossroad types A (light) and B (dark). ... 120

Table AII - 2. Q-table layout. .. 121

Hexa-X Deliverable D6.3

Dissemination level: public Page 11 / 129

1 Scope

This report is the third deliverable of the Hexa-X Work Package 6 (WP6) and presents the

evaluation of service management and orchestration (M&O) mechanisms of the M&O

architectural framework provided by the Hexa-X project. The selected evaluation mechanisms

are linked with the key novelties of the proposed framework and include predictive, data-driven

orchestration, continuum orchestration (till the extreme-edge) and adoption of cloud-native

principles in the telco-grade environment. The M&O operations of the mentioned framework

deeply use AI/ML techniques. All the mechanisms contribute to intelligent orchestration and

service management needed for 6G networks. The document evaluates the benefits of the

proposed framework and AI-driven mechanisms and their contribution to project quantifiable

targets.

2 Abbreviations

2D Two-dimensional

3D Three-dimensional

3GPP 3rd Generation Partnership Project

5G Fifth generation of mobile telecommunications technology.

6G Sixth generation of mobile telecommunications technology.

ACK Acknowledgement

AGV Automated Guided Vehicle

AI Artificial Intelligence

AL Abstraction Layer

API Application Programming Interface

ARIMA Autoregressive Integrated Moving Average

AS Access Stratum

B5G Beyond 5G

BMU Best Matching Unit

BRMS Business Rules Management System

CD Continuous Delivery

CDN Content Delivery Network

CI Continuous Integration

CO2 Carbon Dioxide

CNF Container Network Functions

CPaaS Communications Platform as a Service

CP Control Plane

CPU Central Processing Unit

CQI Channel Quality Indicator

CRUD Create Read Update Delete

CSMF Communication Service Management Function

CVSS Common Vulnerability Scoring System

DB Database

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DevOps Development and Operations

DoS Denial of Service

Hexa-X Deliverable D6.3

Dissemination level: public Page 12 / 129

DDoS Distributed Denial of Service

DRT Delta Reconfiguration Time

DT Digital Twins

E2E End-to-End

EC Edge Cluster

EEC Extreme-edge Cluster

ETSI European Telecommunications Standards Institute

gNB Next-Generation NodeB

GPIO General Purpose Input/Output

GPRS General Packet Radio Service

GTP GPRS Tunnelling Protocol

GUI Graphical User Interface

HMI Human-Machine Interaction

I/O Input/Output

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

ISO International Organization for Standardization

K3s Lightweight Kubernetes

K8s Kubernetes

KNF Kubernetes-Based Virtual Network Function

KPI Key Performance Indicator

KVI Key Value Indicator

LAD Lane Area Detector

LCM Life Cycle Management

LED Light Emitting Diode

LIDAR Light Detecting and Ranging

LoT Level of Trust

LoTAF Level of Trust Assessment Function

LSTM Long Short-Term Memory

M&O Management and Orchestration

MANO Management and Orchestration

MA Micro-aggregation

MAC Media Access Control

MaaS Monitoring as a Service

MEC Mobile Edge Computing

ML Machine Learning

MLOps Machine Learning Operations

MNO Mobile Network Operator

MTTD Mean Time To Detect

MTTR Mean Time To Respond

NACK Negative Acknowledgement

Hexa-X Deliverable D6.3

Dissemination level: public Page 13 / 129

NAS Non Access Stratum

NF Network Function

NN Neural Network

NR New Radio

NSMF Network Slice Management Function

NSSMF Network Slice Subnet Management Function

OAM Operations Administration and Management

OMNeT Objective Modular Network Testbed

OS Operating System

OSM Open-Source MANO

PMx Particulate Matter

PGW Packet Data Network GateWay

PoC Proof of Concept

QoS Quality of Service

RADAR Radio Detecting and Ranging

RAM Random Access Memory

RAN Radio Access Network

RCA Root Cause Analysis

RD Resource Discovery

REC-EXEC REsource orchestrator for Continuum across EXtreme-edge, Edge, Cloud

RI Resource Inventory

RL Reinforcement Learning

RMSE Root Mean Square Error

RSU Road Side Unit

SARIMA Seasonal AutoRegressive Integrated Moving Average

SBA Service-Based Architecture

SBMA Service-Based Management Architecture

SD Service Deployer

SOM Self-Organizing Maps

SSH Secure Shell

SUMO Simulation of Urban Mobility

SW Software

TCP Transmission Control Protocol

TFX TensorFlow Extended

TL Traffic Light

TRL Technology Readiness Level

ToD Tele-operated Driving

TraCI Transport Control Interface

TSDB Time-Series Database

UDP User Datagram Protocol

UE User Equipment

UI User Interface

UL/DL Uplink/Downlink

Hexa-X Deliverable D6.3

Dissemination level: public Page 14 / 129

UP User Plane

UPF User Plane Function

URLLC Ultra–Reliable Low Latency Communication

V2X Vehicle-to-everything

VM Virtual Machine

VNF Virtualised Network Function

VPN Virtual Private Network

VPP Vector Packet Processor

VR Virtual Reality

WP Work Package

Hexa-X Deliverable D6.3

Dissemination level: public Page 15 / 129

3 Introduction

Deliverable D6.3 is the last deliverable of the Work Package 6 (WP6) of the Hexa-X project,

being the continuation of the previous Deliverables D6.1 [HEX21-D61] and D6.2 [HEX22-D62].

It describes the work performed from M17 (May 2022) to M28 (April 2023) according to the

Hexa-X project execution plan.

3.1 Objectives of the document

This document has two main objectives: (i) to report on the final evaluation of the service

management and orchestration mechanisms developed in WP6 and described in Deliverable D6.2

[HEX22-D62], and (ii) to serve as a means of verification of the project Objective 3 (Connecting

intelligence towards 6G) intended to deliver methodology, algorithms, and architectural

requirements for an AI-native network, and in this case, focusing on the AI-driven governance.

Regarding objective (i), the evaluation targets different aspects, namely: the evaluation of the

M&O architectural design provided in the previous Deliverable D6.2 and an evaluation of specific

KPIs, KVIs and Core Capabilities defined in [HEX21-D12] and in Deliverable D6.2, for this WP.

Finally, and also as part of the evaluation, the document provides information about the main

lessons learnt and some hints for future work. Regarding objective (ii), the document provides

information about how WP6 has contributed to the overall Hexa-X Objectives, and specifically,

to the so-called Objective 3 (“Connecting intelligence towards 6G”), in what regards those aspects

related to what is our main concern in WP6, i.e., the M&O related aspects. This second document

objective includes providing information about the WP6 outputs towards such Objective 3, the

WP6 measurable results according to that Objective, and their related quantifiable targets.

3.2 Methodology

The above-mentioned objectives are mainly verified by implementing Demo #4 and Demo #5,

which according to the Hexa-X project execution plan, are in the scope of WP6. Demo #4 main

scope is handling unexpected situations in industrial contexts. In general, the demo targets

handling unforeseen problems in a simulated industrial environment, consisting of a set of mobile

robots that cooperate to complete a defined task. The unexpected situations are impairments/faults

intentionally caused by the human operators in the context of the demo to test the robots’ self-

adaptation capabilities. This demo has been addressed from two different work packages (WP6

and WP7) that rely on the same infrastructure to address some of their specific work topics.

Regarding WP6, the work done on this demo lies in applying predictive M&O mechanisms to

proactively mitigate the impact of a faulty device on the routine activity of the robots, which are

considered extreme-edge devices in terms of M&O. The TRL required for this demo is TRL 4

(technology validated in a lab) [TRL]. Demo #5 targets the demonstration of the data-driven

device-edge-cloud continuum management concept. This demo focuses on a simulated road-

traffic urban environment on which different scenarios have been developed, covering aspects

such as the deployment of an AI/ML-driven network service to provide smart control of the traffic

lights in that urban environment, application of proactive scaling polices for a URLLC (Ultra

Reliable Low Latency Communications) service based on the predicted road traffic conditions,

security aspects applied to this context, and the application of MLOps techniques to deploy

AI/ML services. The demo focuses on using AI/ML techniques in these scenarios and also in

extending the M&O scope beyond the edge, relying not only on simulations but also on practical

hardware-based implementations of specific extreme-edge resources using small-scale computing

devices (e.g., to simulate the traffic lights themselves and their associated controllers). The TRL

(Technological Readiness Level) required for this demo is TRL 3 (experimental proof-of-

concept). Both demos have been implemented and aligned with the M&O architectural design

provided in the previous Deliverable, D6.2. However, from the required TRLs and the Demo’s

requirements in the Hexa-X project plan, a complete E2E implementation with all the

architectural components and functionalities as they are described in D6.2, goes far beyond the

Hexa-X Deliverable D6.3

Dissemination level: public Page 16 / 129

Demos purpose, which is with a much more limited scope. Therefore, although well aligned with

the overall architecture, the demos implementation is limited to demonstrating selected topics.

Demo #4 is in strong alignment with two described in D1.2 [HEX21-D12] use cases, namely:

Digital Twins for manufacturing and Flexible manufacturing. Both of these use cases are related

to each other. The first one describes how using Digital Twins can benefit production lines via

improvements in capabilities such as management of infrastructure resources, detection of

anomalous behaviour, and mitigation of critical situations. The second one focuses on allowing

dynamic configuration of real-time communication services, which is essential for mobile

production machinery. Demo #5 is aligned with one described in D1.2 [HEX21-D12] use case,

which is 6G IoT micro-networks for smart cities. This use case focuses on the management of

traffic flows in a complex local system of objects interacting with each other. Traffic Light control

described in Demo #5 can be such a system. The implementation of Demo #4 and Demo #5 has

been complemented with a set of lab experiments that, beyond the topics covered by the demos,

are also considered interesting to explore some of the innovations introduced in Deliverable 6.2.

These experiments are described in detail in Section 6. Specifically, they are three experiments

concerning network energy efficiency, extreme-edge nodes discovery, and the potential usage of

the Simu5G NR User Plane simulator [NSS+23] in an urban road-traffic scenario, such as the one

presented in Demo #5. Table 3-1 summarizes which specific topics were addressed by each demo

and the lab experiments.

Table 3-1. Topics addressed by the demos and complementary lab experiments.

Work Topic Demo #4 Demo #5 Lab Exp.

1: Unified orchestration across the “extreme-edge, edge,

core” continuum.
✔ ✔ ✔

2: Increased level of automation. ✔ ✔

3: Adoption of data-driven and AI/ML techniques in the

M&O system.
✔ ✔

4: Unified management and orchestration across multiple

domains, owned and administered by different

stakeholders.

 ✔

5: Adoption of the cloud-native principles in the telco-

grade environment.
 ✔

6: Security ✔

7: RAN integration ✔

8: Network energy efficiency ✔

It is worth noting that most of the novel capabilities in the M&O architectural design reported in

Deliverable D6.2 are addressed (items 1 to 5), with the only exception of the application of the

intent-based approaches for service planning and definition (see [HEX22-D62], Section 5.3).

Additionally, other topics not explicitly declared in that capabilities list nor in the Demos

requirements have been included, such as the Security topic (item 6), the RAN integration (item

7), and the experiment regarding the network energy efficiency (item 8, this last one intended to

evaluate one of the quantifiable targets assigned to this WP6). Based on the experience gained

from the implementation of the demos and the lab experiments and on the measurements and

results obtained from them, the evaluation of the main innovations raised in the previous

Deliverable D6.2 has been carried out. This evaluation has focused on, validating the WP6

contribution to the overall Hexa-X objectives, the validation of the M&O architectural design,

and the evaluation of selected KPIs, KVIs and Core Capabilities (from those presented in the

previous D6.2) regarding the demos and the lab experiments presented here. All this evaluation

information has been collected in Section 7.

Hexa-X Deliverable D6.3

Dissemination level: public Page 17 / 129

3.3 Structure of the document

The document is structured as follows:

• Section 1 describes the overall scope of the document.

• Section 2 includes a list of abbreviations to support the reading process.

• Section 3 describes the main objectives of the document, the methodology followed to

reach those objectives, and the document's structure (this section).

• Section 4 includes the description of Demo #4, which addresses handling unexpected

situations in industrial contexts. The Demo is composed of three scenarios, which are

extensively described in such section, in separated subsections.

• Section 5 includes the description of Demo #5, which concerns algorithms for data-driven

device-edge-cloud continuum management. The Demo is composed of four scenarios,

which are also described in that section, in separated subsections.

• Section 6 touches on complementary lab experiments concerning the benefits of the

proposed proactive orchestration in the energy efficiency case, extreme-edge nodes

discovery, and the integration of the RAN in Scenario 5.1.

• Section 7 is the core part of the document regarding results, targeting the final evaluation

of service M&O mechanisms, mainly based on the demos and the complementary lab

experiments presented in the previous sections.

• Section 8 consists of conclusions drawn on the basis of the content in the previous

sections.

• At the end of the document, three Annexes describe selected mechanisms supporting

demos.

4 Demo #4: Handling unexpected situations in

industrial contexts

4.1 Demo overview

Demo #4, which is a cross-WP demo between WP6 and WP7, is related to both the Hexa-X

Objective 3 (Connecting intelligence towards 6G) and Objective 4 (Network evolution and

expansion towards 6G). The target of these objectives is to turn AI/ML into an essential

component of the B5G/6G technology and to deliver enablers for an intelligent network of

networks, respectively. WP6 targets specifically Objective 3, which is intended to develop

AI/ML-powered enablers for orchestration and service management in order to achieve higher

efficiency, increase network programmability, increase service continuity and enable new

services (and revenue streams)1. Following this, Demo #4 has been designed to showcase a set of

relevant features aligned with some of the main innovations introduced in the previous

Deliverable D6.2 [HEX22-D62] and making AI/ML a core part of the M&O operations in an

industrial context. With this in mind, the demonstration consists of three scenarios that will

showcase the corresponding enabler:

• Scenario 4.1: Continuum (cloud, edge, extreme-edge) M&O of a Digital Twins use

case.

• Scenario 4.2: Handling unexpected events using dynamic Functions Placement.

• Scenario 4.3: Improving service downtime and reducing costs using Predictive

Orchestration.

The intention is that these three scenarios will showcase how these distinct enablers can be used

together to accomplish the targets set by the related objectives. Each scenario builds upon the

1 For WP7, Objective 4 is intended to develop enablers for resource-efficient support of complex and dynamically

changing availability requirements as well as Human-Machine Interaction (HMI) and fully immersive digital twins,

as described in Deliverable 7.2 [HEX22-D72].

Hexa-X Deliverable D6.3

Dissemination level: public Page 18 / 129

previous ones and demonstrates how the addition of each enabler helps achieve the defined

objectives. In the following sections, each of these scenarios is described in more detail.

4.2 Innovations related to the demo

Demo #4 addresses three of the main innovations declared in the previous Deliverable D6.2 –

Section 5.3 [HEX22-D62] for the M&O architecture, namely:

• Unified orchestration across the “extreme-edge, edge, core” continuum. This topic is

addressed by integrating the robot infrastructure at the extreme-edge domain together

with the edge and the central cloud resources. This is done using two orchestrators, one

for the cloud and edge domains and another one for the extreme-edge, both of them in

turn under the supervision of a higher-layer controller. The addition of the developed

enablers allows the orchestration of services across the whole continuum, optimizing their

placement and increasing efficiency and performance.

• Increasing levels of automation. This innovation is also apparent throughout this demo

through the inclusion of the developed enablers. Providing novel automation mechanisms

for orchestration, function redistribution, monitoring and performance diagnosis, as well

as predictive orchestration, brings forth new ways to optimize the network and service

deployments and utilization. The addition of these enablers paves the way for a zero-

touch approach to network and service management, especially covering the distribution,

placement and troubleshooting of functionalities across the various domains.

• Adoption of data-driven and AI/ML techniques in the M&O system. These

techniques are used to generate AI/ML models and feed them with data in the context of

Zero-touch automation. In turn, these models are responsible for making decisions

regarding the management and orchestration of the deployed services. These tools rely

on automated processes to retrieve the required data across the various domains,

providing monitoring of services and components dynamically upon request.

4.3 Demo implementation

Demo #4 is designed in such a way that it can align with the different system architecture views

mentioned in Deliverable D6.2 [HEX22-D62]. The various aspects of the demo are presented

according to the view they align with. For reference, the software components are aligned with

the proposed structural view, the functionality and algorithms are aligned with the functional

view, and finally, the deployment is aligned with the physical infrastructure that has been used to

implement the demo. Though most of the components are common in all three scenarios, it is also

true that there exist scenario-specific components. The role of these novel components is

emphasized in the corresponding component description.

 Scenario 4.1: Continuum (cloud, edge, extreme-edge) M&O of a Digital

Twins service

This scenario is the basis on which the following two scenarios are built as well. Thus, in each

consecutive scenario, all the components mentioned in the previous ones are carried over and

used as well. As the title suggests, this scenario focuses on the orchestration and monitoring of

the Cloud – Edge – Extreme-edge continuum.

4.3.1.1 Scenario description

In short, this demo scenario consists of a set of 3 mobile robots in a simulated industrial

environment, which are able to work as Digital Twins, meaning that they can "copy" and execute

the actions and movements required by humans through a remote Human-Machine Interface

(HMI), thus avoiding the human presence in the industrial environment itself, which could be

inconvenient or even dangerous in some cases. To make this possible, this HMI has been

implemented through an advanced Virtual Reality (VR) User Interface (UI) that can be used to

visualize the whole industrial environment in real-time and with 3D graphics, as well as the robots

Hexa-X Deliverable D6.3

Dissemination level: public Page 19 / 129

themselves, providing a great level of detail (see Figure 4-1). This way, the end-user can manage

the robots and also detect issues and fix them through teleoperation.

Besides the use-case itself, this demo scenario also aims to demonstrate one of the main

innovative concepts introduced in the previous Deliverable D6.2: the continuum M&O concept

through the Cloud–Edge–Extreme-edge continuum, being the robots the main elements of the

extreme-edge infrastructure itself. This contrasts with the common state-of-the-art approach,

which typically addresses each domain in a separate way.

Figure 4-1. Digital Twin interface.

The information regarding the status of the robots, battery capacity, CPU usage, RAM usage and

storage capacity is sent to the Digital Twin interface and illustrated in an easy-to-view way. The

UI can further display the number, names, health status of the robotic services running at each

robot in the industrial environment and even display alerts when an impairment is identified.

Additionally, for the creation and control of the industrial Virtual Reality (VR) environment and

the Digital Twins, the Unity game engine [UNI] is used. The Automatic Guided Vehicles (AGVs)

are equipped with 5G NR modems that are used to communicate with the cloud, housing the

industrial automation service and the edge, where the AGV controllers are located.

Figure 4-2. VR control of Digital Twins.

Hexa-X Deliverable D6.3

Dissemination level: public Page 20 / 129

4.3.1.2 Software components

The software components used for the scenario implementation have been designed as standalone

and loosely coupled modules to allow for their independent development, deployment and scaling

when necessary. Since the three scenarios use, more or less, the same components, the software

architecture is described once here and it will be referenced in the following scenarios. An

integrated view of the software architecture and the various component interactions is pictured in

Figure 4-3.

Figure 4-3. Demo #4 software architecture.

For the implementation of the scenarios, and specifically for the unified orchestration of the Cloud

– Edge – Extreme-edge continuum, the Open-Source MANO (OSM) [OSM] was selected as the

baseline orchestration stack. On top of OSM, a few additional components were developed in

order to handle the higher-layer intelligence operations, such as differentiation of the various

domains, deployment on the individual domains, management operations, etc. In addition,

components such as Intelligent Orchestration and Diagnostics support the orchestration

procedures for automatic deployment, scaling and migration of services when needed. Intelligent

orchestration is a superset of other components like the AI algorithms (i.e., Function Placement)

and orchestration manager, where all interfaces with other components and tools are located for

enabling the various actions and the service registry. These will be explained in detail later in this

document. At the lowest layer, the Virtualized Infrastructure Managers, in this case, OpenStack

[OST] and Kubernetes (K8S) [KUBa], work together with OSM deploying the Virtual Network

Functions (VNF) or Containerised Network Functions (CNF). The deployed functions for this

demo include the components of the industrial automation service. The components comprising

that service are the Industrial automation cloud component, the edge-level controller and the

autonomous robot agents. These functions provide the external management of the automation

service, the edge-level group coordinator and the individual robot agents, respectively.

Additionally, the MaaS component collects all system, network and robot metrics for analysis by

the Diagnostic component. K8s is deployed as a cluster, where extreme-edge devices, edge and

cloud are introduced and managed by the system. For the extreme-edge devices, a lightweight yet

powerful certified K8s distribution designed for production workloads, called K3s [K3S], was

selected. Monitoring probes are also used to monitor the infrastructure, network and services that

are running inside the system. The probe is the ultimate tool to capture and analyse data in real-

time to help system operators find the sources of any slow-downs or performance bottlenecks

before they begin to affect the system. Collected data can be processed locally and published to

the target output, in our case, the Monitoring system, which is the central point of all logs, metrics,

Hexa-X Deliverable D6.3

Dissemination level: public Page 21 / 129

and other types of data from the system. The probe is the ultimate tool to capture and analyse data

in real-time to help system operators find the sources of any slow-downs or performance

bottlenecks before they begin to affect the system. Collected data can be processed locally and

published to the target output, in our case, the Monitoring system, which is the central point of all

logs, metrics, and other types of data from the system. Different actions, events and alerts can be

generated by the system based on the analysis done.

The group containing the Service Registry, Predictive orchestration, Function placement, and

Diagnostic components for the purposes of this demo is referred to as Intelligent Orchestration.

This fabric of functionalities provides added value on top of the M&O capabilities. It is the higher-

layer controller logic that is constantly fed data from the MaaS framework and propagates its

decisions for potential actions to the orchestrator (OSM) for enforcement on the infrastructure. In

the Infrastructure layer, there are three robots that are being used as workers for the industrial

automation context. These robots receive and execute tasks based on the requirements of the

production line inside this context. The User Equipment are mobile terminals, in this case, a laptop

and a set of VR glasses with controllers, used by local or remote human workers or technicians

to control, if necessary, overview or provide a technical examination of the robots. Finally, the

Digital Twin application is a desktop and VR application that interfaces with robots as part of the

industrial automation service and provides the tools to humans to perform the aforementioned

actions. Detailed descriptions of each component used in this scenario can be found in the

following subsections. Some of the components, namely the Predictive Orchestration, Function

Placement and Diagnostic components, is described later in the next scenarios, where they are

introduced respectively.

Digital Twin App

The Digital Twin application has been developed using Unity [UWS], a 3D engine for creating

real-time 3D games, apps, simulators, and it is even used in films, automotive, architecture, and

more. The interface fully depicts the industrial environment with 3D graphics providing remote

monitoring and control of the environment by displaying in real-time and in great detail industrial

systems, robots, their parts, movements, forces, interactions, and all other assets. A human can be

involved (HMI – Human Machine Interaction) in these industrial tasks with the use of a Digital

Twin App via Virtual Reality (VR) technology with immersive, realistic 3D graphics (Figure 4-4).

Through the HMI the user can receive notifications, observe and interact with their digital twins,

examine their exact location on the site and their status condition (battery level, mode, RAM,

CPU, running services, etc.) at all times. Video is streamed in real-time from the cameras of the

robots as well as from other cameras placed inside the industrial environment. By using Virtual

Reality (VR), the remote interaction with the factory becomes more interactive. The user, with

the help of special glasses, can "touch" the robots virtually, come close to them, control the

different parts of the robot, supervise, and adjust its parameters. Finally, using the remote control,

a user can carry out a task “manually”, solve problems, or in case of faults, move a robot to a

specific area (e.g., a repair point) where a mechanic can fix the problem. More details about the

Digital Twin and the VR application are described in Deliverable D7.3 (section 6.1.7), which is

planned to be released alongside with this document.

Figure 4-4 Digital Twin Application Interface

Hexa-X Deliverable D6.3

Dissemination level: public Page 22 / 129

Deployed Services

The main target of the M&O operations are the deployed service components that comprise the

industrial automation service used in this demo. These components are (see Figure 4-3):

• the cloud management service;

• the controller services;

• the autonomous robot agent services.

Based on their functionalities, each of these components can be deployed on the corresponding

infrastructure. The cloud management service is resource intensive, as it hosts most of the AI

functionalities of the industrial automation service. So it’s better suited to be hosted on the Cloud.

It is also the main gateway for the users to get access to the provided functionalities, such as

teleoperation of the robots, remote inspection, and monitoring. The controller service implements

some communication and coordination functionalities between collocated and collaborating

robots and can be deployed both on the Cloud and on the Edge. Finally, the autonomous robot

agents, as the name suggests, are deployed on the individual robots acting as the proxy between

the management services and the robot worker. These agents also allow the deployment of more

specific services that can implement various worker roles in the industrial context. These services

are practical implementations of robotic actions written in python and C++ that work on top of

ROS (Robotic Operating System) [ROS] designed and developed in a microservices approach.

Services can use sensors and servos to detect and grab objects, map the environment, navigate,

collaborate with other robots, etc., inside the industrial environment. The conversion of roles to

services allows the extension of the M&O reachability to intrinsic service components, enhancing

the programmability of the extreme-edge.

MaaS framework

In terms of architecture, Figure 4-5 shows the design of the MaaS framework, which is composed

of three main parts: the MaaS Client(s), which implements the front-end; a MaaS Server; and the

Bridge, which translates the MaaS server probes’ requests to the targeted cloud platform

technology.

Figure 4-5. Main components of the MaaS architecture.

In this scenario, the cloud platforms are the K3s cluster deployed on each robot. As a whole, the

MaaS Platform works like this: the MaaS Client selects its monitoring goals. This selection is

received by the MaaS server and transformed into a technology-agnostic probe deployment from

the probes available on the probes catalogue. The MaaS Server supports multiple monitoring

strategies. Either the probes are deployed as a sidecar or already provisioned in the running VM

(Virtual Machine) or container. In most cases, the probe is deployed as a sidecar since sidecar

containers can share resources with the target containers that are needed to be monitored, and

monitoring can be performed seamlessly. The MaaS server selects the probes from the probes

catalogue and the way the probe is deployed. The nature of the sidecar, VM or container is let to

the bridge. The probes are stored in a probe catalogue and associated with metadata that allows

Hexa-X Deliverable D6.3

Dissemination level: public Page 23 / 129

the MaaS server to select the deployment decisions. The metadata information contains the KPIs

that the probe can collect and its deployment option (as a sidecar or not). The nature of the sidecar,

VM or container is let to the bridge. The Bridge is the component responsible for mapping the

pattern identified by the MaaS Server into a number of operations to deploy the necessary set of

probes. In particular, the Bridge implements CRUD (Create Read Update Delete) operations on

the set of probes present in the targeted cloud platform. The deployed probes push data into a

Time Series Database (TSDB) that stores the collected data. The MaaS can integrate any TSDB

technology as long as probes are properly configured. The MaaS also supports the possibility of

using a pub-sub channel to decouple the probes from the TSDB.

Service Registry component

The Service Registry component is developed with the purpose of providing a well-defined

directory of available/running services so that the system always has the latest information on

specific values and requirements of these services. Additionally, it acts as a common data storage

among all the components for synchronizing operations between them, management, and status

monitoring. All the services that get registered to this component become visible to the other

components as well. For each registered service, the following information is provided:

• descriptors to be passed to the orchestrator for the actual deployment;

• metrics/KPIs of interest to be monitored;

• resource requirements for the deployment of the service;

• capabilities requirements for the deployment of the service;

• information regarding dependency on other services;

• exposed endpoints for discoverability and programmability;

• performance constraints for the diagnosis;

• criticality;

• resource/power usage profiles.

After the registration, each component can retrieve the corresponding required information from

the Service Registry in order to perform its tasks.

Service Repository component

The Service Repository implements the role of the common repository for all the components and

service artefacts required in order to deploy the registered services like the Docker images, helm

charts, etc. This repository acts similarly to a localized Content Delivery Network (CDN) for all

the infrastructure across the Cloud – Edge – Extreme-edge continuum. Utilizing this component,

the functionalities under the common M&O continuum are able to be distributed and placed on

any of the managed resources, given that capabilities and hardware constraints are taken into

consideration as well.

4.3.1.3 Functional behaviour

All the developed components have distinct functionalities that complement each other and are

focused on the intelligent and automated management & orchestration of infrastructure and

services.

As described, artificial impairments (high CPU/memory/disk load, high latency, low battery,

hardware stress, etc.) are introduced to the system. For the software to be able to identify these

impairments, custom probes capable of monitoring all the required metrics are deployed as well.

These probes are developed with functionalities to monitor all the required metrics. More

information on these probes is found in the MaaS description below. To support the defined

scenarios, groups of operations have been created to showcase the various stages of the M&O

functionalities. These groups are:

• service registration & instantiation;

• functions placement operations;

• predictive orchestration operations.

Initially, the Service registration & instantiation stage includes all the operations required for the

deployment of the industrial automation service. The sequence diagram for this stage can be seen

in Figure 4-6. After the instantiation of the service is finished, the service is added to the list of

Hexa-X Deliverable D6.3

Dissemination level: public Page 24 / 129

services under monitoring. This is a requirement for the second stage and part of Subsection 4.3.2,

i.e., the Function Placement operations. The functionality of each component from those

described in the previous Section 4.3.1.2 is described in the following subsections.

Figure 4-6. Service registration & instantiation sequence diagram.

MaaS framework

The MaaS framework offers three main functionalities summarized in Figure 4-7.

Figure 4-7. Main functionalities offered by the MaaS framework.

For the Data Gathering, the goal of the MaaS platform offers the possibility to manage the

monitoring goals in a declarative manner and independent from the underlying cloud platforms

(OpenStack or K8ss) and technologies. The MaaS provides a unique entry point for the different

stakeholders (platform owner, service owner etc.) to monitor different KPIs. The MaaS offers the

following features:

• Technology agnostic: the MaaS is a general framework that is designed to support

multiple target cloud platforms and multiple probing technologies. One can cite

Prometheus Exporters [PAE], Elastic Stack Beats [Ela19], or a custom probe like the one

deployed in this Demo #4. This probe is capable of collecting all the required metrics to

support the scenarios in the industrial context. In this context, the selected metrics that

are used as input for the intelligent orchestration mechanisms, along with the service

descriptors, capabilities and constraints, are:

o resource metrics (CPU, memory, disk);

o network metrics (latency, packet loss, UL/DL data rate);

o power consumption;

o service KPIs:

▪ industrial operation cycle time;

Hexa-X Deliverable D6.3

Dissemination level: public Page 25 / 129

▪ packages handled per min/hour;

▪ incidents per min/hour;

▪ availability.

The deployment of the probes is handled by the automated mechanisms provided by the

MaaS framework.

• Model-driven: the monitoring goals are specified following a tree-like model derived

from the ISO 25011 service quality standard [ISO2011, ISO2017]. The model defines

multiple quality attributes that are decomposed into finer-grained concepts until reaching

measurable properties, as it is depicted in Figure 4-8. Indicators can be selected at any

level of the tree. The selection is mapped automatically into the measurable properties

associated with the leaves of the selected subtree. This request is then transformed into a

set of probes that are deployed in the target platform or system.

Figure 4-8. Tree-like organization of the monitorable quality attributes.

Figure 4-9. Example of MaaS monitoring goals.

Figure 4-9 introduces an example of monitoring goals. Of course, the MaaS supports

many other goals, and use-specific goals can also be added.

Service Registry component

The main functionality of this component is to store and share information among the components

of the system. By using the service registry, the problem of two components having different

values, identifiers or even semantics has been avoided by providing a central reference place for

the information it needs, enabling thus greater continuity of the intelligent orchestration system.

Its main functionalities are:

• Registration, where data, metrics, configurations, requirements, etc., are kept and can be

accessed by other mechanisms of functions.

• Retrieval, where any component can retrieve the service-specific information it requires.

• Modification, where the contents of the services that are stored to match the latest

versions and updates can be updated. For example, every time a service is moved from

one node to another, the service registry needs to have the latest changes available for all

components to reflect the latest deployment status.

Hexa-X Deliverable D6.3

Dissemination level: public Page 26 / 129

• Filter or query, where the output is processed to match a specific metric or value.

• Deletion is the process of removing irrelevant data from the service registry. For example,

if a service is not used, the associated records containing all the information for

orchestration, monitoring, and other components can be removed.

Specifically, after a new service, in this case, the industrial automation service, is registered, OSM

is triggered to deploy the new service on the selected infrastructure. After deployment, the service

components perform their internal operations for discovery and coordination and then extreme-

edge infrastructure, the robots, become available for operation through the Digital Twin

application.

Service Repository component

The functionality provided by this component is that of a repository for all the required software

and artefacts for the deployment of services. Each service that is registered in the Service Registry

requires sources for the artefacts to deploy. These sources can be local or remote. Having this

local repository with all the required artefacts enables immediate deployment of new or existing

services, especially on “fresh” nodes that have not been used before.

Specifically, this demo implements the role of a Docker images repository hosting the container

images for the various services utilized in the industrial automation context. Furthermore, it also

performs the role of the Helm chart [HELM] repository for the various K8s charms utilized for

the deployment of the same services. Finally, it can also be used as storage for the descriptors,

configurations and package/binary files that might be used during the scenario workflows.

 Scenario 4.2: Handling unexpected events using Functions Placement

This scenario introduces novel mechanisms to detect and handle unexpected events during the

operation of the industrial automation service that has been selected for this use case.

4.3.2.1 Scenario description

This scenario aims to demonstrate how AI/ML enablers, for anomaly detection and performance

degradation analysis, along with increased automation and programmability, can be utilized to

further increase the efficiency of network and/or service operations, in this case, industrial

operations, using closed-loop control mechanisms. These mechanisms rely on monitoring and

performance diagnosis of the various services and components running on the infrastructure and

are responsible for reconfiguring and redeploying services and functionalities in order to optimize

their performance and achieve the targeted KPIs/KVIs.

Figure 4-10. Robotic scenario

Hexa-X Deliverable D6.3

Dissemination level: public Page 27 / 129

Additionally, these mechanisms are used to show how unexpected situations can be handled in an

automated way without requiring human intervention while still allowing the option for a “human-

in-the-loop” workflow. Beyond the implementation itself, what this scenario demonstrates is the

benefits of deploying closed-loop control mechanisms that rely on real-time data from the

infrastructure and deployed services, as well as AI/ML mechanisms, in order to optimize the

deployment and performance of the same services. Doing so, the accomplishment of target

KPIs/KVIs can be monitored, and corrective actions can be taken immediately, or even pre-

emptively, upon detection/prediction of irregularities instead of relying on delayed human

intervention. To showcase the various functionalities in the context of an industrial environment,

in this scenario, impairments to the operations are injected artificially. These impairments can be

applied instantly or gradually so as to better showcase the triggered responses from the

corresponding handling component, the diagnostic and predictive orchestration components in

this case. These impairments include, but are not limited to, the following:

• resources stress (CPU/memory/disk);

• network stress (artificial latency/packet loss);

• artificial low battery;

• artificial motor stress.

For the demo implementation, an emulated industrial production line has been built using three

mobile robots, with three locations assigned as goals for their respective roles of the robots and

placeholder objects that are to be transferred between the different target locations: Production

(quality checking), Shipping, and Repairing, based on the role that each robot implements.

Figure 4-11. An anomaly detected during robot operation.

Figure 4-10 depicts the described robotic scenario. Further information regarding the industrial

environment and the robotic operations can be found in Deliverable D7.2 (to be released together

with this Deliverable D6.3) in section 4.2.2. The mobile robots are also equipped with compute

resources allowing the M&O systems to deploy and manage services on them as extreme-edge

nodes. There is also a UI that can be used to provide information regarding technical malfunctions

or performance degradations to technical personnel in case a remote intervention or maintenance

is needed, like in the case of the malfunction shown in Figure 4-11. In this example, one of the

robotic arms is experiencing increased stress caused by external human action for demonstration

purposes, which is detected using the collected stress metrics from the arm’s motors. All the

software components in these domains can be managed and orchestrated by the orchestrator.

Hexa-X Deliverable D6.3

Dissemination level: public Page 28 / 129

4.3.2.2 Software components

In this scenario, the previously mentioned components from Scenario 4.1, MaaS, Service

Registry, and Service Repository, are also used. The newly introduced components are the

Diagnostic and the Function placement components, shown in Figure 4-3. For details on those

components, refer to Subsection 4.3.1.2. The details for the new components introduced in this

scenario can be found in the following subsections.

Functions Placement component

The Function Placement component (which is described in detail in Deliverable D7.3, sections

6.1.4 and 6.1.5) is developed with the purpose of optimizing the placement of services and their

components across the available infrastructure, either at the cloud, edge or the extreme-edge

domains, as seen in Figure 4-3. In the industrial context of this demo, for example, in the case of

an unexpected situation, like the case where a task/functionality is in pending mode or is executed

slowly, it is crucial to reallocate this malfunctioning task to one of the other nodes/robots to avoid

possible downtimes. Accordingly, in the case where a robotic device goes out of order, there

should be a component/algorithm responsible for redistributing the functions to the rest of the

nodes/robots/units in an orchestrated manner and with minimum cost. For the correct operation

of this component, interfaces with the Diagnostic, Monitoring, and Orchestrator components are

needed. These interfaces are implemented as typical REST interfaces between the corresponding

components. The interface with the Diagnostic component provides the trigger input for when

services or components need to be moved in order to alleviate undesired situations or performance

degradations. The interface with the Monitoring component, the MaaS framework, is required so

that the Function Placement component can retrieve the current status of the infrastructure

available and services in operation. Finally, the interface with the Orchestrator is required for the

enforcement of the decision for the optimal placement of one or more services or components.

Diagnostic component

The Diagnostic component’s purpose is to carry out a performance diagnosis of a deployed

service without extensive knowledge of the service’s functionality, metrics, and overall usage.

Thus, it can comprise a useful tool that can provide valuable information to the components

responsible for the optimal placement of the services and components. It has been developed

specifically for monitoring a service/node and is characterized by a set of metrics/KPIs in order

to detect anomalies in the observed behaviour or performance degradations. To accomplish that,

this component utilizes information retrieved from the monitoring system, the MaaS framework.

After the detection of such an event, a trigger is generated for the other components, specifically

the Function Placement (FP) component, for an evaluation of the optimal placement of the service

and its components. The optimization goal of the placement can be configured for a service based

on predefined policies like minimizing the number of robots used, optimizing power consumption

on the robots and optimizing based on the robot location. Additionally, if the services are not

tightly coupled with the robots and can be offloaded on the Edge or Cloud compute nodes, then

additional options exist regarding minimizing the latency of the service, maximizing the number

of industrial tasks completed and so forth. To accomplish the detection of these events, the

Diagnostic component utilizes different AI algorithms that have been implemented as

interchangeable submodules to be used in conjunction with this component, also allowing the

extension of the list of supported algorithms. This allows the extension of this mechanism with

additional algorithms following common interface and data information models. The currently

implemented algorithms include Self-Organizing Maps (SOMs) [SOM] and Depth-based spatial

clustering of applications with noise (DBSCAN) [DBS] as an alternative for the clustering of the

observed data, as well as a custom algorithm for topological investigation, correlation and root

cause analysis based on adjacency lists. The algorithms are described in more detail in subsection

4.3.2.3. Additionally, if the necessary requirements are met, a root cause analysis process can also

be executed in order the detect the origin of the observed anomaly or degradation more accurately.

The combination of these algorithms is capable of providing additional analysis capabilities by

exploiting the advantages of the SOM tool (unsupervised learning, heterogeneous input) and

utilizing additional information.

Hexa-X Deliverable D6.3

Dissemination level: public Page 29 / 129

4.3.2.3 Functional behaviour

This scenario relies on the already provided functionalities from Scenario 4.1 and introduces new

workflows on top of them. During this stage, the running services, along with the available

infrastructure, are continuously monitored for changes, errors, anomalies, or performance

degradations. When such a case is identified, the Function Placement mechanism is triggered in

order to compute the optimal placement for the service or services in question. The sequence

diagram for this workflow is shown in Figure 4-12.

Figure 4-12. Function Placement workflow

A detailed description of the new components’ functional behaviour that performs these new

functionalities can be found in the following subsections.

Diagnostic component

The Diagnostic component is utilized as a part of the intelligent orchestration group of

functionalities. After the services and components of the industrial operation scenario have been

registered and deployed on the corresponding domains, the Diagnostic component is triggered,

by the Service Registry, in order to start performing analysis on the data generated by the service.

During the industrial automation service operation defined in the scenario, multiple metrics are

generated from the utilized nodes, for instance, CPU/RAM/disk/network utilization, as well as

higher-level KPIs that have been defined for the service, for example, finished work cycles,

number of examines items, number of malfunctions, etc. These metrics and KPIs are collected

and exposed to the M&O system from the probes deployed using the MaaS platform. While the

infrastructure and network ones are retrieved independently from the respective resources, for the

service-specific KPIs, a common way of exposure and retrieval needs to be set for both the

infrastructure provider and the service provider. For this demo, the high-level KPIs and the

endpoints they are exposed to are declared in the initial definition of the services registered in the

Service registration stage. This ingested information is then passed through a vectorizer, which is

a module that vectorizes this information in order to be spatiotemporally correlated. This means

Hexa-X Deliverable D6.3

Dissemination level: public Page 30 / 129

that the metrics and KPIs of a specific time slot are grouped together to provide a snapshot of the

system and the service for that specific time slot, a vector.

The created vectors contain one group of information per node as well as some general

information of the vector. Each node is represented in the vector by its metrics and some general

information about the node, including the anomaly detection analysis. For example, a vector can

contain the groups: vectorID (a unique ID for each node), Timestamp (the timestamp of the

snapshot the vector represents), Service (The name or ID of the service) and vector_data, the

structure that contains the metrics of each node. The vector_data structure contains a Nodes list,

where each element is a set of data for each node, and each set contains the values shown below:

• name: name of the node;

• state: node’s state according to the outlier detection decision;

• outlier: boolean value to show if a node is detected as an outlier or not;

• distance: distance between the node’s metrics and the respective neuron’s weights;

• threshold: the predetermined threshold for the node’s distance, used for outlier detection;

• percentage: the deviation between each metric and the respective neuron weight;

• metrics: list of node metrics, where each element contains information for the name,

value, unit and timestamp of each metric.

Since each vector represents the service’s state at a given moment in time, the number of vectors

propagated to the models is determined by the metrics collection frequency. An unsupervised

learning process is taking place (as described in [SOM2]) when running a service for the first

time, assuming the service runs in a normal environment, i.e., using non-anomalous data to train

the models. The training is executed in real-time, starting from the instantiation of the service

until a specific point is reached (determined from testing in an equivalent

infrastructure/environment), where it is assumed that the learning process is completed. From that

point on, the model can be used to detect anomalous sets of metrics of a node inside a given

vector. Topologically, the training and inference stages benefit from increased resources, and such

takes place at the resource that the Diagnostic component is deployed in the Cloud. The generated

2D map of neurons, created after the feature set has been created from the ingested metrics, is

used during the inference stage in order to detect anomalous states in the ingested vectors and

trigger the root cause analysis process. As the selected algorithm for the clustering functionality,

the SOM utilizes the concept of an artificial neuron map, where each neuron is characterized

during training by its individual weights., i.e., the values that correspond to each input metric and

are determined during training. The procedure to be followed in order to identify abnormal

behaviours of the nodes is described by the following steps:

• Step 1 - Data collection: The input data, which are the service's metrics/KPIs, are

collected and correlated spatiotemporally as vectors.

• Step 2 - Initialization of the topological map: The topological map is composed of 25

neurons (assuming that the variety of metrics/KPIs is under a specific range). Each neuron

is initialised by a random set of weights.

• Step 3 - Competition learning process: For each input vector, the Euclidean distance

between the weights of the neurons is computed. The neuron whose weights are most

similar to the input vector is selected as BMU (Best Matching Unit). This step is repeated

until all input vectors are examined and assigned to their BMUs.

• Step 4 - Cooperation learning process: Through this step, all the sets of weights are

updated. Steps (3) and (4) are repeated until several iterations have passed.

• Step 5 - Detect faults: After training, the quantization error for each input vector is

calculated. The quantization error is the distance between the input vector and the BMU's

weights. A self-adjusted threshold (the parameters for self-adjusting are set during

testing) is used to determine if this distance is long enough for the input vector to be

characterized as an outlier. The nodes state is diagnosed using this comparison.

The SOM algorithm was chosen, as it is able to combine and analyse various performance metrics

(such as CPU utilization, memory utilization, disk I/O, network interface I/O, request latency etc.)

to learn their underlying patterns and ultimately make decisions about the health status of VNFs

Hexa-X Deliverable D6.3

Dissemination level: public Page 31 / 129

(Virtualized Network Functions) and CNFs (Containerized Network Functions) instances of

services without prior knowledge of specific thresholds. The examined services, in this case, are

the services that comprise the industrial automation service, namely the cloud management

service, the edge controller service and the autonomous agent services. Upon detection of such

events, and if the required information has been provided during service registration (e.g.,

available topology information and information for the internal service elements), a topological

investigation is launched to try to identify the possible causes for those events. The selected

algorithm for topological investigation is based on Root Cause Analysis (RCA) [RCA]. The basic

principle of the algorithm is to check the reachability between the nodes (for example, instances

that belong to VNFs), using each node’s health status that is determined by the fault detection

performed in the SOM module and the network topology. The RCA module can also enable fault

localization by identifying connected nodes that affect each other’s status, e.g., the non-healthy

node connected to a healthy node and both being detected as non-healthy. The selected algorithm

uses the health status provided to label the service nodes as “Healthy” or “Unhealthy”. An extra

label, “Unknown”, is applied for the “Unhealthy” nodes that may be affected by other respective

nodes. This is performed using an adjacency list that is obtained from the network topology.

Specifically, an n-node undirected graph represented as an adjacency list is created using the

virtual links of the topology. The nodes are numbered from 1 to n. Next, each “Unknown” node

is examined to identify the Unhealthy nodes that may cause the node’s non-healthy state. The

algorithm’s output is one list per “Unknown” node that contains the “Unhealthy” node(s)

identified as the root cause for the respective node’s performance issues. The workflow described

above is structured in two parts of the algorithm:

• Part A determines the status of individual elements in the network (“Healthy”,

“Unhealthy”, “Unknown”).

• Part B creates the Root Cause lists for the Unknown” nodes.

After both stages of the diagnostic process have been completed for a vector, and an anomaly or

degradation has been successfully identified, with or without a valid root cause, a message

containing information regarding the detected event along with the information regarding the

relevant service/node is propagated to the Function Placement component.

Functions Placement component

This component comprises two sub-modules, one implementing the optimization function

responsible for deciding on the optimal placement and a controller responsible for interfacing

with the orchestrator in order to apply the deployment decision on the corresponding

service/component. For the first module, typical function optimization techniques have been used

to construct a multivariate function that takes into consideration all the possible variables of

interest for this problem. The currently selected variables are:

• number of services/tasks;

• number of available infrastructures (across the available domains);

• computational load and maximum computational load of each infrastructure;

• the power cost of utilizing corresponding infrastructure;

• the computational cost of utilizing corresponding infrastructure;

• communication cost between related infrastructures.

Utilizing information retrieved from the available infrastructure and monitoring the deployed and

available services/components, this module can provide optimal placement for targeted services.

Specific details for each service are retrieved from the Service registry component. The placement

algorithm is also configurable regarding the targets that are prioritized for the placement. Energy

efficiency, the minimum number of infrastructures used, minimum amount of network traffic

(focus on collocating as many services as possible) are some of the potential optimization targets.

For the second module, an API has been developed and added as a wrapper to the first module in

order to allow interfacing with the optimization algorithm and propagating the decisions to the

orchestrator.

After a service is registered, the FP component is triggered in order to decide the placement for

it. This initial placement also follows the selected policy for the placement, mentioned earlier. In

this case, the initial placement of the industrial automation service’s components is performed

Hexa-X Deliverable D6.3

Dissemination level: public Page 32 / 129

based on the restrictions regarding the placement of these components. This means that the Cloud

management service is placed in the Cloud, the controller service is placed at the Edge, and the

Autonomous robot agents and service roles are placed on the robots. When a need to find a new

placement for one or more of these components arises, the FP is triggered to decide on this new

placement. During this scenario, the service roles of the robots are frequently required to be

migrated due to injected impairments or artificial stress.

 Scenario 4.3: Improving service downtime and reducing costs using

Predictive Orchestration

This scenario is focused on moving from a reactive approach in handling unexpected events to a

proactive one, based on predicting the future states of the services and resources in order to

identify the conditions that will lead to said events.

4.3.3.1 Scenario description

This scenario aims to demonstrate how utilizing AI/ML enablers to predict the behaviour of

services and/or components can lead to increased efficiency and reduced costs, operational and

maintenance, of industrial operations and systems. These mechanisms rely on using monitoring

data from selected services or components to train predictive models capable of identifying

upcoming critical events. The objective of this scenario is to demonstrate how the deployment

and utilization of these AI/ML enablers could accomplish the proposed improvements for the

operational workflows inside an industrial context. Moreover, these mechanisms are used to show

how the impact of unexpected situations can be minimized in an automated way without requiring

immediate human intervention. Besides the implementation itself, this scenario demonstrates the

benefits of utilizing AI/ML enablers that rely on monitoring data from the infrastructure and

deploying services in order to optimize the orchestration of services and allocation of roles/tasks

in an industrial context. In this way, the target KPIs/KVIs can be monitored, and in extreme cases,

corrective actions can be taken pre-emptively before a critical event occurs. For the demo

implementation, the focus is on the health and power consumption of AGV components like

batteries and motors, shown in Figure 4-13. The behaviour of those components is monitored in

order to predict upcoming critical events such as malfunctions, overvoltage, extreme stress, low

power, etc., and trigger the appropriate orchestration actions to avoid/handle them pre-emptively.

This scenario utilizes all the software components introduced in the two previous scenarios and

extends them with the introduction of the predictive orchestration component.

Figure 4-13. Monitored components.

Hexa-X Deliverable D6.3

Dissemination level: public Page 33 / 129

4.3.3.2 Software components

In this Scenario 4.3, all the components developed for Scenarios 4.1 and 4.2 are reused, and the

set of functionalities is extended by introducing a new component, the Predictive Orchestration

component, seen in Figure 4-3, tasked with handling the prediction of future states of the deployed

services and infrastructure.

Predictive Orchestration component

The Predictive Orchestration component has been developed with the purpose of predicting the

behaviour and performance of monitored services and nodes across the available infrastructure.

The purpose of these predictions is to compile an image of the future state of the infrastructure

and deployed services. To accomplish that, the component utilizes AI/ML models specifically for

time series forecasting. This future state is used by the functionality allocation component in order

to discern if there is a need for pre-emptive actions to prevent upcoming critical events. These

actions increase the efficiency of the industrial scenario operations by reducing the maintenance

costs, reducing the time to replace malfunctioning workers, reducing the time stalled/blocked time

between stopped operations, and in general, reducing industrial operations downtime while also

minimizing maintenance costs by scheduling it proactively. Since the context of this demo is that

of an industrial environment and its automated operations, appropriate pre-trained models for the

specific metrics that will be taken into consideration will be utilized to enable the prediction of

the behaviour of the various AGV components, like the battery, the motors, etc.

4.3.3.3 Functional behaviour

This scenario relies on the already provided functionalities from Scenarios 4.1 and 4.2 and

introduces a new workflow on top of them. The predictive orchestration, an extension of the

closed-loop M&O process as described in Scenario 4.3 (Subsection 4.3.3), is demonstrated. The

purpose of these operations is to be proactively triggered in order to prevent an undesired event,

like performance degradation and malfunctions, from happening. This sequence diagram is shown

in Figure 4-14. A description of the new component’s functional behaviour can be found in the

following subsections.

Figure 4-14 Predictive orchestration workflow

Hexa-X Deliverable D6.3

Dissemination level: public Page 34 / 129

Predictive Orchestration component

The prediction functionality of this component is implemented using multiple AI/ML algorithms

for trend detection, univariate and multivariate prediction, and prediction evaluation. These

algorithms, similar to the ones of the Diagnostic component, have been developed as external

modules to be used in conjunction with the predictive orchestration component, thus allowing its

extension with others as well. The currently implemented algorithms are Facebook's Prophet

[FPR], ARIMA/SARIMA [ARI], and Univariate and Multivariate Linear Regression [MLR].

These models are used individually, mainly depending on the type of metric, if it is additive, etc.,

and the predictions it provides. The predictions of each model are cross-compared and weighted

against the actual observed value for which they provided predictions. This acts as a self-

validating feedback loop. Greater weight is assigned to the models that give more accurate results,

while the rest of them are assigned lower weights and might also have their hyperparameters tuned

in order to provide better future results. For this component, an API has also been developed for

interfacing with the rest of the components and external management. During the operation of the

service, its state is monitored and analysed by the MaaS and Diagnostic components, respectively.

In parallel, the Predictive Orchestration component utilises the aforementioned models to predict

the future state of the monitored metrics and KPIs. These predicted values are fed back to the

Diagnostic component in order to analyse the predicted future state for any anomalies. When an

anomaly is detected in that future state and verified as valid through the mechanisms described

earlier, the FP component is then proactively triggered to decide the optimal placement of the

service components to prevent the predicted anomaly.

 Scenario Deployments

The various developed software components are deployed on resources on the cloud and edge

domains. The deployment layout is pictured in Figure 4-15.

Figure 4-15. Demo #4 deployment overview.

This deployment considers a common orchestrator for the extreme-edge nodes, K3s, which is

available, meaning that its connection information is already provided, a priori to these nodes, for

their management and orchestration. In cases where such an assumption is not made, another

solution to the problem of extreme-edge discovery will need to be implemented, like the one

proposed in the complimentary lab experiment regarding node discovery in subsection 6.2. The

communication between the extreme-edge nodes, the AGVs, and the rest of the infrastructure is

implemented using a commercial 5GNR solution, the Quectel RM500Q modem [QUEC] and

utilizing an overlay VPN network over the commercial 5G network. The communication between

the various Cloud-Edge domain components is handled by wired connections and virtual

networks. The interaction between different users and the robots in this demo is implemented

utilizing a Virtual Reality (VR) headset and a laptop. Through these devices, the user can view

the Digital Twin application and also interact with the individual robots or configure/control the

service overall. A large monitor is also used to provide the overall presentation of the Digital

Twin application for other users that are not currently interacting with it. A secondary monitor is

Hexa-X Deliverable D6.3

Dissemination level: public Page 35 / 129

also used to show the status of the deployment in the form of metrics and KPIs collected and

ingested by the system through the MaaS framework. Other than the infrastructure requirements

of the deployment, the demo also requires a minimum amount of space for the robots to localize

and move inside. This space needs to be mapped as the emulated, or the actual, if that is the case,

industrial floor space. This space should be a minimum of 9 square meters up to no known size

limit. For this demo specifically, the used area is 12 square meters, i.e., 4x3 meters. Finally, Table

4-1 contains the compute resources allocated for each of the demo components.

Table 4-1. Demo #4 deployment resources.

Host Description Type

(VM/

Physical)

OS Arch. CPU

(#)

RAM

(GB)

Disk

(GB)

MaaS

framework

MaaS framework

host

Virtual Ubuntu

20.04

x86_64 8 32 80

K3s-master K3s master for the

edge

Virtual Ubuntu

20.04

x86_64 4 4 100

K3s-master K3s master for the

extreme-edge

Virtual Ubuntu

20.04

X86_64 4 4 80

K8s-master K8s master for the

cloud nodes

Virtual Ubuntu

20.04

X86_64 4 8 80

OSM Service orchestrator Virtual Ubuntu

20.04

x86_64 2 4 80

Intelligent

orchestration

components

Service Registry,

Diagnostic,

Predictive

mechanism,

Functions placement

Virtual Ubuntu

20.04

x86_64 4 4 100

Service

Repository

Orchestration

repositories for

docker images and

helm charts

Virtual Ubuntu

20.04

x86_64 2 4 100

K8s cloud

node

Cloud worker node Virtual Ubuntu

20.04

x86_64 4 8 80

K3s Edge

node

Edge worker node Virtual Ubuntu

20.04

x86_64 4 8 80

k3s-worker-1 Robot worker Physical Ubuntu

20.04

x86_64 4 8 256

k3s-worker-2 Robot worker Physical Ubuntu

20.04

x86_64 4 8 256

k3s-worker-3 Robot worker Physical Ubuntu

20.04

x86_64 4 8 256

5 Demo #5: Data-driven device-edge-cloud continuum

management

5.1 Demo overview

Demo #5 is directly related to Hexa-X Objective 3 (Connecting intelligence towards 6G), which

targets turning AI/ML into an essential component of the B5G/6G technology. Specifically, for

WP6, this objective is intended to develop AI/ML-powered enablers for orchestration and service

management in order to achieve higher efficiency and enable new services (and revenue streams)

Hexa-X Deliverable D6.3

Dissemination level: public Page 36 / 129

considering an expanded focus by targeting the continuum from the end-devices to the cloud/core

networks. Demo #5 integrates four different scenarios that are executed in a simulated urban

environment:

• Scenario 5.1: Continuum orchestration of AI/ML-driven traffic light control service.

Broadly, the scenario consists in a simulated road-traffic urban environment where traffic

lights are controlled by a network service which is deployed on the device-edge-cloud

continuum, and that relies on an AI/ML algorithm to increase the mobility of the vehicle

in the simulated environment. Although the urban scenario is mostly simulated, the traffic

lights have been implemented through a set of real LED lamps that are connected to a

cluster of low-power computing nodes (a Raspberry Pis cluster) running the traffic lights

control functions, which in practice constitutes a realistic extreme-edge implementation

for this demo. The service functions are deployed on demand by a service orchestrator

able to manage resources on this extreme-edge environment and on other regular

computing nodes simulating the edge and the cloud domains.

• Scenario 5.2: Prediction-based URLLC service orchestration and optimization. This

scenario is a particularization of the simulated road-traffic urban environment in the

previous Scenario 5.1, but with a small set of vehicles, where the vehicles request

URLLC-type services. In this case, an AI/ML data-driven approach is used to predict the

road traffic increases and proactively scale-up the needed resources to make the necessary

servers available before the service quality actually drops. Also, if possible,

computational tasks can be offloaded to the extreme-edge resources, i.e., close to the end-

users.

• Scenario 5.3: Reactive security for the edge. Relying on the main concept from the

previous scenarios, this scenario targets to showcase how M&O security can be enforced

across the whole network (from the extreme-edge to the central cloud), also targeting

specific network domains and network slices. The scenario covers various aspects:

o The prediction of the future state of a device. In this case, the M&O security

framework is used to proactively detect the early steps of an attack and take

actions to block the predicted next steps of the attack.

o Ensuring the lowest possible latency. In this case, the security orchestration

framework is distributed to improve the time-to-detect and time-to-remediate

KPIs.

o Re-locating service as close as possible to the end-user device. In this case, the

scenario shows how security functions can be distributed in a very granular way,

down to the extreme-edge domain devices, relying on a hierarchical organisation

of security orchestrators. This approach allows deploying local autonomic

lightweight orchestrators on the edge and complex orchestrators in the core.

• Scenario 5.4: MLOps techniques to deploy AI/ML service components. This scenario

approaches the MLOps methodology to deploy and operate an AI/ML model on a

simulated MNO infrastructure. It highlights the cooperation between two stakeholders

involved in the MLOps workflow: the MNO (which operates the AI/ML model on its

infrastructure) and the SW Vendor (which designs and trains the AI/ML model). Aligned

with the Design Layer concept introduced in [HEX22-D62], this cooperation between

two independent entities is one of the main concepts explored in this Demo #5 since it

implies the sharing of the training data from the MNO to the Vendor, which in real-life

scenarios could involve the sharing of sensitive data (e.g., personal data) between the two

entities to train the AI/ML model. The scenario also explores other well-known concepts

in the AI/ML scope: the drift management concept, considering how to integrate this in

the MLOps workflows.

In the following sections, each of these scenarios is described in more detail.

5.2 Innovations related to the demo

Although in a reduced scope, this Demo #5 addresses most of the innovations described in

Deliverable D6.2 – Section 5.3 [HEX22-D62], namely:

Hexa-X Deliverable D6.3

Dissemination level: public Page 37 / 129

• Unified orchestration across the “extreme-edge, edge, cloud” continuum. This is the

main topic addressed in Scenario 5.1 - integrating the traffic lights infrastructure at the

extreme-edge domain, together with the edge and the central cloud components. Also, in

Scenario 5.2, where the same prediction algorithm that drives the orchestration decision

can be used for the three different resource domains: depending on the time required to

activate each of them, a different prediction window can be employed.

• Unified management and orchestration across multiple domains, owned and

administered by different stakeholders. This is partially addressed in Scenario 5.4,

where MLOps techniques involve both: the MNO domain and the SW Vendors domain.

• Increasing levels of automation. This innovation is addressed in all the Demo #5

scenarios. In Scenario 5.1, RL algorithms contribute to automatically operating the traffic

lights' status in a more efficient way. In Scenario 5.2, an LSTM [LST] network prediction

already determines the number of resources to be (de)activated over time. In Scenario

5.3, layered closed loops are used to automatically detect, contain, and eradicate a cyber-

security threat (the level of automation depends on the authorizations granted to the

system since some remediation actions may require approval from human

administrators). Finally, in Scenario 5.4, MLOps techniques are used to automatically

train and deploy the AI/ML models on a simulated MNO infrastructure, reducing manual

intervention for both: the AI/ML models vendor and the network operator.

• Adoption of data-driven and AI/ML techniques in the M&O system. Data and AI/ML

techniques are used to feed a Reinforcement Learning model in Scenario 5.1. Also, in

Scenario 5.2, they are used to compute the number of servers required based on the real-

life traces from an Italian city [MKV+22]. Also, in Scenario 5.3, although no AI/ML

technique is currently proposed in the scenario itself, the proposed system is evolutive,

meaning that it is able to integrate AI/ML modules to leverage its automation capabilities.

In this sense, AI/ML could be useful both: in the detection/analysis phase and in the

remediation phase. Finally, in Scenario 5.4, data is used to train the AI models that need

to be generated at the SW Vendor side and to monitor the AI models once deployed on

the MNO infrastructure.

• Adoption of the cloud-native principles in the telco-grade environment. Cloud-native

principles are applied in two main ways within this Demo #5: (i) by using micro-services

for implementing the different software components in the demo in the form of Docker

containers, and (ii) by showcasing mechanisms for the services to be deployed and

updated using DevOps practices, implementing continuous integration and continuous

delivery (CI/CD) pipelines with a high automation degree. This is specifically addressed

in Scenario 5.4.

5.3 Demo implementation

As for the previous Demo #4, the implementation of this Demo #5 has been designed in such a

way that it can be aligned with the M&O architectural design introduced in the previous

Deliverable D6.2 [HEX22-D62]. In the following subsections, the scenarios considered for this

demo are presented according to the same structure used for the previous Demo #4, describing

the different components used for each scenario, its functional behaviour, and the deployment

details for each.

 Scenario 5.1: Continuum orchestration of AI/ML-driven Traffic Lights

Control Service

5.3.1.1 Scenario description

Scenario 5.1 aims at demonstrating how the 6G technology can be used to improve the road traffic

flow in urban environments by controlling the traffic lights using AI techniques. The objective is

to demonstrate how the deployment of this AI/ML-enabled control could improve road traffic

mobility compared to the common approach, i.e., the traffic lights activation based only on

deterministic and periodic time patterns. Beyond the implementation itself, what this scenario

suggests is the possibility of deploying more advanced sets of connected traffic lights to enable

Hexa-X Deliverable D6.3

Dissemination level: public Page 38 / 129

more efficient road traffic control strategies. These traffic lights, beyond simply switching on/off

their lamps, would also be enabled to perceive their immediate environment (e.g., through

cameras installed on the traffic lights themselves or in nearby locations) and would send this

information to the edge application through the 6G network. Here, based on AI/ML algorithms,

it could trigger more intelligent actions by adapting the traffic lights switching times to the actual

traffic conditions (see Figure 5-1). This would help to reduce traffic jams and minimize waiting

times, as well as provide more advanced functionalities, such as coordinating the traffic lights

activation to give preference to priority vehicles passing through (e.g., ambulances or other

emergency vehicles), among others. Besides, real-life implementations of a system like this could

help to reduce CO2 emissions in polluted cities, which is also in line with the Sustainability KVI

defined in [HEX21-D12]. For the demo implementation, a simulated set-up has been devised2,

consisting of:

• The extreme-edge components are implemented by a set of hardwired red/orange/green

LED lamps representing the set of traffic lights to be controlled, which are connected to

a set of small-scale Raspberry Pi computers running the low-level traffic light control

processes.

• The edge cloud, where the AI/ML model is used to control the traffic lights, is trained

and executed. Specifically, the classical Q-Learning algorithm [Wat89], a Reinforcement

Learning based algorithm, has been used for this3

• The central cloud, where a so-called central urban mobility server and other core NFs are

be hosted.

For the vehicle's flow generation, a well-known open-source framework for the simulation of

urban mobility scenarios has been used (SUMO [LBE+18]).

Figure 5-1. Smart traffic lights to enable AI/ML-driven control.

This tool allows the generation of different traffic patterns with different kinds of vehicles over a

simulated urban environment consisting of several intersections regulated by traffic lights. It also

offers a GUI which displays in real-time the vehicle's flow and the traffic light's activation (see

Annex I). However, although software-based, this simulated environment is in full

synchronisation with the actual LED lamps at the extreme-edge mentioned above (see Figure

5-2). More specifically, regarding the urban environment setup, a layout with four crossroads has

been designed, with a traffic light at each branch of each crossroad. Three crossroads have four

2 “Technology Readiness Level (TRL) [Hor20] for this demo is TRL 3 (experimental proof of concept).

3 Please, be aware that for this demo scenario the main concern here is not on the AI/ML topic itself, but the

demonstration of the continuum M&O concept including the extreme-edge domain. AI/ML is used here anyway as

a way to align the scenario with what could be a use case for future 6G networks, where services based on AI

techniques are expected to be more and more relevant.

Hexa-X Deliverable D6.3

Dissemination level: public Page 39 / 129

branches, while the last one has only three, having a total of 45 individual lamps to be controlled

(see Figure 5-3).

Figure 5-2. Simulated urban environment synchronised with the real traffic lights.

Figure 5-3. Scenario 5.1 – streets layout.

This setup is used to run the software simulation on the computer. However, as mentioned, a

physical replica of this setup has also been built with real LED lamps, which are connected to

four Raspberry Pi cards (one per crossover) to implement a realistic extreme-edge set-up. Figure

5-12 in Section 5.3.1.4 shows a picture of this replica. The traffic lights view areas (one per traffic

light) are simulated within this scope, i.e., no real cameras have been deployed to measure the

traffic density in each traffic-light control area. For the sake of simplicity, this functionality has

been delegated to the above-mentioned SUMO simulator, which monitors those lane areas

highlighted in blue in Figure 5-34. The generation of the vehicles participating in the simulation

is also delegated to SUMO, which generates them with specific trajectories and speeds on the

given street layout. It progressively adds vehicles following a statistical distribution based on a

random seed. Of course, the challenge to the AI is to control the traffic lights status in such a way

to allow the vehicles to make their journey as quickly as possible, minimising (or even avoiding)

waiting at red lights. More details about the demo implementation are provided in the following

4 As previously mentioned, in a real-life application, this could be done by real video camera attached to the traffic

light, together with an AI/ML-based image recognition software trained to detect high traffic density situations.

Hexa-X Deliverable D6.3

Dissemination level: public Page 40 / 129

sections, starting with the main functional components (section 5.3.1.2), the overall functional

behaviour of the demo (section 5.3.1.3), and the deployment details (section 5.3.1.4).

5.3.1.2 Software components

Figure 5-4 shows the main software components that have been used to implement this demo

scenario, grouped in the three network domains: cloud, edge, and extreme-edge. Also, and in line

with the M&O architectural design introduced in [HEX22-D62], the red dashed line on top groups

the components in the M&O scope, i.e., the Extreme-edge Orchestrator, the Edge Orchestrator,

and the Cloud Orchestrator, which handle the management of the resources in the three domains,

with the Vertical Slicer, deployed in the cloud domain and responsible for E2E service

management.

Figure 5-4. Main functional components of Scenario 5.1.

The Vertical Slicer has parent-child relationships with the rest of the domain-specific

orchestrators. Altogether, these four orchestrators implement the E2E Continuum Orchestration

function, which is the main topic addressed in this demo scenario. On the other hand, those

components below the red dashed line are the service-related components, i.e., those components

implementing the AI/ML-driven traffic lights control use case introduced in the previous section.

In practice, this traffic lights control service is distributed over multiple containers, which are

deployed dynamically by the E2E Continuum Orchestration function that operates at the Network

Layer of the architecture and has been implemented explicitly for this demo. The Vertical Slicer

(called SEBASTIAN), which extends an existing open-source software for the management of

communication services and network slices in 5G networks [5GR21-D24], interacts with various

virtual infrastructure platforms to manage computing resources across the continuum of the

extreme-edge nodes (represented by Raspberry Pi nodes connected to the traffic lights for their

control), edge nodes, and cloud nodes. This resource continuum, which is mapped into the

Infrastructure Layer of the Hexa-X M&O architecture, is handled through different virtual

infrastructure platforms. Specifically, a K3s [K3S] cluster is used for the management of the four

extreme-edge nodes, K8s [KUBa] for the management of edge and cloud resources for container-

based deployments, and OpenStack [OST] for the management of cloud resources for VM-based

deployments. Although this scenario does not explicitly consider 5G connectivity, experiments

with the SIMU5G NR simulator [NSS+20] working with the traffic related to this scenario are

reported in Section 6.3. In the following subsections, the software components developed for this

scenario in each domain are described in more detail.

Extreme-edge domain

The following are the functional components in this domain:

Hexa-X Deliverable D6.3

Dissemination level: public Page 41 / 129

• Traffic Lights Control Logic. Generally speaking, this is basically a sort of low-level

driver in charge of activating/deactivating each physical traffic light led in the set-up. It

receives commands from the AI/ML agent (running on the edge domain) and parses them

to properly activate/deactivate the traffic lights (through the General-Purpose IO -GPIO-

ports in the Raspberry Pis), according to the AI/ML agent requests. However, although

this is its primary function, it also implements an additional low-level control logic to

avoid certain undesired situations that the AI/ML agent might lead mainly during its

training stage. These low-level control logic functions include but are not limited to

preventing lights from blinking excessively often, or the opposite, never changing their

status (they could remain red or green for too long, or even all the time), and also

preventing from inconsistent situations, such as all lights in a crossroad being either red

or green at the same time. In other words, this control module, besides just

activating/deactivating the traffic lights themselves, also performs a kind of “hard-wired”

filtering function, preventing the AI from provoking obvious inconvenient situations.

From the AI agent's perspective, the rules set is part of the “external” environment from

which it learns, so these rules are integrated into the learning process. This component

has been developed specifically for this scenario in Demo #5. Four instances are deployed

(one on each of the Raspberries) in the form of K3s pods to control each of the crossroads

in the setup (i.e., each instance controlling one crossroad). The implementation uses

Python 3.8.10 and is optimised for ARM64-based architectures.

• SUMO Extreme-edge Controller. This component, which works as a complement to

the SUMO simulator, can be understood as a kind of kernel in terms of synchronising all

the other components in the simulation process, as well as a data-collector from the

SUMO simulation that gathers data and interacts with the simulator. The component has

been implemented from a “containerised” perspective to be deployed as a K3s pod. Four

instances are allocated, one on each Raspberry Pi device, to collect data individually from

each crossroad at a time. This functional approach has been used in order to ease the

implementation of a distributed E2E architecture. It has been developed using Python

3.8.10, optimised for ARM64 architectures. The component was developed mainly

because of the usage of the SUMO Simulator in this Scenario 5.1 requires an interface

operating through its TraCI API [LBE+18] in order to obtain real-time data from the

ongoing simulation. Its main functionalities are:

o Components’ Synchronisation. Proper synchronisation between the SUMO

Server and the rest of the functional components must be assured in order to have

a correct simulation behaviour. To get this, a specific SYNC signal is sent from

each SUMO Extreme-edge Controller instance before a new simulation step

starts.

o Data Collection: It collects the data required by the AI/ML function on each

crossroad (i.e., the number of vehicles). The data is retrieved using the values

obtained through each crossroad’s LADs and is used to comprise the information

sent to the AI/ML functional component.

o Data Sharing: The required data is sent to the AI/ML component as a structured

Python data dictionary.

o Data Reception: This functional component expects data from the Traffic Lights

Control Logic component comprised of traffic lights status updates.

o Update the traffic lights simulation statuses. Traffic lights status updates are

sent to the SUMO Server so that the actions that result from the AI/ML component

are applied to the simulation scenario.

o Extreme-edge Orchestrator. This is the orchestrator used to perform the life-

cycle management of the components at the extreme-edge, i.e., the Traffic Lights

Control Logic and the SUMO Extreme-edge Controller previously described. As

can be seen in Figure 5-4, it has been implemented using K3s, a certified

lightweight K8s distribution built for IoT and Edge computing [K3S]. This

orchestrator interfaces with the overall Vertical Slicer component in the cloud in

order to integrate it into the continuum orchestration workflows. This interaction

is based on the K8s API (exposed by the K8s API server within K3s) to retrieve

Hexa-X Deliverable D6.3

Dissemination level: public Page 42 / 129

the list of extreme-edge nodes in the cluster, subscribe for and retrieve

notifications on cluster events (e.g., new nodes), and perform CRUD operations

on namespaces, deployments and pods for service provisioning. K3s has been

deployed in the form of a lightweight K8s cluster, with distributed storage, on

the four available Raspberry Pi nodes, with one of them acting as the master node

and the other three as workers. All the nodes have been labelled accordingly in

order to assign one crossroad to each Raspberry Pi so that the K3s deployments

can be allocated correctly.

Edge domain

The edge domain hosts the following components:

• The Traffic Lights Reinforcement Learning Agent. This is the brain of the service. It

is based on the Q-Learning algorithm [Wat89], a model-free algorithm that aims to learn

the value of an action based on a particular state depending on the rewards it receives

from its environment. In the context of this demo, the environment is the urban

environment described in the previous paragraphs (see Figure 5-5), where its overall state

at a certain moment is defined by the traffic situation in the crossroads (taken from the

monitored lane areas nearby the traffic lights), while the actions are the commands sent

to the traffic lights to put them in a specific state (red, green, or yellow). The reward is a

value based on the average speed and average waiting time of vehicles: a higher average

speed will produce positive rewards, and higher average waiting times will produce lower

or even negative rewards, reinforcing the agent to learn which specific actions on specific

states produce higher rewards.

The AI/ML application developed for the demo consists of four independent RL agents,

each acting on the traffic lights of a specific crossroad. However, these four agents are

deployed together on a single AI/ML application instance, on which each agent receives

information on all the LADs in the four crossroads. This is intended to provide each agent

with overall visibility since the traffic situation in a specific crossroad could be affected

by what could be happening in the neighbour crossroads also. This way, learning of each

agent is not only based on what could be happening locally but also on a broader level.

Figure 5-5. Reinforcement Learning in Scenario 5.1.

The AI/ML application has been implemented using Python language and some

additional libraries like Pandas to handle the Q-Table and NumPy to process input data.

More information explaining how this agent performs its work is provided in subsection

5.3.1.3 (Functional Behaviour) and also in Annex II.

• Messages Queue. This is an instance of the well-known open-source RabbitMQ

messages broker [RAB]. In the context of this demo, it is used to establish communication

between the software components of the demo. More specifically, to communicate the

RL Agent with the SUMO Extreme-edge Controller and the Traffic Lights Control Logic

components at the extreme-edge (see Section 5.3.1.3).

• Edge Orchestrator. This is an instance of the well-known open-source K8s system

[KUBa] for automating the deployment, scaling, and management of containerized

applications. It plays the same role as the K3s orchestrator at the extreme-edge explained

Hexa-X Deliverable D6.3

Dissemination level: public Page 43 / 129

before, but in this case, for the applications on edge. It also interfaces (using the K8s API)

with the overall Vertical Slicer in the cloud in order to integrate the edge components

with the continuum orchestration workflows. It has been deployed in the form of a

Rancher K8s Engine (RKE) v2 multi-node cluster with distributed storage and a service

mesh based on Istio [IST]. A dedicated VM has been created to act as the K8s controller

and two worker nodes within the edge domain. This orchestrator is also part of the

compute continuum M&O and, therefore, it interfaces with the Vertical Slicer component

to enable the same operation available for the extreme-edge orchestrator.

Cloud domain

As can be seen in Figure 5-4, the cloud domain contains the following components:

• SUMO Server. This is the main component of the above-mentioned open-source urban

mobility SUMO simulator [BBE+11]. SUMO has been chosen for implementing this

scenario due to its wide-range of real-time interaction, visualisation, and metrics

extraction features in the urban scenario devised for this demo. Specifically, SUMO can

be used to simulate the movement of a number of individual vehicles inside the virtual

roads network designed for the demo, taking into account things like speed restrictions,

traffic lights, and the presence of other vehicles. SUMO is also able to provide metrics

reporting on the overall state of the vehicular scenario (i.e., mean travel time metrics,

mean waiting time metrics, vehicle consumption metrics, vehicle pollution metrics, etc.)

[LBE+18]. The simulator also includes a GUI (accessed thru this SUMO Server

component) that allows the user to visualise the SUMO simulations and watch the

behaviour of the vehicles under the running conditions (in a layout like the one in Figure

5-3). In addition to the simulation capabilities, SUMO also provides a complete API (the

so-called Transport Control Interface - TraCI) [LBE+18]. The TraCI API allows SUMO

users to programmatically control and interact with the SUMO simulations enabling the

integration of SUMO with other tools and platforms. This is, of course, a key aspect that

has been used in this demo in order to integrate the simulator with the other components

in the edge and the extreme-edge domains. Specifically, the TraCI API has been used in

the demo to, of course, interact with the traffic lights and to get real-time information

about the number of vehicles in the lane area detectors associated with the traffic lights.

The SUMO Server component has been deployed, in a dedicated VM on the cloud

domain, as part of an OS-package in the form of a C++ binary. A computer, acting as a

client, can be connected to this SUMO Server component to allow the end-user to launch

the simulations and visualise them in real-time.
• SUMO Cloud Controller. This component is in charge of loading the simulation

configuration parameters, vehicular data-flows and managing the initial SUMO GUI

appearance. Besides, it also implements the features required to gather different real-time

metrics (i.e., number of running vehicles, stopped vehicles, CO2 consumption, fuel

consumption, PMx, etc.) and to store them in a database so that they can be monitored

and plotted in several monitoring stacks (e.g., Grafana [GRA]). This component has been

developed specifically for this demo using Python 3.8.10.

• Cloud Orchestrator. This component is with a similar function to the one of the

Extreme-edge Orchestrator and the Edge Orchestrator described in the previous sections.

However, here, its function is to specifically orchestrate the components in the cloud

domain, i.e., the SUMO Server and the SUMO Cloud Controller. In this case, these

components have been implemented by means of virtual machines (instead of containers,

as in the previous edge and extreme-edge domain), so the Cloud Orchestrator has been

implemented using OpenStack Kolla (version Yoga) [YOG] for managing these VMs.

Like the other orchestrators in the other domains, this one also interfaces with the overall

Vertical Slicer Orchestrator using the OpenStack REST APIs for the dynamic creation

and management of virtual networks, subnets, and VMs (in particular, relying on the

subset of Compute API and Networking API v2.0 exposed by OpenStack and securely

accessed through an OpenStack client library integrated with the Vertical Slicer).

• Vertical Slicer. This component implements the overall E2E continuum orchestration

function. It is an evolution (specifically implemented for this Hexa-X project) based on

Hexa-X Deliverable D6.3

Dissemination level: public Page 44 / 129

the open-source Vertical Slicer software [5GR21-D24], developed by Nextworks in the

context of previous 5G-PPP and ESA projects for the management of vertical services in

5G networks, their mapping to end-to-end network slices, and the lifecycle management

of these network slices across RAN, core and transport domains. This is, of course, a core

part of the demo since this is, in fact, the component implementing the continuum

management and orchestration concept.

The original software was already composed by (i) a Communication Service Management

Function (CSMF) handling the lifecycle management logic of vertical services, (ii) a Network

Slice Management Function (NSMF) responsible for the provisioning and orchestration of end-

to-end network slices, and (iii) some Network Slice Subnet Management Functions (NSSMF)

specialized for the management of RAN, core and transport functions and resources. For

implementing this Hexa-X Scenario 5.1, the CSMF has been extended to manage vertical services

running in the extreme-edge, edge, cloud continuum, and the software has been complemented

with a new component specifically dedicated to the resource orchestration over multiple

edge/cloud platforms featuring extreme-edge nodes, as represented in Figure 5-6.

Figure 5-6. High-level software for orchestration in Scenario 5.1.

The new software component (REC-EXEC – REsource orchestrator for Continuum across

EXtreme-edge, Edge, Cloud - the lower rectangle in the figure) has a modular architecture

allowing it to interact with several platforms at its southbound, handling the details of their

interfaces through an abstraction layer that exposes a unified interface towards the resource

orchestration logic components. In this implementation, the abstraction layer works with three

different plugins for K3s, K8s and OpenStack, respectively (those orchestrators deployed locally

at each domain in the demo). The orchestration logic is implemented through four modules:

Resource Inventory, Resource Discovery, Service Deployer and Descriptor Translator. The

Resource Inventory and the Resource Discovery components are dedicated to the management of

resource clusters and available nodes in the extreme-edge, edge and cloud domains (an additional

experiment, specifically focused on the resource discovery feature, is reported in Section 6.2). The

Resource Inventory works as a dynamic catalogue of K8s/K3s clusters and clusters’ nodes,

monitoring the events related to the composition of the clusters (e.g., the addition of a worker

node, removal of a worker node, etc.) and exposing endpoints to:
• register a new cluster for monitoring;

• retrieve information and receive notifications of the clusters under monitoring;

• retrieve the information of the nodes of a given cluster;

• retrieve the information of the nodes of a given cluster that match a set of specified labels;

• unregister a cluster under monitoring.

Hexa-X Deliverable D6.3

Dissemination level: public Page 45 / 129

The Resource Inventory works as a dynamic catalogue of K8s/K3s clusters and clusters’ nodes,

monitoring the events related to the composition of the clusters (e.g., the addition of a worker

node, removal of a worker node, etc.) and exposing endpoints to:

• register a new cluster for monitoring;

• retrieve information and receive notifications of the clusters under monitoring;

• retrieve the information of the nodes of a given cluster;

• retrieve the information of the nodes of a given cluster that match a set of specified labels;

• unregister a cluster under monitoring.

In order to retrieve the information of the K8s-like clusters and be aware of any changes that can

occur in terms of nodes that form the clusters themselves, the K8s/K3s clients are used to monitor

the registered cluster making use of watch objects and API calls. The adopted library allows the

Resource Inventory plugins to interact with all kinds of K8s clusters compliant with the

specifications detailed by the K8s API (K8s API server). In the case of Hexa-X, the interaction is

with K3s instances deployed in extreme-edge domains and with the standard kubeadm tool

deployed in K8s clusters for edge and cloud domains.

The Service Deployer allows instantiating the various service virtual components in the

underlying platforms, giving the possibility to specify the target nodes. The Service Deployer is

supported by the Descriptor Translator, in charge of translating the platform-agnostic service

descriptors received from the CSMF into the descriptor formats adopted in each platform. For

example, for OpenStack, the original service descriptor would be translated into a Heat template.

The CSMF has been extended with two new internal modules. A Resource Allocation component

has been added to decide the target platform, clusters and nodes where the service components

should be deployed. A driver towards the REC-EXEC allows for retrieving information about

nodes and resources available in the continuum (to feed the Resource Allocation logic) and to

trigger the instantiation and all the other lifecycle management actions of the service components

on the underlying computing resources. For the demo, the CSMF and the REC-EXEC

components are instantiated in two VMs running in the OpenStack cloud environment in

Nextworks laboratory, interconnected to Atos testbed via VPN. Each VM hosts a set of Docker

containers with the various modules of CSMF and REC-EXEC. Further details on the VMs’

requirements are provided in Section 5.3.1.4. The CSMF service catalogue includes the service

blueprints defining the characteristics of the traffic light control service components to be

deployed and orchestrated in the infrastructure continuum. The blueprints have been defined

manually, and they are expected to be the output of the service design layer in the overall service

lifecycle. To this point, all the components that have been deployed for the implementation of the

demo have been introduced. The following subsection, 5.3.1.3, describes how these components

interact with each other to provide the required functionality.

5.3.1.3 Functional behaviour

This section describes how the different components in the previous section interact with each

other to provide the demo functionality. Aligned with the split of Figure 5-4, this description is

also split into two parts: the M&O functionality on the one hand and intelligent traffic control

functionality (i.e., the managed service) on the other.

M&O functionality

From an orchestration point of view, both the CSMF and the REC-EXEC realise a workflow for

the provisioning of the service. In particular, all the internal services of the REC-EXEC are

involved: the Resource Inventory (RI), the Resource Discovery (RD), the Service Deployer (SD),

and the Abstraction Layer (AL) with the specific plugins. Regarding the resources available, both

Edge cluster (EC) and Extreme-edge Cluster (EEC) are considered in this workflow. Before the

actual service provisioning, an initial configuration stage allows the collection of information

about the resources available in both clusters and registers for any dynamic change. This approach

is used to keep the Resource Inventory (RI) continuously synchronized with the nodes entering

and leaving the clusters at runtime. The workflow is depicted in Figure 5-7.

Hexa-X Deliverable D6.3

Dissemination level: public Page 46 / 129

Figure 5-7. Workflow for the discovery of extreme-edge nodes.

As can be seen, the workflow consists of the following steps:

1. The REC-EXEC is configured using the cluster configuration information (e.g.,

credentials, IP addresses, and so on) sent to the RD. In this way, the REC-EXEC knows

where the resources (and thus the clusters) are located.
2. The RD, through the AL, performs a watch request to both extreme-edge and edge

clusters and requests the RI information about the cluster’s resources.

3. The AL translates the information about the nodes and their resources into more generic

and platform-independent information stored in the RI.

Hexa-X Deliverable D6.3

Dissemination level: public Page 47 / 129

4. At any given time, it is possible that some events can occur at the edge or extreme-edge

cluster. For instance, a node can join\leave the clusters themselves or a pod is deployed.

In this case, the RD is notified, and the RI is updated.

5. Thanks to the watch mechanism, this information is notified from the cluster itself to the

specific plugin of the AL. Then, this event processed by the AL is notified to the RD,

which updates the RI.

6. At this point, the extreme-edge and edge nodes and resource information are available in

the REC-EXEC, within the RI.

.

Figure 5-8. Over extreme-edge and edge continuum.

After this initial stage, the CSMF can receive requests for provisioning new services, which are

allocated on the various clusters and nodes depending on the available resources.

Hexa-X Deliverable D6.3

Dissemination level: public Page 48 / 129

The provisioning service time can vary, because mainly depends on the amount of resources to

be allocated in the edge and extreme-edge. For this reason, asynchronous mechanisms between

the service requestor and CSMF and between the CSMF and the REC-EXEC.

However, the workflow involving the CSMF itself and the REC-EXEC is realised, as depicted in

Figure 5-8 is described below.

As can be seen, in this case, the workflow comprises the following steps:

1. The CSMF receives a request to provision a service. The request status is set to

PROCESSING.
2. Then, the CSMF translates the provisioning request into a set of required resources

needed for provisioning the service.

3. The CSMF, after retrieving the resource information from RI, computes the resource

allocation for the service provisioning. If the number of available resources is enough,

then the service is set in INSTANTIATING status.

4. The provisioning service requestor receives a notification about the service provisioning

taken in charge because it is not known a priori the time to provision the service.
5. The CSMF sends the provisioning request to the SD.

6. The SD invokes the DT to translate the service provisioning request into a set of generic

descriptors for the single target domains.
7. The SD notifies the CSMF about the fact that the provisioning request has been

taken in charge, avoiding active waiting.

8. The descriptors deployment request sent by the SD to the AL is translated into a set of

infrastructure-specific descriptors. In this particular case, the descriptors are related to the

edge and extreme-edge namespace and pods deployment.
9. The namespaces and pods are deployed on the extreme-edge and edge by specific plugins

of the AL.

Once the pods are running, the AL notifies:

• the RI about the resource used for the pods;

• the SD about the running status of the pods themselves;

• the SD that notifies the CSMF about the service provisioned.

At this point, the service has been successfully provisioned, deploying the pods to both edge and

extreme-edge clusters. Moreover, the CSMF keeps the status of the service itself, as well as the

REC-EXEC keeps the status of the different resources in terms of a node within the two clusters

and is used for the whole service.

AI/ML-driven road traffic control functionality

Figure 5-9 depicts a high-level view of the flow diagram picturing the interactions among the

main service components introduced in the previous Section 5.3.1.2. For the sake of simplicity,

two of the components have been omitted: the Messages Broker component (RabbitMQ) and the

SUMO Cloud Controller component, given that these two components do not play a relevant role

in the main service logic (note that the Messages Broker is used just to communicate the SUMO

Extreme-edge Controller, the AI Agent and Traffic Lights Control Logic components, while the

SUMO Cloud Controller is just to boot-up the SUMO Server process and to get metrics from it).

Besides, note also that one single instance of the SUMO Extreme-edge Controller and the Traffic

Lights Control Logic is depicted, but it is important to recall that actually, they are four instances

of these SW components running on the simulation (one for each crossroad/Raspberry Pi), and

only one instance of the AI/ML component (although this one executes four RL Agents, as

mentioned in Section 5.3.1.2). As can be seen, the SUMO Simulation starts by loading the

required data for the simulation scenario in the SUMO Server (the two initial steps in the

diagram). After that, the SUMO Server is left on a listening status, awaiting client connections.

The clients, in this case, are the four instances of the SUMO Extreme-edge Controller (i.e., the

ones on each Raspberry Pi). Once connected, the clients request the initial traffic lights status for

the crossroad they are operating onto (a random initial status generated by SUMO) and send that

Hexa-X Deliverable D6.3

Dissemination level: public Page 49 / 129

information to the Traffic Lights Control Logic component in order to synchronise the physical

LEDs with the simulation status.

Figure 5-9. Scenario 5.1 functional flow diagram.

Once this initialising sequence is finished, the simulation enters into its main execution loop, on

which the following steps are executed:

1. A synchronisation signal is sent from each SUMO Extreme-edge Controller instance

towards the SUMO Server. This is intended for all the components in the simulation to

run properly in a synchronized way.

2. The SUMO Server updates all the vehicles’ positions within the simulated scenario, e.g.,

moves vehicles to new coordinates, adds new vehicles, removes the vehicles that have

reached their destination, etc. (this step is carried out only if all the components are

properly synchronised – this is why the previous Step 1 is necessary).

3. Each SUMO Extreme-edge Controller instance collects from the SUMO Server the status

information to the AI/ML component, i.e., the degree of occupancy of the monitored lane

areas associated with each traffic light in each crossroad, and sends this information

towards the AI/ML component.

4. Using this information, the RL Agents (one per crossroad) in the AI/ML component

perform basically two tasks:

5. Using the data from the current iteration, they compute the actions to be done on their

associated traffic lights (e.g., to change from red to green) based on the reinforcements

received in previous iterations and send them to each Traffic Lights Control Logic

component.

6. Measures the effect of the actions taken in the previous iteration considering the average

road traffic speed in the simulation and, based on that, computes the reward and updates

Hexa-X Deliverable D6.3

Dissemination level: public Page 50 / 129

the actions policies to be applied in future iterations, reinforcing those actions that,

overall, improve the movement of the vehicle5. This in itself constitutes the reinforcement

learning process of the AI Agents, which occurs continuously on each iteration6.

7. Each Traffic Lights Control Logic instance applies its internal logic to the received data,

process it, and changes the physical LEDs status if required. After that, it will send the

new traffic lights status to its respective SUMO Extreme-edge Controller instance.

8. Each SUMO Extreme-edge instance will send the updated traffic lights status to the

SUMO Server (which will display it on its associated GUI).

As shown in the diagram, this loop is executed repeatedly until the end of the SUMO simulation.

5.3.1.4 Deployment

Figure 5-10 shows the deployment diagram used for Scenario 5.1.

Figure 5-10. Scenario 5.1 deployment diagram.

As can be seen, the deployment includes different scopes:

5 More information on the specific RL Agent implementation details can be found in Annex II.

6 Please, bear in mind that in RL models there is not a clear separation between the training and the execution stages

for the models, i.e., agents learn while they are actually interacting with the real environment on which they are

integrated (the urban environment in this demo). In this specific case, in the initial stages of the simulation, i.e., while

the model is still in its early stages of learning, the traffic lights just work in what we might call their “legacy mode”,

i.e., being controlled only by fixed time patterns, as it typically happens in the real-life scenarios (this legacy

behaviour is determined by the “hard-wired” rules in the Traffic Lights Control Logic module). Later on, as the agent

gains experience, the agent-generated actions predominate, so that the traffic control evolves into a more intelligent

mode, better adapted to the traffic conditions generated in the simulation. This means that, although the learning

takes place directly on the execution environment, in the worst case the behaviour of the traffic lights would always

be timing-based (that of the “legacy mode”), so that even in the case where the RL agent might not work well yet, it

would never cause harm, beyond generating the same kind of situations as those based on using regular timing

patterns for the traffic lights control.

Hexa-X Deliverable D6.3

Dissemination level: public Page 51 / 129

• the extreme-edge domain (orange block, top-left);

• the cloud domains (light green block at the bottom-left and red block at the bottom-right);

• the edge domain (purple block at the bottom);

• the DMZ block (light grey block in the middle of the figure).

The extreme-edge domain has been built using four Raspberry Pi cards (brand Broadcom, model

BCM2711, with a 64-bit quad-core Cortex-A72 -ARM v8- @ 1.5GHz, and with 8GB RAM),

bound together into the K3s cluster (the four of them are running Ubuntu v20.04.5). They are

connected to each other using a Netgear GS308v3 network switch. The picture in Figure 5-11

shows the practical implementation of this small-scale extreme-edge domain deployed at Atos

premises. Additionally, this extreme-edge domain also consists of a physical panel which mimics

the simulated urban environment described before (see Figure 5-12 below). As it can be

appreciated, this panel represents exactly the same urban environment as the simulated one, with

the same streets, intersections, etc., but it also contains a realistic implementation of the traffic

lights in the scenario by means of LED lamps, intended to emulate a realistic implementation of

what would be a traffic lights set in a real urban scenario The idea behind this set-up is to try to

represent an environment similar to what could be found in a real situation: an extreme-edge

environment with low-power control devices activating real traffic lights and in communication

with the edge and cloud nodes on which the M&O systems and the AI service components would

run. Of course, the LED lamps in this panel are connected to the Raspberry Pi cards in Figure

5-11, where the traffic lights control logic modules are running.

Figure 5-11. Scenario 5.1. Extreme-edge implementation.

Moving to the cloud domain, it has been implemented using physical resources from the two

partners participating in this Scenario 5.1: Nextworks and ATOS. The Nextworks cloud part hosts

the M&O system (the SEBASTIAN system – see Figure 5-4), while the Atos infrastructure is

used to host the managed objects (those in Figure 5-4 as well). Both environments, in different

geographical locations (in Italy and Spain), are connected through the Demilitarized Zone (DMZ)

block represented in Figure 5-10.

Hexa-X Deliverable D6.3

Dissemination level: public Page 52 / 129

Figure 5-12. Scenario 5.1: Traffic Lights physical panel.

Specifically, the following physical resources have been used for each domain:

• On the Atos side (in Spain), the cloud has been implemented by means of a single,

general-purpose Dell server (model PowerEdge T550) and an additional Intel NUC small-

form computer (model NUC8i7HVK). The general-purpose server has been used to

instantiate two VMs intended to run the K8s cloud controller and the SUMO server (see

Figure 5-10). Table 5-1 summarizes the main features of these VMs. On the other hand,

the cloud NUC is used to deploy all the required NFs (in the form of pods or CNFs) that

might be needed in the cloud domain. Finally, within this domain, all the DevOps (i.e.,

Gitlab and Nexus container registry) repositories are allocated in servers shared across

Atos.
Table 5-1. Virtual Machines in the Atos cloud domain.

Hostname OS Architecture CPU (#) RAM (GB) Disk (GB)

K8s-cloud-ctrl Ubuntu 22.04.1 x86_64 3 6 40

Sumo-server Ubuntu 20.04.5 x86_64 4 8 40

• On the Nextworks side (in Italy), the orchestrator software stack relies on the internal

Open Stack virtualized infrastructure composed of one controller node and two physical

computers. On top of this virtualized infrastructure, it is installed the orchestrator software

stack that can be deployed either as a single virtual machine or multiple virtual machines.

Since the CSMF and REC-EXEC are logically separated, these have been installed and

deployed on two different VMs whose hardware and OS requirements are available in

Table 5-2. However, the deployment of CSMF and REC-EXEC can be performed using

either Docker containers or K8s on those VMs. In the former case, the minimum required

version is 20.10.13, while in the latter case, the minimum required is 1.21. As illustrated

in Figure 5-14, end users are consuming a service running in edge servers connected via

the radio access network. In conclusion, once the VMs where the CSMF and REC-EXEC

are up and running (regardless of the compute nodes they rely on), a VPN is established

towards the Atos testbed for making working the REC-EXEC communications towards

the extreme-edge and edge clusters. Regarding the edge domain, it has been implemented

using a NUC computer (same model as the one used for the cloud) that is used to execute

the edge software components (those in Figure 5-4), which are always in the form of K8s

pods. Following the description of the different components in Figure 5-10, the DMZ

Hexa-X Deliverable D6.3

Dissemination level: public Page 53 / 129

block is comprised of four network components. The “DMZ Router” acts as an isolating

router that enables the generation of the Demilitarized Zone – DMZ block.

Table 5-2. Virtual Machines in the Nextworks cloud domain.

Hostname OS Architecture CPU (#) RAM (GB) Disk (GB)

CSMF Any compatible with

minimum version of

Docker or K8s

x86_64 4 4 40

REC-EXEC x86_64 8 8 40

The “extreme-edge” and the “edge/cloud” routers provide two separate networks to the different

components of each domain so that they can be logically and physically separated. The “Internal

Firewall” network security component adds another security layer between the DMZ inner

components and the external world.

Demo presentation

The demo is intended to be showcased including the following three elements (see Figure 5-13):

1. A main screen to show the real-time simulation execution (the SUMO Server GUI). This

main screen is split into two (see Figure 5-13): the right-hand side showing the simulation,

but without using the AI/ML algorithms developed for the demo (i.e., activating the

traffic lights just using fixed time patterns). In this case, it is appreciated that several

traffic jams will appear after a short period of time. At the same time, and on the left-

hand side, a second window shows the same situation but controlled by the AI/ML

service, resulting in an improved traffic density situation. This set-up allows the user to

appreciate the advantage of the AI/ML approach at a glance by having the two

simulations running in parallel.

2. A secondary screen that can be used for different purposes: as a console to show how the

service can be deployed using the continuum orchestration function and also to show

relevant service metrics.

3. The Raspberry Pis and the panel with the traffic lights are implemented with the real LED

lamps (the one in Figure 5-12) to showcase that the simulation runs in sync with this

realistic implementation of the extreme-edge domain.

Figure 5-13. Elements for presenting Scenario 5.1.

In Annex III, some graphs are shown with the results from the demo execution using this set-up.

Hexa-X Deliverable D6.3

Dissemination level: public Page 54 / 129

 Scenario 5.2: Prediction-based URLLC service orchestration and

optimization

5.3.2.1 Scenario description

Scenario 5.2 aims at demonstrating the ability of proper machine learning algorithms to anticipate

the resource needs of the network and preemptively activate the related services so the application

perceives no delay. In a nutshell, in contrast to reactive methods that may scale up/down the

resources as the traffic load increases/decreases, Scenario 5.2 demonstrates the advantages of a

proactive approach that does not involve the typical delays of reactive methods. This is

particularly critical for deployments where resources are set in a deactivated or sleep state to

support sustainability but require a non-negligible amount of time to be powered on. Such boot-

up delays are highly harmful in the case of real-time services, such as URLLC services.

Figure 5-14. A high-level view of Scenario 5.2 configuration.

Scenario 5.2 complements Scenario 5.1 by focusing on a prediction-based orchestration of

computing nodes, providing a URLLC service having stringent delay requirements. As illustrated

in Figure 5-14, end users are consuming a service running in edge servers connected via the radio

access network or running on an extreme-edge resource if available and if deemed suitable by the

service orchestrator. It is assumed that the traffic requests follow a typical daily pattern.

Figure 5-15. Exemplary traffic trace used in Scenario 5.2.

Figure 5-15 illustrates the vehicular traffic pattern over a week in an Italian city [VBM+21]. The

different traffic peaks and valleys are noticeable and result in a drastic variation in traffic over

time. Because of these variations, to support a sustainable service, it makes sense to implement a

resource-on-demand policy, where the number of resources activated at the edge to provide the

URLLC service (e.g., real-time video processing) matches the demand at a given point in time.

Hexa-X Deliverable D6.3

Dissemination level: public Page 55 / 129

One challenge with this approach is that the time to boot up a machine is longer than the inter-

arrival time of requests, and therefore reaction methods are, in general, not adequate to support a

timely matching of resources to the required capacity. In contrast to reactive methods, this demo

illustrates the advantages of using a prediction algorithm based on machine learning. More

specifically, it illustrates how a Long Short-Term Memory (LSTM) network [LST] can predict

the traffic during a given future time window (in green, in the figure above), and therefore

providing the required anticipation to the orchestration mechanism to activate the required

resources and provision the service with zero-perceived disruption.

5.3.2.2 Software Components

Scenario 5.2 includes three main software components, as Figure 5-16 shows. The first

component is the URLLC application, which comprises a client and a server. A second component

is the Simu5G network emulator [NSS+20], which is responsible for emulating the

communication environment and the edge-cloud computing environment. Finally, a third

component is an intelligent orchestrator. In the following, we provide the details and relations of

each component.

URLLC Application

The scenario assumes an application with stringent delay and delivery guarantees, such as those

required by vehicular traffic (e.g., teleoperated driving [5GA21]). It should be noted, though, that

the use of this type of application would be unpractical, and there is no open-source software

available. Furthermore, in order to measure and keep track of the experienced delay, it becomes

advisable to rely on a synthetic traffic generator to assess the performance of the system. Because

of this, the iPerf traffic generator [IPE] is considered.

Figure 5-16. Main software elements composing Scenario 5.2.

Network Emulator

The software component used to emulate the network is Simu5G, which is the evolution of the

well-known SimuLTE [VIR+16], extending 4G capabilities with 5G capabilities at both radio

access and core network side. Simu5G is an event-driven system-level simulator building upon

models from the INET library [INE], which allows one to simulate a complete TCP/IP-based

network stack and supports end-to-end communications among applications. Simu5G models the

data plane of both the core and the radio access networks. As far as the Core network is concerned,

it allows users to instantiate a User Plane Function (UPF) or Packet Data Network GateWay

(PGW) and an arbitrary topology, where forwarding occurs using the GPRS Tunnelling Protocol

(GTP). As far as radio access is concerned, it allows one to instantiate gNBs and UEs, which

interact using a model of the New Radio (NR) protocol stack. The gNBs can be connected to the

Core network directly in the so-called standalone deployment. Alternatively, a gNB can operate

in an E-UTRA/NR Dual Connectivity (ENDC) deployment, wherein LTE and 5G coexist. The

gNB are connected through the X2 interface, and all 5G New Radio (NR) traffic traverses the

eNB first. UEs and gNBs are compound OMNeT++ modules. UEs have all the protocol stack

until the application layer, whereas gNBs only have Layer 3 functionalities. Both include an NR

Network Interface Card (NIC), which models the NR protocol stack. Packet transmission entails

Hexa-X Deliverable D6.3

Dissemination level: public Page 56 / 129

top-down traversal of the NR protocol stack, with messages exchanged by neighbouring modules.

Conversely, packet reception entails bottom-up traversal. Note that OMNeT++ messages are

events: the price to pay for complete modelling of the layers within the NR protocol stack is that

the transmission of a single IP packet via the NR interface requires Simu5G to handle a sizable

number of events in the order or few tens, among inter-layer communication,

fragmentation/reassembly, timers, ACK/NACK sending, etc

Figure 5-17. URLLC traffic flow in the Simu5G-based emulated network.

The gNB are connected through the X2 interface, and all 5G New Radio (NR) traffic traverses

the eNB first. UEs and gNBs are compound OMNeT++ modules. UEs have all the protocol stack

until the application layer, whereas gNBs only have Layer 3 functionalities. Both include an NR

Network Interface Card (NIC), which models the NR protocol stack. Packet transmission entails

top-down traversal of the NR protocol stack, with messages exchanged by neighbouring modules.

Conversely, packet reception entails bottom-up traversal. Note that OMNeT++ messages are

events: the price to pay for complete modelling of the layers within the NR protocol stack is that

the transmission of a single IP packet via the NR interface requires Simu5G to handle a sizable

number of events in the order or few tens, among inter-layer communication,

fragmentation/reassembly, timers, ACK/NACK sending, etc. From a physical layer standpoint,

Simu5G models the effects of propagation on the wireless channel at the receiver without

modelling symbol transmission and constellations. When a sender sends a MAC Protocol Data

Unit (PDU) to a receiver, the PHY modules of the two entities exchange an OMNeT++ message,

whose propagation delay is set to the duration of one NR time slot.

Within the scope of Demo #5, Simu5G is used as the network transport, having application

endpoints exchanging packets through it in real-time. In the literature (e.g., [CAR+03],

[MAH+04]), such an approach is referred to as emulation since packets exchanged by real

applications with the simulator perceive the same impairments (e.g., delay and losses) as if they

were running on the real network. This is useful to test and showcase the real-time performance

of an application, e.g., when closed-loop sensing and control applications are to be tested. These

applications can be, for instance, the two counterparts of a MEC-based URLLC application, one

running on a 5G UE in mobility and the other on a MEC host connected to the 5G infrastructure.

This allows us to test the performance of our scenario on a 5G network under controlled conditions

(e.g., as for load, channel quality, mobility, etc.) in a preproduction environment so as to obtain

confidence regarding their performance. Within the scope of Demo #5, one real application

generates real network traffic to be sent through the Simu5G network emulation. The URLLC

application includes the client and server sides, running on two separated hosts, as Figure 5-17

shows. The network traffic between the client application (Host B) and a server application (Host

C) flows through a Simu5G instance (Host A). The client application transmits data packets over

a TCP socket to the server application. These processes are unaware of the presence of Simu5G.

The OS on host A takes care of forwarding their packets through Virtual Ethernet (veth)

interfaces, as depicted in Figure 5-17 when the sender transmits data via a UDP socket by

specifying the IP address of veth2 and the port number the receiver is listening to, while the

Hexa-X Deliverable D6.3

Dissemination level: public Page 57 / 129

routing table of the host is configured to reroute packets destined to veth2 through veth1 and vice

versa, the OS forwards them to the Virtual Ethernet interfaces depicted in Figure 5-17. The

packets are forwarded through the 5G RAN and reach a MEC application on an emulated MEC

host. Finally, the packets exit the emulated network through veth2 and are forwarded to the server

application.

Orchestration Interface

The Orchestration Engine allows the orchestrator to interact with the system emulated within

Simu5G. On the one hand, it allows the enforcement of orchestration decisions on the emulated

resources. This includes:

• the activation/deactivation of edge nodes. Although a node can be activated

instantaneously, activating it requires a configurable amount of time;

• the offload of the servicing application between edge and extreme-edge nodes and the

consequent redirect of client requests to the proper service;

• the (re)balancing of existing services among the active edge nodes. This operation is

performed in a simulated manner in the scope of this demo scenario; however, the

procedures and methods for migrating running services between edge servers have been

defined and validated in [BPV+22].

On the other hand, the orchestration engine retrieves information on network status and feeds it

to the intelligent orchestrator. The information collected includes the current load of the network

in terms of the active application, as well as the location and status (reachable/unreachable) of the

existing extreme-edge resources. The orchestration engine is executed periodically within the

emulated network. At each execution, it performs the following operations:

• it retrieves the current number of services in the system;

• it retrieves the status of the extreme-edge resources;

• it performs a remote call to the intelligent orchestrator, passing the collected information;

• it retrieves and parses the orchestration decision;

• it enforces the actions stated in the orchestration decision, possibly activating and/or

deactivating edge nodes whenever needed.

The Orchestration interface has been developed specifically for the purpose of Scenario 5.2.

Scenario Visualization

During the execution of the scenario, the status of its components and their statistics are

continuously monitored and visualized through a GUI.

Figure 5-18. Real-time scenario visualization using a custom GUI.

Hexa-X Deliverable D6.3

Dissemination level: public Page 58 / 129

Figure 5-18 provides an exemplary instance of such an implementation, which includes (i) the

performance over time in terms of Service Time (QoS) of a monitored UE running the URLCC

application client, (ii) the performance over time in terms of processing time of a monitored MEC

Host, iii) the current deployment of network and computing nodes (e.g., gNBs, edge hosts, etc.)

and the mobility of UEs, iv) aggregated statistics of traffic and loads.

Intelligent Orchestrator

Intelligent orchestration builds on two main functionalities. On the one hand, the ability to predict

the traffic demand, i.e., a Prediction Module, and on the other hand, the Orchestration Intelligence.

The traffic prediction takes as input the traffic and keeps the history of past traffic data to generate

an AI model. The Orchestration intelligence is fed with the current traffic load and, based on the

Prediction, takes an orchestration decision.

The intelligent orchestration entity is implemented as a client-server service. The server is

logically executed on a remote node (e.g., in the cloud) which runs both the actual prediction and

the orchestration logic and notifies the decisions to the client. The latter is logically executed at

the edge and interfaces with the network emulator that finally enforces the orchestration

decisions.

This Intelligent Orchestrator has been developed specifically for the purpose of Scenario 5.2.

5.3.2.3 Functional Behaviour

The demo is composed of three main functional blocks:

• Simu5G: which simulates the complete data plane of a 5G network. It relies on an “input

trace” file, which consists of a set of {<time>, <no. of users>}tuples that determine the

number of users present in the system at a given time. The simulator periodically provides

as output to the orchestration intelligence the current status of the system (number of

users, number of active servers, current time) and reads as input the decision from the

orchestration intelligence (activate a server, deactivate a server or re-route the traffic from

the target app through the extreme-edge).

• Intelligent Orchestrator: a module that is in charge of taking as input the current status of

the system and the output of the prediction algorithm (discussed next) and producing as

output the decision to be made at that point in time. The decision could be to activate a

new resource, deactivate it, or re-route traffic via the extreme-edge.

• Prediction module: this module takes as input the “input trace” file and produces as output

the predicted number of users over time. This prediction can be based on a simple

Exponentially Weighted Moving Average (EWMA), which serves as a benchmark, or it

can be based on a tong short-term memory artificial neural network. For the latter, in

addition to the specifics of the neural network, it can be configured with a given

“memory” window (i.e., the amount of prior data to be used) and another “prediction”

window (i.e., how far ahead the algorithm should try to predict).

Figure 5-19. Functional blocks of Scenario 5.2.

In Figure 5-19, the different functional modules and their relationships are illustrated. The main

interactions between modules are as follows:

Hexa-X Deliverable D6.3

Dissemination level: public Page 59 / 129

1) The input trace (bottom left) feeds the simulator (top left) with real-life data about the

number of vehicles.
2) The simulator provides the current status of the system to the orchestration intelligence

(top right)
3) The orchestration intelligence feeds the information from the status of the system to the

prediction algorithm (i.e., it "learns“ the input trace via the simulator, as denoted by the

bottom arrow).
4) The orchestration intelligence, based on its information, provides the simulator with the

orchestration decision to take.

5.3.2.4 Deployment

The deployment of Scenario 5.2 is shown in Figure 5-20. Simu5G is executed on a dedicated node

and shows the status of the execution through a dedicated dashboard. A URLLC application,

modelled in the form of an iPerf instance, is executed on a real device, a laptop in this case, and

its traffic is routed into Simu5G, wherein it enters the network from the perspective of a simulated

user.

Figure 5-20. Deployment of Scenario 5.2 – architecture.

Figure 5-21. Deployment of Scenario 5.2 – real-life testbed.

The traffic travels through the emulated network and is affected by system delays. Traffic reaches

the intended emulated endpoint (either an extreme-edge or a near-edge device) and exits the

emulated network. The traffic is finally routed to the propped real endpoint: edge resource,

implemented with a Raspberry Pi. Besides all of this, on the control plane, an orchestration

application runs on a remote PC (which is logically in the cloud) and orchestrates the emulated

resources, activating/deactivating edge nodes and/or offloading traffic to and from the extreme-

edge resources. According to the description above, Scenario 5.2 can be deployed flexibly using

different hardware devices. Figure 5-21 shows a real-life testbed which includes the devices,

which are also described in Table 5-3.

Hexa-X Deliverable D6.3

Dissemination level: public Page 60 / 129

Table 5-3. Description of the nodes used in Scenario 5.2

Name Device Role OS CPUs RAM

(GB)

Disk

(GB)

Notes

SIMU5G Qotom MiniPC

– high

performance

Emulated

network using

Simu5G

Ubuntu

20.04

Intel i7 8 128 Simu5G

ver1.2

Edge Resource Qotom MiniPC

– low

Performance

Edge server Ubuntu

18.04

Intel

Celeron

8 58

User Application Laptop

MacBook Pro

User Device macOS Big

Sur

Intel i5 8 250

Extreme-edge

resource

Raspberry Pi Extreme-edge

resource

Raspian

OS

Cortex-

A72

4 64

Orchestrator

(remote)

Remote Server Orchestration

intelligence

Ubuntu

20.04

Intel i7 16 1000 -

 Scenario 5.3: Reactive security for the edge

5.3.3.1 Scenario Description

The use cases developed in the previous Scenarios 5.1 and 5.2 regarding road traffic related

applications, involve resources and services deployed over the extreme-edge. In these specific

scenarios, the traffic lights are controlled by services hosted in Raspberry Pis, which, in the real

world, would either be hosted within the traffic light itself or in a separated equipment in the

direct vicinity of the controlled traffic lights. In both cases, a critical service is hosted on small,

isolated spots of resources. By nature, those isolated resources could be cut off from the central

clouds, either by accident or due to an attack. An attacker can also physically access those

resources that cannot be closely guarded. At the same time, the service provided here is highly

critical. If an attacker manages to disrupt the service, traffic may get slowed. Worst, if an attacker

manages to take control of the service, it could cause deadly accidents within seconds. A solution

is needed to protect those remote, extreme-edge services.

Scenario 5.3 precisely aims to demonstrate the ability of the proposed M&O architecture to

efficiently handle cyber-security threats against a vulnerable application deployed at the extreme-

edge. The addressed vulnerability in the demo scenario is log4shell, also known as CVE-2021-

44228 [CVE-L4J], which is a zero-day vulnerability exploited by arbitrary code execution and

affecting the Java utility Log4j [L4J]. To detect and remediate an attack exploiting this

vulnerability, we propose hierarchical security management of two layers designed to

accommodate the scarce resources available on the extreme-edge while ensuring the required

security level.

Although standards establish a set of security measures to protect telecommunication networks,

those networks still face risks of attacks. Those risks may come from unidentified/unknown

threats and vulnerabilities, from trade-offs between costs of protection versus risk, or from poorly

implemented standard security measures. To enhance security, it is then necessary to add to these

preventive measures a reactive line of defence, to monitor continuously both the network itself

and its users and detect any security event. 6G networks are envisaged as very complex systems

to manage as a result of the distributed topology, which tends to include more edge devices,

heterogeneous virtualization technologies of resources and functions, and sophisticated

technologies that require significant expertise to master. Therefore, network service management,

including security service management, needs to be assisted by means of automation. Such

automation is usually implemented by several autonomic closed loops monitoring and acting upon

the system. In this context, two problems arise for the security management of 6G networks:

• Resource locality. In 6G, many services may have to be located over extreme-edge

resources, which are typically scarce and located far from a large central data centre.

However, those services need security as well. Locating the associated security closed

Hexa-X Deliverable D6.3

Dissemination level: public Page 61 / 129

loop in the central cloud may induce a number of issues: it could be temporarily

disconnected from the extreme-edge location, leaving it without security, it would induce

additional bandwidth consumption to bring raw monitoring data from the edge to the

central cloud, and it would induce additional latency due to the travel time. On the other

hand, locating the security closed loop that has sophisticated activities on the extreme-

edge premises may have a severe impact on the resources available, as security may

require complex autonomous algorithms or/and large signature databases to analyse and

respond efficiently to potential threats.

• Reaction time. Although the security processes rely on a closed loop, some actions of the

loop (analysis, remediation plan creation) may take some time, enough for the attacker to

inflict significant damage to the system. In some cases, the response would even involve

requesting actions or authorizations from human actors, which considerably increases the

response time.

To tackle these two issues, this Scenario proposes a layered security architecture aligned with the

M&O architectural design provided in the previous Deliverable D6.2. Local security orchestrators

are installed on the same premises as the assets they protect, including extreme-edge resources,

while central security orchestrators are installed in a remote location with access to a vast pool of

resources. Both types of orchestrators contain autonomic closed loops for threat detection and

remediation. The local security orchestrators are intended to be lightweight to minimize their

footprint on scarce local resources. To reach this goal, they would leverage the relationship with

central security orchestrators as much as possible to coordinate activities, thus avoiding

performing complex and computationally intensive tasks. The local security orchestrators take

rapid and simple mitigation actions to quickly stop an ongoing attack, while the central ones take

more complex actions to eradicate the attack and provide long-term protection to the system. In

the context of AI used for security, central security orchestrators would typically centralize

training data and train AI/ML models and would send the trained models to local security

orchestrators to enhance their performance with little computational effort on their side. As a

result, the local security orchestrators are less resource-consuming than the central one while still

being in a position to provide an acceptable level of security for the assets under its control, even

in the event of a temporary loss of connection to the central orchestrator. This layered security

concept can further be extended to match the layered nature of the 6G network: each sub-slice

and slice may have its own security orchestrator, with additional ones at the inter-slice level. In

the specific perimeter of this scenario, the approach consists of a two-layer implementation,

including a local and a central security orchestrator.

To demonstrate the efficiency of this solution, Scenario 5.3 focuses on one specific attack:

log4shell. This attack takes advantage of a vulnerability in the log4j library, a popular Java

logging library, to effectively give access to a shell in the target. Due to the widespread use of

log4j, and the high impact of the attack, log4shell obtained a CVSS score of 10 out of 10 [L4J].

To deal with this attack, we propose a two stages process, represented in Figure 5-22. First, the

attack is detected and mitigated locally. The mitigation is very fast and simple: it consists in

blocking the source of the attack. The detection is propagated to the central security orchestrator,

which takes more complex eradication actions: if allowed, it automatically patches the vulnerable

application to a more recent version of log4j, immune to the attack. Else, it raises an alarm to

request administrators to perform this patch or a full upgrade. Finally, the central security

orchestrator can locate other applications within its management domain with similar

vulnerabilities and apply the same eradication action to prevent any attack attempt. Due to the

high versatility of the proposed management and orchestration architecture [HEX22-D62], the

security service management enables dynamic communication across security functions and even

M&O layers. Such security functions aim at providing accountability for security risk mitigation,

forensic analysis and threat prevention, for instance, the aforementioned local and central security

loops. In this vein, a security function may support to or consume from other security functions

to ameliorate the overall 6G network services.

Complementary to the previous, when it comes to security management, Hexa-X has introduced

the concept of Level of Trust Assessment Function (LoTAF) [HEX22-D14], which enables

assessing the security and privacy aspects of a network service in a particular application

Hexa-X Deliverable D6.3

Dissemination level: public Page 62 / 129

environment. LoTAF is one of the security functions belonging to the Service Layer of the M&O

architecture design [HEX22-D62], so it is totally aligned with the hierarchical security

management architecture mentioned above. Thus, LoTAF may be considered as an add-on or

supplementary solution (i.e., another security function developed for this Scenario 5.3), together

with the local and central security orchestrators, to complement the security of future 6G network

services. Therefore, LoTAF does not disrupt or modify the functionality of other security

functions, but it mainly consumes information generated by other security functions to enhance

the user’s experience. Concretely, one of the principal actions under LoTAF is to verify whether

new cyber security threats, appearing at the runtime stage, may compromise a set of security and

privacy requirements previously requested by end-users during Stage 1 of Level of Trust (LoT)

[HEX22-D14]. In this regard, both the local and the central security orchestrators may feed to the

LoTAF with real-time information related to cyber security threats, log4shell attack in this

Scenario 5.3, so as to update the Level of Trust (LoT) based on decisions and the kind of applied

countermeasures (containment or eradication plans).

Figure 5-22. Local and central loops of Scenario 5.3.

It is worth mentioning that LoTAF is made up of two phases [HEX22-D14]. Stage 1 intends to

assess the achievable LoT; in contrast, Stage 2 is centred on evaluating the achieved LoT once a

network service is being leveraged. Owing to the fact that Scenario 5.3 is principally focused on

monitoring, analysing and handling log4shell threat, only the LoTAF Stage 2 is going to be

showcased since the main objective of Stage 1 is to discover from available network services,

which one may ensure a set of an end user's security and privacy requirements.

5.3.3.2 Software Components

The software components used in this scenario are all represented in Figure 5-23 in green boxes:

• The UERANSIM [UER] (bottom-left in Figure 5-23) is a tool provided by Free5GC that

allows a simulation of both a UE and a RAN. As an output, this component produces the

equivalent of a RAN output, which includes both NAS and AS messages.  

• VPP [VPP] (bottom middle in Figure 5-23) is an open-source software packet processor

based on a Cisco commercial product. VPP presents very high performances, suitable to

Hexa-X Deliverable D6.3

Dissemination level: public Page 63 / 129

handle the data plane traffic. The Control Plane (not represented in Figure 5-23) is made

of a custom 5G Control Plane.

Figure 5-23. Software components used in Scenario 5.3.

•  Suricata [SUR] (bottom centre and middle left in Figure 5-23) is open-source software

that can be used either as an Intrusion Prevention System (IPS) or an Intrusion Detection

System (IDS). The system uses both modes: the IDS as a monitoring tool and the IPS as

a firewall. Used as a firewall, Suricata offers the advantage of being able to analyse traffic

up to the application layer. Regarding monitoring, Suricata has been chosen as it comes

with adapted rules to detect the log4shell attack. Additionally, the detection is very fast

compared to another well-known monitoring tool, Zeek [ZEE], which works with batches

of packets. However, it should be noted that the proposed solution allows to easily plug

other monitoring systems in parallel with Suricata, if needed. The vulnerable application

is an application built on purpose to demonstrate the log4shell attack in a K8s context. It

has been taken from [VIC]. 

• Apache Kafka [KAF] (middle of Figure 5-23) is then used to exchange the necessary

messages between the user plane and the security control loops and between the security

control loops components. This platform has several advantages for our architecture. First

of all, it can receive and distribute events with high performances and built-in scalability,

which is important when it comes to handling network traffic. Secondly, the messages

can be isolated in a different topic, which allows the creation of a pipeline where each

module consumes from one topic and produces to another.

• The decision engines in both local and central loops are based on Drools [DRO], an open-

source Business Rules Management System (BRMS) written in Java. This tool relies on

a set of rules - a knowledge base to determine an action based on a given input. The local

Hexa-X Deliverable D6.3

Dissemination level: public Page 64 / 129

execution module is custom to this scenario and mainly consists of a Kafka consumer

coupled with an SSH client. 
• Analysis modules in both local (bottom left in Figure 5-23) and central (top right of Figure

5-23) loops are both custom modules. In this scenario, their role is limited to applying a

correct format to the alert since the alert is fully qualified by Suricata IDS and does not

require further analysis.  

• The local execution module (middle right in Figure 5-23) is a custom module. It is

composed of a Kafka consumer and an SSH client connected to Suricata IPS VM. This

module can push new rules into Suricata IPS and perform live-reload.

• The global execution module (top right of Figure 5-23) is a custom Kafka consumer to

receive messages from the decision engine, a K8s client to search for the pod targeted by

the attack, a library to look for other vulnerable applications (pods) and an SSH client.

The SSH client is used to automatically trigger the log4shell hot patch solution proposed

by the AWS Coretto team [COR]. The library used to scan for vulnerabilities is the one

provided by Trivy [TRI]. Trivy is a scanner tool that can, among other things, detect

vulnerabilities on container images.

This system is open to further evolution: while, in this demo, we have only one component to

fulfil each function (one component for monitoring and one component for analytics, and so on),

Kafka allows for easy introduction of other components in parallel with existing ones, as several

components can consume/produce in the same topics. Hence, if further attack scenarios require a

specific component, for example, an AI-based analytic engine, this tool can easily be plugged into

the pipeline. Similarly, other components that are not directly part of the cybersecurity loop can

also consume the topics for their own purposes. In this scenario, it is the case for the LoTAF

module.

5.3.3.3 Functional Behaviour

As detailed in Section 5.3.3.1, the objective of this scenario is to demonstrate the ability of the

proposed architecture to automatically detect, contain and eradicate cyber-attacks, specifically

here, the log4shell attack. Furthermore, the outputs generated during the detection, containment

and eradication steps are going to be used for adjusting the LoT of a network service, in this case,

an edge resource. To reach this objective, each module relevant to this use case must be

implemented and properly configured. This includes the different modules of the local and global

closed loops, as well as the communication system that connects them. In addition to the security

system, which represents the core of this demonstration, a 5G system must be deployed, as it

represents the vector and target of the attack. The different modules, as well as the implementation

option chosen for this scenario, are represented in Figure 5-23. Note that the 5G core CP is not

represented as it is not strongly relevant for this demo: all the attack takes place in the UP.

A sequence diagram representing the interactions of the different modules involved in this

scenario is represented in Figure 5-24. As shown in this diagram, the different modules can be

divided into three main categories: data path, local loop, and central loop. Kafka, which binds

together all the modules of the local and central loops, is not represented in the diagram. In this

section, the three categories will be detailed separately. However, it should be noted that the

different interactions can happen in parallel. For example, the local loop starts to react to the

attack as soon as the first attack packet is detected, and it does not have to wait for the attack to

be completed.

The data path is the regular data path for a communication system without any specific

autonomous security system. In this scenario, the functional behaviour of this category of modules

goes as follows:

• The malicious traffic containing the log4shell attack payload is first generated by a

regular UE registered in the network (1). This UE, as well as the RAN stack, are simulated

by a customized version of the UERANSIM tool.

• The traffic will then reach 5G core UP, the UPF, implemented via VPP. The UPF

forwards the traffic toward the IPS (2). At this point, the traffic is also mirrored into a

dedicated Kafka topic (4). This monitoring traffic is consumed by the local loop.

Hexa-X Deliverable D6.3

Dissemination level: public Page 65 / 129

• The traffic goes through the IPS and reaches its destination: the vulnerable app (3). At

this point, the attack is successful. For demonstration purposes, the realization of the

attack is materialized by the creation of a file in the vulnerable app.

Figure 5-24. Scenario 5.3 sequence diagram

The data path is the regular data path for a communication system without any specific

autonomous security system. In this scenario, the functional behaviour of this category of modules

goes as follows:

• The malicious traffic containing the log4shell attack payload is first generated by a

regular UE registered in the network (1). This UE, as well as the RAN stack, are simulated

by a customized version of the UERANSIM tool.

• The traffic will then reach 5G core UP, the UPF, implemented via VPP. The UPF

forwards the traffic toward the IPS (2). At this point, the traffic is also mirrored into a

dedicated Kafka topic (4). This monitoring traffic is consumed by the local loop.

• The traffic goes through the IPS and reaches its destination: the vulnerable app (3). At

this point, the attack is successful. For demonstration purposes, the realization of the

attack is materialized by the creation of a file in the vulnerable app.

The local loop is a cybersecurity autonomous closed loop that monitors data path traffic, detects

incoming attacks and applies containment actions upon attack detection. In this scenario, the

functional behaviour of this category of modules goes as follows:

• Via a dedicated Kafka topic, the local loop receives a copy of the data plane traffic going

through the UPF. This traffic is directly fed into the IDS (4). When the malicious packet

reaches the IDS, a log4shell alert is raised and sent to the local Analysis module (5). The

Hexa-X Deliverable D6.3

Dissemination level: public Page 66 / 129

format of the alert depends on the IDS, here Suricata. While Suricata is used here as an

IDS, other IDS could be used, either instead of Suricata, or in parallel.

• The local Analysis module format the alert and forwards it to the local Decision engine

(6). At the same time, the alert is observed by the central loop (9). In more complex

scenarios, the Analysis module would have a more important role, typically gathering

several alerts to deduce the nature of the attack.

• The local Decision engine emits a containment plan for Log4Shell (7).

• The local Execution engine connects to the IPS via SSH. The private key of the IPS is

pre-provisioned to the Execution module for this purpose. The local Execution engine

applies the containment plan, which consists in adding a rule into the IPS to block any

log4shell-realted signature. The rules are then live-reloaded. At this point, the

containment measures are fully applied, and the UE cannot attack the vulnerable

application anymore. Note that the rules were not present in Suricata IPS in the first place

as the attack probability was considered to be low, and since the IPS is on the data path,

it has to remain as lightweight as possible to avoid inducing delays to the UP traffic.

While the vulnerable app is now safe from an attack coming from UEs, the root vulnerability

remains, and attacks from other sources (e.g., from a compromised application) remain possible.

Consequently, eradication measures are required. The central loop is a cybersecurity autonomous

closed loop that monitors local loops, detect incoming attacks and applies eradication actions

upon attack detection. Generally speaking, the central loop could monitor any information

generated by the local loop. Here, the central loop only monitors the alerts emitted by the Local

Analysis module. In this scenario, the functional behaviour of this category of modules goes as

follows:

• The central analysis module gathers the log4shell alert emitted by its local counterpart

(9). As the attack is here straightforward, the module does not have to perform further

analysis and can directly handle the alert to the central Decision engine (10).

• The central Decision engine emits an Eradication plan for log4Shell. This action is

actually divided into two plans.

• Patch the vulnerable application (11)

• Find all other vulnerable applications within the domain (15) and patch them (18). This

is the extended Eradication plan. The rationale behind this plan is that since the attack

happened once, its likelihood in the domain increased and justifies preemptive measures.

• Upon reception of the patch request for the vulnerable application, the central Execution

engine first determines which pod is running the vulnerable application (12) using the IP

and PORT targeted by the attacker. Once the pod is known, the central Execution engine

uses the K8s API (13) to apply the patch to the vulnerable application (14). At this point,

the vulnerable application is no longer vulnerable to log4shell, and the eradication process

is completed. To push further the resolution of the problem, the central Execution module

can send a notification to the human administrator to suggest an update of the vulnerable

application (step not represented in the sequence diagram). The update itself cannot be

automated and requires the contribution of the developers of the application.

• Upon reception of the vulnerability identification request (15), the Central Execution

module uses its K8s access to identify other vulnerable application pods (16). This

identification is performed by the Trivy vulnerability scanner which is able to detect the

log4shell vulnerability in container images. The list of vulnerable images is sent back to

the central Decision engine (17).

• Upon reception of the subsequent patch request for that application (18), which

constitutes the extended Eradication plan, the local Execution engine applies the patch to

the vulnerable pods. This back-and forth-between Decision and Execution engines

demonstrate the ability of the system to perform additional investigations if required. This

specific example consists of not only applying the patch to the directly affected

application but extending the procedure to other applications. Such back and forth could

also take place between the response block and the decision & analysis one, for example,

if the existence of a specific attack or step of attack may involve the existence of other

attacks that should be looked for.

Hexa-X Deliverable D6.3

Dissemination level: public Page 67 / 129

•  All the messages between the different entities are exchanged through Kafka topics

(when it is not specified otherwise, for SSH connections, for example). As said

previously, this allows the later addition of new monitoring/analysis/ decision/actuation

engines to cover a wider variety of attacks and provide a complete overview of the

security situation system to the administrator. Likewise, Kafka enables other components,

for instance, other security functions, to consume the information generated by local and

central closed loops to support their decisions or actions to be taken. For the sake of

simplicity, all topics are handled here by a single Kafka system; however, the different

topics are well isolated and could be handled by different Kafka instances to match the

general architecture presented in Section 5.3.3.1. The information produced during the

local and central loops may be consumed by other security functions instantiated through

Service, Network or Infrastructure Layers of the M&O architecture design [HEX22-

D62]. In this specific scenario, the LoTAF, under the Service Layer, leverage outputs

coming from the analysis, decision and execution modules of local and central loops. The

principal objective of LoTAF is to demonstrate how real-time cyber security threats, like

the log4shell, may have an impact on the Service Provider (SP) LoT and the agreed

security and privacy requirements. 

Since all the messages between the different entities involved in local and central loops are

exchanged through Kafka topic, LoTAF needs to deploy a Kafka Consumer to subscribe to the

topics it is interested in, specifically, local_analysis, central_analysis, local_decision,

central_decision. Due to the fact that the local loop carries out quicker and simpler

countermeasures than the central loop, the LoTAF needs to be informed of all types of

countermeasures that are applied when a threat appears. First and foremost, the LoTAF recaps the

information of the Local Analysis module to find out whether the current threat is one of the

possible threats detected by LoTAF at Stage 1. As previously mentioned, the likelihood of the

log4shell attack has not been considered severe enough, so it was not under the possible threats

of the instantiated network service. In consequence, the next step of LoTAF is to figure out how

a new threat may compromise the security and privacy requirements agreed upon between an end-

user and an MNO. In this specific scenario, LoTAF assumes the Detection, Analysis and

Remediation modules were instantiated before the event. Therefore, there are no signals that

security and privacy requirements were compromised, but they might be compromised if

containment and eradication plans are not fully effective. In this vein, the containment plan linked

to the Local Response module makes use of blocking the traffic that matches the log4shell

signature by installing the proper rules in Suricata IPS. This containment action aims at dwindling

and stopping the log4shell threat by dwindling the likelihood of suffering such an attack. Yet, the

vulnerability is still in the application or applications (meaning of yellow colour in ovals);

therefore, the LoTA should assess the feasible risk.

Figure 5-25 displays, on the right side, the security and privacy requirements that the MNO needs

to ensure to end-user (ovals) as well as a set of countermeasures related to the local closed loop.

Note that the pink boxes represent both the loop and the countermeasure being used at this

moment. In order to reassess the LoT, LoTAF makes use of a reward and punishment method to

adjust it based on the selected containment and eradication plans. As part of this method, LoTAF

also leverages a rule-based decision engine to determine countermeasure effects in the initial LoT

as well as reassessment-based learning techniques. As a result, the reward and punishment method

determines the affinity (membership degree) between a pre-defined set of thresholds, the

countermeasure effects, security and privacy requirements previously agreed and optimization

functions. Figure 5-25 displays, on the left-hand side, the affinity of the new LoT with the

thresholds using a trapezoidal fuzzy model. In particular, the new LoT has a membership degree

of 0.6 with the Trustworthy level and 0.38 with the Moderately Trustworthy level.

Owing to the fact that the central closed loop has not still applied the eradication plans, which

guarantee logh4shell attack is not currently a threat to the running applications under the network

service, LoTAF makes a conservative decision when evaluating LoT. Thus, it considers both the

likelihood that current filtering rules might not be effective for future deltas of the log4shell attack

and the impact of the attack on the end-user requirements. Therefore, the LoT is updated to the

Hexa-X Deliverable D6.3

Dissemination level: public Page 68 / 129

Moderately Trustworthy level so as to watch out if integrity, confidentiality or availability

requirements might be compromised until the eradication plan is finally applied.

Figure 5-25. Level of Trust update based on containment plan for Scenario 5.3.

Since there is no defined time until the eradication plan is finally applied, because it requires more

complex and consuming-time tasks than the containment plan and even the administrator

interaction to perform a specific patch or a full upgrade of the applications, the LoT is updated

after eradication actions are carried out. To this end, the LoTAF will apply the same reward and

punishment method, but this time the countermeasures, the likelihood and the impact of log4shell

are totally different. In this sense, the rule-based decision engine and the reassessment-based

learning techniques determine that the risk of suffering such a threat has been properly tackled

(meaning of green colour in ovals), and in consequence, the LoT is slightly increased until

reaching the initial Trustworthy Level (see Figure 5-26).

Figure 5-26. Level of Trust update based on eradication plan for Scenario 5.3.

Hexa-X Deliverable D6.3

Dissemination level: public Page 69 / 129

5.3.3.4 Deployment

As represented in Figure 5-23, the system relies on two management and orchestration tools:

OpenStack and K8s. K8s itself is installed on VMs managed by OpenStack. Table 5-4 details the

requirements of the different components.

Table 5-4. Scenario 5.3 VM-based component list.

Name Function Type vCPUs RAM (GB)

UERANSIM UE + RAN simulator VM 2 4

UPF 5G User Plane VM 4 8

Suricata IPS Firewall VM 4 8

Master K8s master node VM 4 8

Worker-1 K8s worker node VM 8 20

Worker-2 K8s worker node VM 8 20

The deployment is made manually: VMs are first created following size requirements. Then,

components based on VMs (K8s included) are installed, and finally, containerized components

are deployed using Helm charts. Table 5-5 details how the different components are installed –

the containerized components do not require additional resources.

Table 5-5. Scenario 5.3 container-based component list.

Name Function

Local Suricata IDS Local Monitoring

Local analytic module Local analysis

Local Drools Local decision engine

Local execution Local execution

Central analytic module Central analysis

Central Drools Central decision engine

Central execution Central execution

Kafka Broker 1 Communication between components

Kafka Broker 2 Communication between components

Zookeeper Support for Kafka

Vulnerable application Target application to demonstrate the attack

LoTAF Level of Trust Assessment Function

 Scenario 5.4: MLOps techniques to deploy AI/ML service components

5.3.4.1 Scenario description

MLOps is a concept devised to refer to the full lifecycle management of ML (and its variants,

Deep Learning, Reinforcement Learning, etc.) in production7. In short, MLOps can be understood

as a particularization of the already well-known DevOps paradigm [EAD14], aimed at addressing

the challenge of developing and deploying in production AI/ML-based software artefacts with an

approach similar to that used in DevOps. The main challenge that the MLOps approach seeks to

7 The MLOps term was originally coined by Dr. Nisha Talagala back in 2018 (see https://www.linkedin.com/in/nisha-

talagala-6a6b20, https://www.forbes.com/sites/nishatalagala/?sh=4b2ac4b63de9 or https://www.slideshare.net/

NishaTalagala/ml-ops-pastpresentfuture.

https://www.linkedin.com/in/nisha-talagala-6a6b20
https://www.linkedin.com/in/nisha-talagala-6a6b20
https://www.forbes.com/sites/nishatalagala/?sh=4b2ac4b63de9
https://www.slideshare.net/

Hexa-X Deliverable D6.3

Dissemination level: public Page 70 / 129

address is the integration of the processes of collecting and formatting the training data typically

needed by the AI/ML models, as well as the training process itself, as these processes are not

considered in the regular DevOps workflows8.

The MLOps concept comes from the IT industry. However, the target in the context of this Hexa-

X project is to explore how this concept could also be applied in the telco-grade industry,

specifically, regarding the future 6G systems, wherein AI/ML techniques are expected to play a

relevant role. In this regard, it is especially relevant the integration of the different stakeholders

typically operating in the telco sector. Scenario 5.4 intends to take an initial step in this direction,

trying to showcase how the MLOps practices could be applied in the scope of

telecommunications. The scenario considered in this demo targets a specific use case where a

single SW Vendor develops, trains, and deploys an AI/ML-based model on the MNO

infrastructure9. Specifically, a supervised learning model has been chosen to showcase the whole

MLOps cycle, trying to address the problem of sharing the data needed to train the model between

two different administrative entities: the SW Vendor and the MNO. In particular, the ML model

used in the demo aims at providing AI capabilities in network management and orchestration,

specifically to avoid network slice and service performance degradations caused by limited UPF

resources at the edge [HEX23-D43]. The model serves for the optimal auto-scaling of UPFs

placed at the network edge in support of low-latency communication services. The scenario also

covers a simple model drift management use case, which automatically redeploys the model when

a drift situation is detected. Figure 5-27 shows the overall approach for this scenario, representing

both the SW Vendor Domain (left) and the MNO Domain (right), with the latest composed of two

different environments, staging and production.

Figure 5-27. Scenario 5.4 block diagram.

These domains and environments have been instantiated on different VMs to simulate the

separation between these domains and environments that would actually occur in a real-life

scenario. As can be seen, the overall MLOps workflow (purple dashed line) consists of different

sub-workflows in the SW Vendor Domain (the Development Workflow) and the MNO Domain

(the Validation Workflow in the Staging Environment and the Deployment and Operation

8 Please, be aware that MLOps (the topic addressed here) is not the same as AIOps (another commonly related topic).

In short, AIOps can be considered as the application of AI/ML techniques to DevOps, while MLOps would be the

application of the DevOps methodologies to develop and deploy AI/ML-based artifacts [Ler17].

9 To consider just a single SW Vendor is indeed a simplification made in the context of the demo. It is well known that

in the telco-grade environment this is not always the case, as network services to be deployed on the MNO

infrastructure are often developed by different vendors. However, though it is considered that such multi-vendor

scenario could be interesting for future research (it would require more complex workflows taking into account the

coordination of the different suppliers), it has been considered better to start with this simplified approach with just

a single vendor, as an initial step in the context of this Hexa-X project regarding the MLOps approach.

Hexa-X Deliverable D6.3

Dissemination level: public Page 71 / 129

Workflow in the Production Environment). The Development Workflow is intended to simulate

the development stage that occurs at the SW Vendor domain, and that, in this case, also includes

the AI/ML-model design and training phases. The Validation Workflow occurs already at the

MNO Domain, in its Staging Environment, and basically comprises the verification phase of the

model delivered by the vendor, which is always necessary prior to its acceptance and deployment

in the production environment. Then, the Deployment and Operation Workflow covers the

necessary tasks to put the model in production (once validated) and its continuous monitoring.

These workflows, together with the means that have been used for their implementation, is

described in more detail in the corresponding subsections below.

5.3.4.2 Functional Behaviour

This subsection addresses the description of the overall MLOps workflow itself, which, as said,

consists of different sub-workflows: one of them executed at the SW Vendor Side (the

Development Workflow), and the other two on the staging and the production environments of

the MNO (Validation Workflow and Deployment & Operation workflows respectively). In the

following, each of these sub-workflows is described.

SW Vendor Side Workflow

As mentioned, the Development Workflow targets the AI/ML model development itself (being

the equivalent of the “Dev” part in the regular DevOps approach). Of course, it is assumed that,

in a real-life scenario, prior to the execution of this workflow, there would be a Service Level

Agreement (SLA) set up between the MNO and the SW Vendor. As for regular non-AI/ML-based

services, that SLA would come after a negotiation process between the two parties, after which

the requirements of the service (based on an AI/ML model in this case) should be well defined.

For the demo, we will omit this SLA development stage, which is considered to have already

occurred before the model development work itself begins. As can be seen in Figure 5-27, this

Development Workflow consists of seven stages, namely:

1. Get anonymized/encrypted training data from the MNO scope. This step has been

represented in the figure by the right-to-left arrow entering into the SW Vendor Domain.

In a real-life scenario, this could be understood as a recurrent process having multiple

iterations. The first iteration would be the initial communication process between the

Vendor and MNO operational teams, where that second party would communicate the

necessary initial data to start designing, developing and performing the first training tests

on the AI/ML model. Probably, these 1st iterations would be a mix of offline and online

communications between the Vendor and MNO. However, in later iterations, once the

data model is well established, that communication process could happen in a more

automatic way or even could be fully automated. For the demo implementation, the

process has been simplified by defining a fixed data model and using a defined data set

that the MNO transfers to the Vendor. As can be seen, the communication is performed

by exposing the MNO Datasets DB (see Figure 5-27), in line with the API Management

Exposure concept introduced in the M&O architectural design from the previous

Deliverable D6.2 [HEX22-D62]. As mentioned above, for real-life scenarios, the fact that

the training data exposed to the Vendor must be anonymized or encrypted would be of

utmost importance since the MNO would be obliged to keep the user data confidentiality

(e.g., by the GDPR [GDPR], or by specific obligations with other parties). However, the

training of the model shall be possible even when the data is encrypted and/or

anonymized so that, once trained, it can make inferences in the MNO environment by

using the non-anonymized (or encrypted) data once in production. The demo targets

specifically this approach, which is considered relevant in the telco-grade environment

for those cases where the training data from the MNO must be shared with external parties

(e.g. when using the supervised and/or unsupervised learning paradigms). Specifically

for the demo, the Micro-aggregation (MA) method has been used before storing the

training data on the Exposed Dataset DB. This technique makes it possible to train the

models using anonymised data [STO+20].

Hexa-X Deliverable D6.3

Dissemination level: public Page 72 / 129

2. ML Model Design. In this step, the AI/ML-model development team decides on the

specific AI/ML approach to be used to better solve the design requirements. In a real-life

case, at this stage, it is decided, for example, which neural network topology to use, the

specific learning algorithm to apply, the size and composition of the data sets for training

and testing, etc. Of course, typically, this happens only at the beginning of development.

In future iterations of the MLOps workflow, this can be omitted unless a complete re-

design is necessary. For the demo, this stage has been simplified, considering a network

topology already pre-designed. Specifically, a Long Short-Term Memory (LSTM)

flavour model was used, consisting of a graph convolution layer followed by LSTM and

dense layers. Evaluation of the model performance was done through the symmetric

Mean Absolute Percentage Error (sMAPE) on test data.

3. Data Validation and Preparation. This stage comprises the filtering and normalization

of the data that is typically necessary prior to the AI/ML model training. For the demo,

for the data validation, an analysis of the input data is performed, checking out anomalies

in the provided data.

4. ML Model Training. Here is where the model is trained to perform the requested

function. In this case, an LSTM model [SRO+19] is trained using time series data to

predict the future state of the UPF load.

5. ML Model Testing. This is the testing stage. As can be seen in Figure 5-27, depending

on the testing results, the previous data validation/preparation and the training itself could

be repeated over and over until the results are according to the requirements in the SLA.

In the demo, this stage has been implemented by means of setting constraints on the

evaluation phase of the pipeline.

6. Store in the local repo. This step just represents the successful finalization of the

previous testing process and the storing of the generated AI/ML model in the SW

Vendor's local repositories. The model is stored there until its propagation to the MNO

scope.

7. Propagate the model towards the MNO scope. This is the last step in the Development

Workflow, represented by the left-to-right arrow getting out from the SW Vendor Domain

in Figure 5-27. However, although a “last step” in the Development Workflow, this is

just an intermediate step in the whole MLOps workflow that, in fact, can be executed as

part of multiple MLOps cycles. As with DevOps, the goal here is also to perform

Continuous Delivery, propagating new versions of the model as soon as they are made

available by the vendor in a highly automated way. Although in a real-life scenario, the

initial deliveries of the model could probably be semi-automated or even manual, the

objective here is to automate the process as much as possible in such a way that deliveries

can be performed in a continuous way. As it can be seen in Figure 5-27, the delivery is

performed using an Exposed Models Storage, also following (as with the getting for the

training data exposure in step 1) the API Management Exposure concept introduced in

[HEX22-D62], and specifically, by exposing to the SW Vendor the access to the Exposed

Models Storage REST APIs (to store and later update the models, the training pipeline

artefacts, or any other relevant metadata).

MNO Side Workflows

Figure 5-28 shows the main steps of the workflows executed at the MNO domain, happening in

the MNO Staging Environment (the Validation Workflow) and in the Production Environment

(the Deployment & Operation Workflow). As can be seen, both environments (staging and

production) contain basically the same set of components:

• The Models Serving Instance, which basically provides the “execution environment”

for the AI/ML model developed and used in the demo.

• The ML Models Monitoring Function, monitors the performance of the ML models,

evaluating their runtime accuracy. It includes methods for identifying potential drifts in

the model inferences as well as in the inference data.

• The Monitoring Data DB is used to store and maintain different types of data relevant

to the MLOps cycles: the training data, the inference runtime data, and the model

Hexa-X Deliverable D6.3

Dissemination level: public Page 73 / 129

monitoring and evaluation data. In practice, it stores all the required data to implement

(on the Vendor side), validate (at the MNO staging side), serve (on the MNO production

side) and monitor/evaluate (on the MNO production side) the models. Specifically, the

Monitoring Data DB is the main source of data for the Exposed Dataset DB.

• The M&O System is used to orchestrate the MLOps workflow in each MNO

environment.

Besides these main components, there are also the two exposed databases in the staging

environment described in the previous section (those used to send training data to the SW Vendor

and to receive the models from it) and also, the Models Storage DB in the Production

Environment, which basically mimics the functionality of the Exposed Models Storage in the

staging environment, but within the MNO production domain itself. Another difference is in the

Anonymisation Component, which, as can be seen, is deployed only in the production

environment. The duplication of components in staging and production environments is obviously

intentional, trying to reproduce what actually happens in real life to provide a testing environment

as similar as possible to the production environment. From a conceptual perspective, this MLOps

approach with separation of staging and production environment is applicable to real-life

scenarios where the MNO hosts multiple production environments (e.g., to support different types

of services or customers). The Validation Workflow (the 1st workflow executed after the AI/ML

model is received from the vendor) implements the validation process that typically takes place

in real life for the network services delivered to the MNO by external parties. AI/ML-based

services are not different to this in the regard that they also need to be validated before their

deployment in the production environment. The steps of this Validation Workflow are encircled

with the numbers ‘1’, ‘2’ and ‘3’ in Figure 5-28.

Figure 5-28. Main steps of the MLOps workflow in the MNO Domain.

As can be seen, the first step consists of the deployment of the model from the Exposed Models

Storage on the Models Serving Instance. This is triggered by the Staging M&O System (dashed

line). The objective here is to have the AI/ML-model deployed in an execution environment

similar to the production environment to perform the necessary validation and testing on it (step

2) to accept the model or inform the SW Vendor in case some updates are required (this last

interaction is not represented in the diagram, but it would basically consist on re-executing the

Development Workflow at the SW Vendor Side to re-engineer the model to avoid drifts or faults

found during the testing). The performing of Step 2 (testing and validation) is done differently

depending on the maturity of the delivered model. In the initial stages, human-conducted testing

(i.e., manual testing) could be necessary. However, in later iterations, this process could be highly

automated using testing automation tools with the appropriate collection of test batteries. In the

demo, this testing process has been implemented through the ML Monitoring Function, which

basically evaluates the model accuracy for a given number of inferences (i.e., UPF load

Hexa-X Deliverable D6.3

Dissemination level: public Page 74 / 129

predictions) by measuring how much the prediction differs from the actual future data in the

Monitoring Data DB and detecting potential drifts based on pre-defined thresholds. The results

of the validation are stored in the Monitoring Data DB for manual inspection; however, the choice

of validation merit is determined automatically by the ML Monitoring Function using a threshold,

and the information is passed to the Staging M&O system for action. In any case (manual or

automatic), this testing stage in the workflow is intended to be based on testing data from two

different main sources:

• The data in the Exposed Dataset DB, i.e., the same data that is provided to the SW Vendor

for it to generate the model.

• The Monitoring Data DB in the Staging Environment (top-right DB in the figure). This

DB is intended to contain monitoring data, not only from the staging environment itself

but from the production environment also. This data coming from the production

environment is used to test the response of the AI/ML model under realistic service

circumstances and not only using staging data or the datasets shared with the SW Vendor

to train and validate the model. That production data can be stored in this Staging

Monitoring Data DB through automatic data collection processes (from the Monitoring

Data DB on the production side) or be manually stored by the MNO operations team

members.

Step 3 happens once the testing process in the staging environment has been successfully

completed. It basically consists in storing the validated AI/ML model in the Models Storage

database, already in the production environment. Together with this, the M&O System at the

production stage also receives a notification (step 4), meaning that a new AI/ML model (or a new

version of an existing model) is ready to be deployed in the production environment. This

notification shall have associated the information and metadata necessary to orchestrate the just

released AI/ML-model, such as the model name and version, its main features and capabilities,

its data requirements, its validity execution times, relation to other models, or whatever other

metadata is necessary to properly execute it. In the context of the demo, the model tested and

validated in the staging environment is stored in the production Model Storage DB by the staging

M&O system through the exposed database REST APIs. On the other hand, the staging M&O

system notifies the production M&O system by using a publish/subscribe mechanism based on a

message bus.

Once the AI/ML model is deployed in the production Models Storage DB, the Deployment &

Operation Workflow at the production environment can start. The 1st step in this environment

(Step 5 in Figure 5-28) is the deployment of the to make the model available to the production

Models Serving instance, which in practice will mean putting the model into production. As in

the staging environment, this is triggered here by the production M&O system (dashed line). In

real life, this step could be done under human supervision but also fully automated, targeting the

Continuous Deployment paradigm. This second case, however, would be valid only for certain

well-defined circumstances, which would be well defined in the orchestrator. For the demo, the

production M&O system takes care to properly configure the Model Serving instance in order to

have access to the proper model version. This is done in accordance with the metadata available

in the Models Storage DB and which describes the capabilities and characteristics of the model.

As soon as the AI/ML model is deployed, a continuous monitoring process is started driven by

the ML Monitoring Function. This function has been developed from scratch and is executed as

a containerized function. The Monitoring Function continuously takes relevant metrics from the

deployed model (step 6 in the figure) and stores them in the Monitoring Data DB. It also compares

the previously predicted output of a model with the real-time data for UPF load to check for drift,

as described below under Drift Management. Those metrics are also anonymized and sent to the

Exposed Data DB in the staging environment (step 7) in order to make them available for future

testing on that environment and also to share them with the SW Vendor in case a new re-design

and/or re-training iteration were necessary. For the anonymization process, the Micro-aggregation

(MA) method has been used. In MA, first, the original values of a given dataset are partitioned

into micro-clusters, and then they are replaced by each micro-cluster’s centroid value. The basic

idea is to generate homogeneous clusters over the original data in a way distance between clusters

is maximized in order to minimize the information loss. One of the main reasons of using this

Hexa-X Deliverable D6.3

Dissemination level: public Page 75 / 129

method is that allows making inference on the trained model without applying the MA method

on the inference data [STO+20].

Drift Management

The monitoring process mentioned in the preceding paragraph is aimed at detecting any

malfunction of the AI/ML model, either to alert the MNO operations team (e.g., by an alarm

signal on a console) and/or to trigger the appropriate automatic response to solve or minimise the

effects of the failure. In AI/ML models, a common source of failures is what is typically known

as “drift”, which refers to the loss of accuracy of AI/ML models that can occur when the data to

which the model is exposed in the production environment differs from the dataset used for

training. This, of course, can negatively affect the business, so it should be avoided. Drift can

happen for different reasons, e.g., because of changes in the way users behave or use the network

services because the MNO tries to use the model in a new context or due to a lack of precision in

selecting the training data sets. MLOps can help to overcome this situation by implementing the

appropriate drift detection and remediation strategies that could be executed in a highly automated

way. In the demo, a specific use case addressing an example of drift management has been

implemented as part of the Deployment & Operation workflow previously mentioned. Figure

5-29 shows this specific approach for the demo (steps ‘a’ and ‘b’ in the figure) that simply

assumes that there is an alternate version of the AI/ML which can be used to remediate the drift

situation. The use case is simple: the ML Model Monitoring Function detects the drift situation

(a) and triggers the M&O system, which in turn causes the deployment of the alternate AI/ML

model. Although simplified, this approach can be valid for real use cases in the telco-grade

environment where, for instance, there may be different service usage patterns depending on the

time (e.g., time of day or day of the week). Based on this, the Models Storage DB could have

different versions of the AI/ML model, each suited to a specific situation. In the demo, a drift is

detected through continuous comparison of the previously predicted output of a model with the

real-time data for UPF load. This is handled through the ML Monitoring function. When the

Monitoring detects a degradation in the prediction accuracy, it passes the information to the M&O

system for action. The M&O system then triggers the evaluation of the available model versions,

similar to the model validation process described in Step 2 above. When a model version is found

which meets the requirements of the SLA, the M&O system deploys the model to production, as

described in Step 3. It is not included in the demo, but if no suitable model version is found, the

M&O system will trigger a re-training of the model. If the SLA cannot be met by the newly trained

model, a message is sent to the SW vendor to request a new model development.

Figure 5-29. MLOps Workflow - Drift Management.

Hexa-X Deliverable D6.3

Dissemination level: public Page 76 / 129

Of course, other more complicated drift management scenarios could be considered. E.g., there

could be considered a re-training of the model in the staging environment (aligned with the

Continuous Training concept [TBF+22]) or even to request for the development of a completely

new version of the model to the SW Vendor (e.g., through the MNO BSS systems). However, in

terms of demonstration, it has been considered that the simplistic approach in Figure 5-29 is far

enough for an initial step to introduce this concept.

5.3.4.3 Implementation Details

Figure 5-30 shows the specific software components that have been used to implement the demo;

below is a description of these components.

SW Vendor Domain

Four main components have been used here:

• K8s. In the context of the demo, this is used as it allows to scale and manage containerized

software components and execute them as cloud-native applications. An additional

reason is that the orchestration platform described in the next paragraph can only run on

top of K8s.

• Kubeflow. This is an open-source system for making deployments of ML workflows on

K8s [KUBb]. In short, it offers an ML toolkit where the SW Vendor workflow pipeline

can be developed, executed, and tested. In the context of the demo, it has been used to

orchestrate the Development Workflow itself, as it offers a machine learning toolkit not

only for orchestrating pipelines but also to develop them with notebooks servers and katib

components, or even make experiment tracking in contrast with other orchestrating tools

like Apache Airflow [AIR]. Additionally, it allows multi-user isolation by creating the

resources in different namespaces for each user. The orchestration function itself has been

implemented by the orchestration component provided by Kubeflow, called “Kubeflow

Pipelines” [KUP].

• The MinIO database [MIN]. This is the vendor's local database just mentioned. It is a

K8s-native objects storage.

• TensorFlow Extended (TFX)[TFX] is an extension of the well-known TensorFlow

framework [TFL], which is typically used to create and manage ML production pipelines.

As can be seen in Figure 5-30, TensorFlow Extended is used in the demo to implement

three of the steps in the Development Workflow, namely:

o The Data Validation and Preparation step is performed by means of the default

TFX pipeline components oriented to make this preparation and validation. The

first one is the ExampleGen component which ingests the data into the TFX

pipeline; it is the first component present in the pipeline. The second is

StaticsGen which generates features statics over the ingested data. The third is

SchemaGen, which is in charge of generating a schema with information about

the types, categories and ranges from the training data. Finally, the

ExampleValidator compares the data statics generated by the StaticsGen

component against the schema produced by the SchemaGen component to detect

anomalies in the input data. All these aforenamed components make use of the

TensorFlow Data Validation [TFDV] library.

o The ML Model Training step, which is performed by the Trainer component,

takes three mandatory inputs. The examples generated by the ExampleGen, a

module file that defines the trainer logic that is basically a python script where

the model is defined, and finally, a definition of the trainer args (e.g. the number

of training steps).

o The ML Model Testing step, which is performed by the Evaluator component,

which takes as input the trained model produced by the Trainer component and

the data from the ExampleGen component. This component allows setting

statistical metrics such as Mean Squared Error, Accuracy etc. It also helps ensure

that the model is "good enough" to be pushed to a production environment. To

that end, the component uses the TensorFlow Model Analysis [TFMA] library to

perform the analysis.

Hexa-X Deliverable D6.3

Dissemination level: public Page 77 / 129

As seen in Figure 5-30, the initial and final steps in the Development Workflow (i.e., the ML

Model Design and the Storage in the Local Repo) are outside the TensorFlow Extended

framework. The initial one is obviously because the design is typically executed in an offline

manner by a design team. In the demo, a pre-designed model is used. The final one (the storage

in the local repository) is just a simple commit operation that, in the demo, is executed by simply

storing the generated model in the local database.

Figure 5-30. MLOps Scenario functional blocks and software components.

MNO Domain

The following software components have been deployed here:

• MinIO. The same objects’ storage as in the SW Vendor Domain. In this case, two

different instances have been deployed: one in the Staging Environment and another one

in the Production Environment. The first one (implementing the Exposed Models

Storage) is used to store the ML models provided from the vendor side, while the second

one (the Models Storage) is used to store those models that have been already validated

in the Staging Environment. As shown in Figure 5-30, the Exposed Models Storage relies

on an Exposed ad-hoc API to allow the vendor to store the AI/ML models on it. This ad-

hoc API has been implemented using the python client API provided by MinIO, which

supports uploading files into a specific bucket with previous authentication making use

of access and secret keys generated by the MNO.

• InfluxDB [INF]. This is another database, specifically a time-series database, that is used

for different purposes: This is another database, specifically, a time-series database that

is used for different purposes:

o To implement the Exposed Dataset DB in the staging environment, i.e., the DB

the MNO uses to share the necessary training data with the external SW

Vendor. To make the vendor able to access its data, an Exposed ad-hoc API has

also been implemented here. In this case, this ad-hoc API uses the HTTP API

provided by InfluxDB that allows writing on buckets and query data; as with

the MinIO instance, authentication is required.

o To also implement the Monitoring Data DB in both environments: staging and

production.

In all these cases, the usage of a time-series database is justified because the type of

data collected are asynchronous timestamped metrics, and the downsample and

aggregation functionalities of a time-series database can be exploited to reduce the

computation needed during data preparation stages.

To implement the Exposed Dataset DB in the staging environment, i.e., the DB the MNO

uses to share the necessary training data with the external SW Vendor. To make the

vendor able to access its data, an Exposed ad-hoc API has also been implemented here.

Hexa-X Deliverable D6.3

Dissemination level: public Page 78 / 129

In this case, this ad-hoc API uses the HTTP API provided by InfluxDB that allows writing

on buckets and query data; as with the MinIO instance, authentication is required. To also

implement the Monitoring Data DB in both environments: staging and production. In all

these cases, the usage of a time-series database is justified because the type of data

collected are asynchronous timestamped metrics, and the downsample and aggregation

functionalities of a time-series database can be exploited to reduce the computation

needed during data preparation stages.

• Anonymization Component. This component performs anonymization over the dataset

which is used by the SW Vendor Domain. This application is hosted in a K8s pod

between the Monitoring Dataset DB and the Exposed Dataset DB in order to deliver the

anonymized data into the Exposed Dataset DB. The application uses the Micro-

aggregation (MA) method [STO+20] that performs data anonymization allowing to use

of the data to train ML models.
• TensorFlow Serving [TFS]. This is a flexible serving system for ML models. For the

demo, this is a sort of “execution environment” where the AI/ML models are deployed

and are made available for inferencing requests through an API (in the context of the

demo, a REST API is used). As can be seen in Figure 5-30, two identical instances are

deployed for the staging and the production environments, respectively. This component

is executed as a containerized function.

• AI Agent. This module, along with TensorFlow Serving, is part of the Model Serving

instance. It retrieves the run-time data from the Monitoring Data DB and sends a request

for inference to TensorFlow serving. It also contains the logic for predicting a need for

altering the resources allocated to the UPF. This information is passed to the M&O for

action. This component is executed as a containerized function.

• The M&O System, which is based on the open-source Vertical Slicer software [5GR21-

D24], was developed by Nnextworks for the management of vertical services and end-to-

end network slices across RAN, core and transport domains. A new dedicated

functionality for managing and orchestrating the AI functions used in this demo has been

implemented. Two instances are deployed (in the production and the staging

environments), which are used to orchestrate the different steps of the Validation

Workflow (in the Staging Environment) and the Deployment and Operation Workflow

(in production).

• ML Model Monitoring Function: This custom component performs the continuous

monitoring of the deployed model’s accuracy. As described above, it uses a comparison

of the previously predicted output of a model from the AI Agent with the real-time data

for UPF load. This component is executed as a containerized function. As can be seen in

Figure 5-30, there are two instances for the staging and the production environments,

respectively.

Regarding the deployment of the demo, it has been done according to what has been represented

in Figure 5-31.

As seen, the deployment has been done on two physical nodes (NUC1 and POP3-Amanita in

Figure 5-31), representing the two separated domains in the demo: the SW Vendor Domain and

the MNO Domain. On the SW Vendor Domain, the “hexax-atos” K8s namespace has been created

to host the components to implement the Development Workflow in the form of a local Kubeflow

pipeline. On the other hand, in the MNO Domain, two VMs have been instantiated: one VM

hosting the Staging Environment components to implement the Validation Workflow (NXW-AI-

STAGING in the figure), and another VM implementing the Development and Operation

Workflow (NXW-AI-VM)10

10 There is in fact a third VM in this MNO domain (NXW-UPF-VM) hosting the UPF component itself, which provides

runtime data for the AI/ML model deployed by means of the MLOps workflow explained through this section.

However, this component has been left out of the diagrams, as it plays no role in terms of the MLOps workflows

itself.

Hexa-X Deliverable D6.3

Dissemination level: public Page 79 / 129

Figure 5-31. Scenario 5.4 deployment diagram.

6 Complementary lab experiments
As already introduced in Section 3.2 (Methodology), a set of complementary lab experiments

have also been performed too, as the name suggests, complement the work addressed in Demos

#4 and #5, previously described. Specifically, these experiments are intended (i) to explore one

of the quantifiable targets assigned to this WP6 in the Hexa-X work plan (QT 3d – Improvements

on the Network Energy Efficiency – see Section 7.1.3.4) and (ii) to explore also some other topics

that were considered interesting in the WP6 consortium, including the automated extreme-edge

resources discovery mechanisms (closely related with the extreme-edge volatile resources

orchestration), and the possible integration of the radio part in Scenario 5.1 (though the radio part

is not in the scope of WP6, it was considered this scenario could be even more realistic taking in

account the radio-related aspects, at least with a small-scale complementary experiment). In the

following subsections, all these complementary lab experiments are described. Although, for the

sake of simplicity, they are not treated in the same level of detail as the demos described above,

they are considered to provide interesting complementary information to support the evaluation

of the M&O mechanisms addressed in this document.

6.1 Network energy efficiency

The main motivation for this experiment is the validation of one of the Quantifiable Targets (QT)

assigned to this WP6 in the Hexa-X project plan, specifically the QT “3d”, regarding the

improvement of the network energy efficiency using predictive orchestration. This QT is

specifically evaluated in Section7.1.3.4, but the experiment that has been carried out to address

that evaluation is described here.

The chosen experiment is based on a V2X scenario that is assumed to be deployed on the edge

domain. As it is well-known, deploying resources at the edge of the network can provide shorter

response times than those provided by a central cloud located farther away. This is particularly

relevant for V2X scenarios, given the stringent delivery requirements of URLLC-type services.

To efficiently provide these types of URLLC services, resources should be scaled up/down

optimally as traffic load increases/decreases while guaranteeing the QoS. This is challenging due

to the importance of being energy efficient. On the one hand, if all resources are active, the QoS

is guaranteed, but wasting high levels of energy. On the other hand, if few resources are available,

the system will be more energy-efficient but cause QoS disruption.

Experiment description

Hexa-X Deliverable D6.3

Dissemination level: public Page 80 / 129

A V2X scenario is considered where vehicles send packets to a MEC server, e.g., Road-side Unit

(RSU), to match URLLC-type service requirements. Although the scenario assumes a MEC

deployment, it is not bound to any particular type of technology, provided that the server is

relatively close to the users for latency considerations. The RSU can deploy as many servers as

needed on demand to guarantee V2X services. Vehicles send packets at a certain rate, and these

packets have a certain service time. Servers are modelled following an M/M/k queueing system

[GDH+13]. Vehicles implement a Tele-operated Driving (ToD) application where part or all the

tasks in the act of driving a vehicle are performed by a remote server. When an autonomous

vehicle detects the need for remote support, it will share all the camera and sensor data (from

RADAR or LIDAR sensors) to provide the server with adequate information about the

environment. The server can then provide appropriate instructions to help the autonomous vehicle

resolve the issues. For this purpose, the reliability and latency requirements to operate this service

are 99.999% and 100ms, respectively [5GA21].

The energy consumption model is presented next. The edge deployment is modelled with carrier-

grade servers, which consume 270W at their peak power and 150W while in idle mode [DPE].

The total power consumption is computed as the sum of (i) the power of having active servers

(i.e., in idle mode); and (ii) the power associated with the server load. In this way, if an algorithm

is capable of providing the same performance guarantees (reliability and latency) using fewer

resources by accurately anticipating changes in demand (both to activate and to deactivate

resources accordingly), it will result more efficient.

To simulate realistic road traffic in the experiment traces from Corso Agnelli Street in Torino

(Italy) [MKV+22] on the last day of January 2022 have been used. This trace consists of traffic

flow measurements reported each 5 min by a road probe. The 5-minute average number of

vehicles is depicted in Figure 6-1, which corresponds to a typical workday pattern, with two

periods of heavy traffic over the day.

This experiment consists of the simulation of a carrier-grade server’s farm architecture with 150

servers, each one supporting up to 16 simultaneous requests. In this architecture, the following

four scenarios were considered:

1. Peak-load dimensioning (i.e., no orchestration). This is the worst-case scenario, where all

servers consume the maximum energy. In this case, all servers are active regardless of

the traffic demand. This causes a complete waste of resources even though the QoS is

guaranteed.

2. Oracle. In this case, the exact number of servers needed to match the QoS requirements

are calculated. Therefore, the orchestrator accommodates the current traffic demand with

a sufficient number of resources resulting in a more efficient approach. However, it is

considered that this method is not realistic (or applicable in all cases) since knowing the

current load can be challenging.

3. Predictive orchestration. In this case, the traffic load is predicted based on the load

history. This implementation is intended to be more realistic than the previous one. This

approach is based on using an LSTM Recurrent Neural Network (RNN) [YSH+19] [LST]

to perform the load predictions.

The network energy efficiency model is evaluated by performing simulation experiments using a

discrete event simulator, namely Ciw [PKH+19]. The simulations have been executed on an

Intel(R) Core(TM) i7-1065G7 CPU @ 1.50 GHz based computer. Finally, the different KPIs

considered in this experiment are described in Section 7.3.3.

Results

Results are depicted in Figure 6-2. For the peak-load dimensioning scenario, the minimum

number of resources to accommodate the peak-load demand is calculated. This results in a

2551.90 W of power consumption. For the oracle scenario, the exact number of resources for

each traffic demand is calculated. This yields a 158.73 W power consumption, resulting in a very

effective approach in terms of power consumption. For the predictive orchestration scenario,

Hexa-X Deliverable D6.3

Dissemination level: public Page 81 / 129

the next traffic demand and scale-up resources are predicted. This results in a 324.769 W, getting

very close to the optimal solution in the oracle scenario.

Figure 6-1. Vehicular rate at Corso Agnelli street in Torino during a day.

Figure 6-2. Power consumption results.

6.2 Extreme-edge nodes discovery

The dynamic discovery of extreme-edge nodes is a feature implemented in the resource

orchestrator (operating at the infrastructure layer) developed for Scenario 5.1 (see Section 5.3.1).

It allows keeping the resource inventory continuously aligned with the real-time availability of

resources that can be used to run the services in the extreme-edge domains. The information

provided by the resource inventory is used to feed the resource allocation decisions at the upper-

layer service orchestrator (operating at the network and service layer) during the provisioning and

runtime phases. This also enables the automated migration of application components in response

to changes in the availability of volatile computing nodes at the extreme-edge, which can be

considered a control loop action. As such, the discovery of extreme-edge nodes can have a role

in the monitoring stage of a control loop. The information about nodes joining or leaving the

infrastructure can be notified to components working at the network and/or service layers within

the analysis and decision stages of the control loop, which can rely on AI/ML-based algorithms.

The resource discovery component is able to work on top of different kinds of clusters

(Kubernetes, OpenStack, etc.), exploiting the abstraction layer that unifies the interaction with the

various cloud platforms. For K8s-based scenarios, the discovery capability exploits the internal

functionalities offered by K8s-like platforms to manage the nodes of the controlled clusters,

exploiting their open APIs to watch over different clusters and detect when nodes join, leave or

are marked as not available. More in detail, the resource discovery component acts as a K8s client,

and it registers with the clusters in order to receive notifications about events related to their

nodes. It should be noted that the current implementation targets a single administrative domain

Hexa-X Deliverable D6.3

Dissemination level: public Page 82 / 129

organized in multiple clusters, where each of them can be based on different technologies and

rely on a specific type of edge platform. In this scenario, the resource inventory is maintained as

a centralized component of the infrastructure layer, and it exposes APIs, with both query and

subscribe/notify patterns, to enable the synchronization with upper-layer elements that are

supposed to belong to the same administrator, with full visibility on the infrastructure topology.

Extensions to support federation would require more advanced access control mechanisms at the

inventory APIs, combined with procedures for abstracting, aggregating and regulating the

exposure of information, also on a per-node basis, towards different administrative domains.

In order to test, validate and measure the performance of the node discovery feature, the K3d

[K3D] tool is used to emulate a scenario with a K8s cluster composed of a master node and five

worker nodes, each representing volatile extreme-edge resources (see Figure 6-3). K3d is a

lightweight wrapper to run K3s in Docker, and it allows to creation of clusters on demand and

add/remove worker nodes in a programmable way. In order to resemble the dynamicity of a real-

world scenario where worker nodes can join/leave the master node, K3d was used to quickly

spawn and delete worker nodes as Docker containers: nodes join the cluster and remain there for

a given time interval, then leave the cluster for another time interval. Each extreme-edge node has

been modelled with its own behaviour in terms of mobility and volatility, changing the frequency

and the time intervals of the presence, as shown in Table 6-1.

Figure 6-3. Node discovery test scenario.

In the current test, it is assumed nodes are joining and leaving the cluster at regular intervals, with

cycles of 10 joining/leaving actions. Analysing the timestamps of the commands sent to K3d and

the ones associated with the related update of the resource inventory, the statistics of the time

intervals required by the system to synchronize with the nodes’ events have been elaborated.

Table 6-1. Modelling of extreme-edge nodes’ volatility.

Extreme-edge node Time in the cluster Time out of the cluster

Worker-1 30 s 5 s

Worker-2 35 s 10 s

Worker-3 40 s 15 s

Worker-4 45 s 20 s

Worker-5 50 s 25 s

Results

It has been measured that the average time needed to spawn a node with K3d, including the time

to discover the new node itself, is 4.9 s, with a maximum of 6.7 s and a standard deviation of 0,46.

The leaving time is 1.4 seconds on average, with a maximum of 2.7s and a standard deviation of

Hexa-X Deliverable D6.3

Dissemination level: public Page 83 / 129

0.39 (see Table 6-2). The additional overhead required to synchronize the resource inventory is

negligible (in the order of milliseconds).

Table 6-2. Synchronisation time for nodes’ joining and leaving actions.

Event Average time Max time Std Deviation

Node joining the cluster 4.9s 6.7s 0.46

Node leaving the cluster 1.4s 2.7s 0.39

Finally, assuming to switch off the nodes without sending the K3d leave command and relying

entirely on K3s internal procedures to detect the nodes’ unavailability (marking them as Not

Ready), the time interval for the leaving detection mostly depends on the internal timers set for

the nodes’ heartbeats in K3s (the 40 s in the default configuration). These timers are configurable,

with the default values set to achieve a good trade-off between accuracy, the load of the heartbeat

traffic, and system stability. Reducing the timers increases the number of notifications about the

changes in nodes’ status, and it may lead to some inconsistency and unstable conditions,

especially in case of poor connectivity between the worker and the master nodes, even if the

workers are alive and correctly running since they tend to lose the connectivity with the master.

It should be noted that the information related to the missing availability of nodes can be used at

the upper-layer service orchestration to trigger migration actions, and, in case of poor accuracy,

they may lead to unnecessary delays or breaks in the service execution and continuity. The

internal migration strategy implemented by K8s/K3s starts to monitor the nodes declared as “Not

Ready” and, if they do not become available within 5 minutes (configurable down to 20 seconds),

automatically triggers a migration action, whose duration depends on the characteristics of the

containers. As an alternative, the migration can be initiated by the service orchestrator operating

at the upper layer or specifying some parameters in the application description. However, the

overall system logic should be able to guarantee maximum service continuity, using service

migration only when extremely necessary. In this sense, it becomes important to have a realistic

and updated view of the status of the various nodes where the service is running. A possible

solution to improve the accuracy of extreme-edge nodes’ discovery and monitoring is the adoption

of an adaptive heartbeat mechanism which is dynamically configured to better match the

behaviour and the profile of the various nodes, e.g., adjusting the heartbeat timers and the

availability decisions with per-node criteria, on the basis of the nature and behaviour of each node.

6.3 Simu5G in Scenario 5.1

The evaluation of the impact that the B5G/6G RAN might have on Scenario 5.1 is of paramount

importance in order to clarify future scenario enhancements aiming at achieving a higher TRL

and full integration with the B5G/6G mobile networks stack, i.e., adding a real RAN to the

scenario, implementing it on a real-life scenario, etc. This experiment was created as first-step

research towards these objectives. As explained in Section 5.3.2.2, Simu5G [NSS+20] allows the

creation of a wide range of network topologies that include UPFs, PGWs, gNBs and UEs

components as desired by the simulated network designer.

The UE and gNB components and the communications between them are modelled as OMNeT++

components, and, consequently, they can be parametrised as preferred in order to fit in a given

scenario. Within the scope of this experiment, Simu5G is used to simulate a realistic

implementation of a 5G transport network within the building blocks that comprise Scenario 5.1

(see Section 5.3.1) and to study the delays that emerge due to the integration of the transport

network, and its potential impact on the Scenario components. It is important to remark that the

Sumo Extreme-edge and Traffic Lights Control Logic components (see Figure 5-4) work on the

extreme-edge domain; thus, they are constrained by low delay requirements in order to be able to

act as real-time components.

Hexa-X Deliverable D6.3

Dissemination level: public Page 84 / 129

Figure 6-4. Simu5G mapping to Scenario 5.1 software components.

Simu5G simulated scenario

As depicted in Figure 6-4, all the components from Scenario 5.1 (i.e., the Sumo Extreme-edge

instances, the Traffic Lights Control Logic instances and the Reinforcement Learning Agent

instance) have been mapped to modelled pairs on Simu5G, in such a way that even the domain

placement of those resources has been replicated on Simu5G.

Table 6-3. Scenario 5.1 components modelling11.

Component Rate

[msg/s]

Size

[bytes]

Inter-packet-time

[ms]

 Min Max Min Max Min Max

sumoee1 63.80 90.70 52 1450 11.03 15.67

sumoee2 55.00 74.10 52 1450 13.50 18.18

sumoee3 56.40 80.20 52 1450 12.47 17.73

sumoee4 63.40 88.60 52 1450 11.29 15.77

ai_agent 41.20 125.80 52 364 7.95 24.27

tl_ctrl_1 1.00 30.20 52 282 33.11 1000

tl_ctrl_2 1.00 28.90 52 260 1000 34.60

tl_ctrl_3 1.00 29.10 52 254 1000 34.36

tl_ctrl_4 1.00 29.30 52 261 1000 34.13

As it can be seen, the Sumo Extreme-edge and the Traffic Lights Control Logic instances are

located at the extreme-edge domain, while the Reinforcement Learning Agent component has

been allocated on a server behind the UPF at the edge domain. To model each of the

aforementioned components, a delay profile that replicates their behaviour on Scenario 5.1 has

been generated per component. Table 6-3 reflects the network behaviour of each component

instance from a message rate and message size perspective. To obtain a more realistic

configuration, the simulated network is loaded with a variable number of vehicles deployed as

UEs within the network. Said UEs represent the active users in the scenario, i.e., those who are

11 ‘sumoee1’ to ‘sumoee4’ represent the four Sumo Extreme-edge component instances. ‘ai_agent’ is the Reinforcement

Learning Agent component instance. ‘tl_ctrl_1’ to ‘tl_ctrl_4’ represent the four Traffic Lights Control Logic

component instances.

Hexa-X Deliverable D6.3

Dissemination level: public Page 85 / 129

downloading or uploading data using the network, thus actively using it. More in detail, each user

is consuming a video-streaming service, which continuously transmits a video in 720p format,

having a bit rate of 2.4 Mbps and a frame rate of 25fps. The video-streaming service is modelled

in the simulator as a UDP application, which transmits packets of variable size every 40ms. The

size of each packet is chosen randomly from a uniform distribution, between 22593 and 25406

bytes, to follow the behaviour of a realistic traffic trace. Each experiment is repeated three times

to achieve statistical soundness. Confidence intervals at 95% are reported when visible.

Table 6-4. Scenario 5.1 main simulation parameters.

Parameter Name Value

Carrier frequency 2 GHz

System Bandwidth 50MHz

gNB Tx Power 46 dBm

gNB antenna gain 8 dBi

gNB noise figure 5 dB

UE antenna gain 0 dBi

UE noise figure 7 dB

CQI reporting period 40 TTIs

Path loss model [TR873]

UE mobility Linear Mobility

UE speed U[36,72] km/h

Background Traffic type Video streaming

Experiment Results

First of all, the impact of Scenario 5.1 traffic on a B5G/6G RAN is analysed. Figure 6-5 shows

the average number of resource blocks consumed in uplink and downlink, respectively, by the

traffic of Scenario 5.1.

Figure 6-5. Average number of resource blocks in Uplink (left) and Downlink (right)

The two plots show that the impact on network resources is very low in both cases, having a

slightly larger impact in the downlink direction as compared to the uplink direction. The former

direction is indeed carrying the traffic from the Reinforcement Learning Agent towards the traffic

lights, which can occur at more frequent timings (~8ms), thus generating more traffic. Moreover,

it also carries the downlink leg of the traffic between the traffic lights and the sumo controllers.

Figure 6-6, Figure 6-7, and Figure 6-8 show the performance of the traffic management service

from the perspective of its three service components, i.e., the RL Agent, the Traffic Lights Control

Logic and the SUMO Extreme-edge component. Note that the aforementioned traffic is generated

Hexa-X Deliverable D6.3

Dissemination level: public Page 86 / 129

respectively by the three mentioned components. Three different experiments have been carried

out, considering an increasing number of background traffic sources, namely 0 (no background

traffic), 5 and 10 users. As it can be seen from the three plots, the service delay is always below

16ms, even for the higher traffic loads, thus confirming the feasibility of the proposed

methodology.

Figure 6-6. Average delay of the communication

between the SUMO Extreme-edge components

and the RL Agent.

Figure 6-7. Average delay of the

communication between the Traffic Lights

Control Logic and the SUMO Ext. Edge.

Figure 6-8. Average delay of the communication between the RL Agent and the Traffic Lights

Control Logic components.

7 Evaluation
This section presents the “Evaluation” part of the document, which includes the WP6 contribution

to the Hexa-X objectives (Section 7.1), which hence describes the main WP6 outputs towards the

objective in scope in this deliverable (Objective 3, in Section 7.1.1), the main measurable results

(Section 7.1.2) and the results regarding the WP6 quantifiable targets (Section 7.1.3). The

evaluation also considers the validation of the Hexa-X M&O architectural design, which was the

main outcome of the previous Deliverable D6.2 [HEX22-D62], considering how this architectural

design has been applied to implement both Demos #4 and #5 (Section 7.2). Also, in line with the

work from D6.2, the evaluation also considers the main KPIs, KVIs and Core Capabilities defined

in that document, and that have been considered in the scope of the demos and the lab experiments

presented in this document (Section 7.3). Finally, the evaluation also considers the main lesson

learnt (Section 7.4) and some hints for future work (Section 7.5) regarding the work performed in

this WP6.

Hexa-X Deliverable D6.3

Dissemination level: public Page 87 / 129

7.1 WP6 contribution to the Hexa-X objectives

The Hexa-X project has defined a number of objectives in its work programme, from which two

of them were linked to this WP6. They are the following:

• Objective 1 – Foundations for an end-to-end system towards 6G, aimed to build a vision

and roadmap for the B5G/6G end-to-end system.

• Objective 3 – Connecting intelligence towards 6G, which aims to turn AI/ML to an

essential component of B5G/6G technology12.

To address these overall objectives different WP6-specific objectives were also defined in the

Hexa-X work programme, namely:

- Targeting Objective 1:

o WPO6.1: Identification and selection of disruptive trends and technologies, and

gap analysis of resource description, service management and orchestration

towards future orchestrators.

- Targeting Objectives 1 and 3:

o WPO6.2: Provide necessary means for the automation and network

programmability of B5G/6G infrastructures, to address the heterogeneity of

service requirements, the extended complexity of the infrastructure and the need

for utmost network efficiency in a sustainable network (service creation time,

amount of used resources, reliability and network dynamicity with massive

amount of network functions) without neglecting the performance, scalability,

and resiliency of the network functions.

o WPO6.3: Provide intent-based mechanisms for elaborating on requirements,

diagnosing the performance of networks and services, modelling/abstracting

services/networks, as well as implementing corrective actions through CI/CD.

- Targeting Objective 3:

o WPO6.4: Support orchestration of a wide variety of service definitions and

decompositions, including (traditional) virtual appliances, microservices and

containers, and serverless functions in all domains.

o WPO6.5: Design and evaluate efficient cognitive-based service management and

orchestration mechanisms based on optimised placement, resource optimisation

and dynamic allocation.

o WPO6.6: Demonstrate algorithms for data-driven device-edge-cloud continuum

management.

Objective WPO6.1 was addressed in the WP6 Task 6.1, being the main outcome the initial WP6

Deliverable D6.1 [HEX21-D61], which describes the “gaps, features and enablers for B5G/6G

service management and orchestration”. On the other hand, objectives from WPO6.2 to WPO6.4

are in fact the objectives of the previous Deliverable D6.2 itself, targeting the design of the service

M&O functionalities [HEX22-D62] (see Section 3.1 in that document). The fulfilment of these

objectives is reported in such D6.2, being summarized in Section 12 (Conclusions) in that

document. WPO6.5 is also partially addressed in D6.2, in what regards the “design” part, since

that deliverable provides, as a whole, the Hexa-X M&O architectural design itself. However, the

“evaluation” part, as well as the whole WPO6.6 (targeting demonstrations) are addressed right in

this Deliverable D6.3 you are reading now, as part of the “final evaluation of service management

and orchestration mechanisms” (the main topic of this document).

As it can be seen in the previous bullets list, both WPO6.5 and WPO6.6 are targeting the overall

Hexa-X Objective 3, so in the following subsections we will describe how that Objective 3 has

been fulfilled, in what regards these WPO6.5 and WPO6.6 objectives, i.e., by means of the

demonstration activities described in the previous sections 4, 5, and 6 in this document.

12 Other Work Packages in the project are also addressing these (and other) objectives from their respective work

scopes.

Hexa-X Deliverable D6.3

Dissemination level: public Page 88 / 129

 WP6 output towards Objective 3

As mentioned, Objective 3, as a whole, targets "connecting intelligence towards 6G”, aiming to

turn AI/ML to an essential component of B5G/6G technology. More specifically, the objective

targets three aspects: (i) the role that AI will have in transforming the conventional air-interface

design; (ii) the methods and algorithms for ensuring that AI, at infrastructure or service level, will

be secure/ trustworthy, sustainable (e.g., operating with energy-efficiency), explainable and

efficient, with respect to resource consumption and performance delivered; (iii) AI-powered

means for enhancing the orchestration operations, and, ultimately, for empowering enhanced

mobile services. From these three aspects, WP6 addresses of course item (iii) in what regards

enhancing orchestration operations, and partially item (ii) also, in what regards

security/trustworthiness and sustainability, also in liaison with M&O aspects.

As commented, part of these aspects, in what regards the evaluation of the state-of-the-art and the

design activities, have been already addressed in [HEX21-D61] and [HEX22-D62], while the

demonstration and the evaluation part rely on this deliverable, targeting the evaluation of

“cognitive-based service M&O mechanisms based on optimised placement, resource optimisation

and dynamic allocation” (WPO6.5) and the demonstration of “algorithms for data-driven device-

edge-cloud continuum management” (WPO6.6).

Specifically, cognitive-based service M&O mechanisms based on optimised placement, resource

optimisation and dynamic allocation have been addressed in both, Demo #4 and Demo #5. In

Demo #4 this has been specifically addressed in Scenario 4.2, which showcases how AI/ML can

be used to improve resource optimization, targeting anomaly detection and performance

degradation, based on the optimised network functions placement along with increased

automation and programmability (see Section 4.3.2). On the other hand Demo #5 also addresses

this objective in Scenario 5.2 (Prediction-based URLLC service orchestration and optimization),

which aims at demonstrating the usage of AI/ML algorithms to anticipate the resource needs of

the network, and pre-emptively activate the related services to avoid delays in using an URLLC

application. In this case the AI/ML-driven resource optimization function is used to proactively

activate or deactivate new resources or re-route network traffic accordingly (see Section 5.3.2).

Regarding the “algorithms for data-driven device-edge-cloud continuum management”

(WPO6.6) this is also addressed in both, Demo #4 and Demo #5. Demo #4 addresses the “device-

edge-cloud continuum management” topic in Scenario 4.1 (see Section 4.3.1), which is

specifically devoted to this. Also, since this Scenario 4.1 is the basis on which Scenarios 4.2 and

4.3 rely, and since both Scenarios 4.1 and 4.2 are based on using AI/ML techniques (for the

functions placement and to perform predictive orchestration – see Sections 4.3.2 and 4.3.3), it can

be stated that objective WPO6.6 is fully addressed by means of this Demo #4. On the other hand,

Demo #5 also address specifically the “device-edge-cloud continuum management” using a data-

driven approach in Scenario 5.2 (see Section 5.3.2), already mentioned above, since the

prediction-based orchestration actions in that scenario are performed considering the resources in

the continuum from the devices (extreme-edge) up to the cloud.

However, besides those specific topics mentioned in objectives WPO6.5 and WPO6.6 (which are

considered fulfilled as described above), we consider the demonstration activities performed in

this WP6 go even beyond, in the aim of actually “turning AI/ML to an essential component of the

B5G/6G technology”, as stated in the overall Hexa-X Objective 3 definition. For instance, AI/ML

is applied also in Demo #5 – Scenario 5.1 (Continuum orchestration of AI/ML-driven Traffic

Lights Control Service – Section 5.3.1). Although in this case the AI/ML components are not part

of the M&O processes themselves (just part of the road-traffic managed service), we consider it

is a good example on how AI/ML could be used in future 6G networks. Also, Scenario 5.4

(MLOps, in Section 5.3.4) addresses the challenge of developing and deploying AI/ML

components on the MNO scope, which can be considered of course something essential to make

AI/ML part of the future 6G technology. Finally, AI/ML is also considered in one of the

complementary lab experiments in Section 6, specifically the one evaluating the usage of AI/ML

techniques to improve the network energy efficiency (Section 6.1).

Hexa-X Deliverable D6.3

Dissemination level: public Page 89 / 129

 WP6 measurable results towards Objective 3

According to the Hexa-X workplan, measurable results linked to Objective 3 are:

a) Designs for data-driven wireless transceiver of low complexity, either “block-per-block”,

or, by means of “end-to-end” optimisation.

b) Frameworks for data-centric hardware impairment mitigation and adaptivity to the

wireless environment.

c) Concepts and mechanisms to support and manage collaborative AI components across

the network, also leveraging Federated Learning (FL) and deployment of eXplainable AI

(XAI) models.

d) Development and assessment of intelligent orchestration methods, such as predictive

orchestration.

e) Implementation of continuum management of device, edge, RAN, and cloud.

f) Development of interfaces and abstractions to increase the full network programmability

and E2E seamless integration management mechanisms that includes data-driven

optimisation and adaptative monitoring.

As it can be appreciated some of these measurable results are out of scope for this WP6, namely

(a) and (b), since they address hardware related topics which are in the scope of other WPs (as

known, WP6 focuses on M&O). Item (c) partially matches the WP6 scope, in what regards the

overall statement about the “concepts and mechanisms to support and manage collaborative AI

components across the network”, though the specific FL and XAI technologies are out of scope

in our case, since they are specifically addressed in other WPs (WP4 and WP5). Obviously, items

(d), (e) and (f) fully match the WP6 scope. In the following paragraphs we describe compliance

with these measurable results in what regards WP6, i.e., regarding items (c), (d), (e) and (f) in the

Objective 3 definition.

Item (c): Concepts and mechanisms to support and manage collaborative AI components

across the network.

The fulfilment of this measurable result is in the scope of the previous Deliverable D6.2 [HEX22-

D62], addressing the M&O architectural design of the novel orchestration and management

mechanisms for Hexa-X. Specifically, the support for “the management of collaborative AI

components across the network” was included in that deliverable as a functional requirement for

the M&O architectural design itself (see Section 5.2.2 – Item 5 in [HEX22-D62]) and, in fact,

such collaborative AI components are represented in the provided architectural design (Section 6

in [HEX22-D62]). In summary, from the M&O perspective, those collaborative AI components

(that could be FL-based, XAI-based, or relying on any other technology) would be just a specific

kind of “managed objects” (Section 6.1 in [HEX22-D62]), which could be managed using the

M&O mechanisms described in Section 7 (also in [HEX22-D62]). M&O actions could be also

supported by specific AI/ML Functions in the Network Layer (Figure 6-1 in [HEX22-D62]).

Item (d): Development and assessment of intelligent orchestration methods, such as

predictive orchestration.

This item was also addressed in the previous [HEX22-D62], as part of the M&O architectural

design, although in this case some of these “intelligent orchestration methods” (such as predictive

orchestration) have been demonstrated also in Demo #4 (Scenarios 4.2 and 4.3) and Demo #5

(Scenario 5.2), as it has been already explained in the previous Section 7.1.1. The mapping of

these practical demonstrations with the architectural design in [HEX22-D62] basically consists

on implementing the intelligent orchestration methods as part of the AI/ML Functions block,

which support the Management Functions block itself (see Figure 6-1 in [HEX22-D62]).

Item (e): Implementation of continuum management of device, edge, RAN, and cloud.

Again, this is one of the main innovation topics addressed in [HEX22-D62] (see Section 5.3 in

that document), targeting the integration of the extreme-edge domain as an additional set of

infrastructure resources from the M&O perspective. In this case, this has been also one of the

main work items in Demos #4 and #5, and also in one of the complementary lab experiments in

Section 6, specifically the one devoted to the extreme-edge nodes discovery (Section 6.2). The

Hexa-X Deliverable D6.3

Dissemination level: public Page 90 / 129

integration of the RAN has been also explored in the experiment regarding using Simu5G in the

Demo #5 Scenario 5.1 (Section 6.3).

Item (f): Development of interfaces and abstractions to increase the full network

programmability and E2E seamless integration management mechanisms that includes

data-driven optimisation and adaptative monitoring.

This topic was also addressed in the previous Deliverable D6.2 [HEX22-D62] as part of the M&O

architectural design provided in that document, and specifically, in what regards the API

Management Exposure concept (Section 6.2.3 in such document), which represents the functional

block enabling and regulating communication among the different M&O resources, within and

across administrative domains, making possible the full network programmability and the E2E

seamless integration management mechanisms. Also, beyond D6.2, a small-scale implementation

of this API Management Exposure concept has been performed in Demo #5 – Scenario #4

(MLOps) to enable the communication between the simulated SW Vendor (the stakeholder

providing the AI/ML models) and the MNO (Section 5.3.4).

 WP6 quantifiable targets towards Objective 3

Following the Hexa-X workplan, Objective 3 requires to verify eight Quantifiable Targets (QT),

namely:

• QT 3a: Network reconfiguration (creation, composition and scaling times) to be

performed by (>10%) of the prediction horizon.

• QT 3b: Improvement by (>90%) in time to onboard new resources from other domains

and manage the addition/removal of elements from the network.

• QT 3c: Increase the service continuity by reducing the downtime by (>80%).

• QT 3d: Increase network energy efficiency by (>50%) applying predictive

orchestration.

• QT 3e: Increased AI algorithm robustness to system parameter volatility; significant Bit

Error Rate (BER)/Block-Error Rate (BLER) gain, as compared to classical approaches.

• QT 3f: Number of dynamically collaborating AI components in the network (>1000).

• QT 3g: The accuracy of an XAI model within (<10%) of “black box” solutions (e.g.,

Deep Neural Networks DNNs).

• QT 3h: Energy reduction of a factor of (>10) at the infrastructure level and a factor of

(>100) at the user devices’ side, as a result of AI-based workload offloading.

Of these, WP6 has been responsible for verifying the four of them with a clear relationship with

the M&O topic (i.e., those from QT 3a to QT 3d), while the other four (from QT 3e to QT 3h)

have been addressed in other WPs.

However, it has to be stated that, although these WP6-related QTs are defined with specific

numerical values, it was found that their precise validation was not entirely possible. The reason

for this is the lack of a clear baseline in the QTs definition. In other words, although specific

improvement percentages are defined for the different aspects mentioned in each QT, it is not

clearly defined "with respect to what" these improvement percentages are expected to be applied.

I.e., it cannot be stated “in a general way” that certain KPIs will be improved in a specific

percentage if the technology benchmark is not clearly stated. However, in order to address the

defined QTs, it was considered that anyway, it could be demonstrated that the requested

improvements could be achieved at least in particular cases, and that, although these particular

cases cannot be generalised, they can at least give an idea about whether the targets could be

actually met. This is the approach that has been taken to address the four QTs mentioned above,

defining specific particular testing cases for each of them. In some cases, these tests have been

performed in the context of Demos #4 and #5, while in other cases, some of the lab experiments

described in Section 6 have been used for that.

It is worth noting that this procedure does not allow claiming QT fulfilment in general, i.e., with

respect to any orchestration system or any kind of orchestrated network service; however, this

procedure at least gives an idea of whether the proposed targets can actually be achievable.

Hexa-X Deliverable D6.3

Dissemination level: public Page 91 / 129

According to this approach, the following subsections describe the work performed for each of

the quantifiable targets, together with the corresponding results.

7.1.3.1 QT 3a: Improvement in network reconfiguration times

This QT requests to validate the feasibility of achieving network reconfiguration (regarding

creation, composition, and scaling times) to be performed by (>10%) on the prediction horizon.

From the WP6 standpoint, this objective relates to making predictions (e.g., using data-driven

AI/ML-enabled mechanisms) to perform the mentioned network reconfiguration actions

(creation, composition, and scaling regarding complete services), providing a 10% improvement

in terms of time. Also, the understanding is that the baseline should be those scenarios where

predictive mechanisms are not used. As previously mentioned, it is considered not feasible to

validate this QT in a general way, i.e., it should be hard to claim that applying predictive

orchestration could “always” produce per se a 10% gain in time regarding the mentioned network

reconfiguration mechanisms without considering specific services, specific M&O platforms, or

the specific network resources in scope. So, following the approach explained above, specific

testing cases have been selected to evaluate this QT. Specifically, two approaches have been

considered for this case: one of them evaluates the work performed in Demo #4 (since this demo

addresses the usage of predictive algorithms), while the second one considers the work also

performed in Scenario 5.2 (that also focuses on predictive orchestration). The following describes

the approach and results for each of these approaches.

Validation in Demo #4

Regarding Demo #4, the target set by QT3a is interpreted as being able to perform predictive

orchestration actions at least 10% of the prediction horizon earlier than a predicted event.

Specifically, as mentioned in Section 7.1.1, the prediction horizon, based on the model

characteristics and accuracy, is set at 8-10 minutes. This prediction horizon leads to an acceptable

time window for action, according to QT3a, of at least 48-60 seconds before an event is predicted

to occur. Additionally, the workflow time, which is the time needed to complete all the

orchestration actions necessary for the reconfiguration, should also be reduced by more than 10%.

In this demo, there are three scenarios, the first of which will be the base on which the other two

will be used to validate the proposed M&O mechanisms. Namely, the “Cloud – Edge – Extreme-

edge Continuum Orchestration”, which allows the other two mechanisms, the “Function

Placement” and the “Predictive Orchestration”, to showcase the enhancements they provide to

the M&O operations. The validation goals of this demo are to showcase how these mechanisms

enhance M&O operations by improving the operation times and reducing service downtime in

case of unexpected events. For the validation of these mechanisms, three versions of the M&O

workflows are used, one for each scenario:

• typical M&O workflow (notification, action);

• reactive orchestration with placement optimization (using performance diagnosis and

Function Placement);

• predictive orchestration (using performance/status prediction and reactive orchestration

as a fallback).

The first workflow is used as the baseline against which the improvements from the other two are

quantified and validated. As such, even though a lot of options exist to configure and fine-tune

the existing M&O components, like the K8s controller manager, the default configurations are

used for uniformity of expected results across different clusters. These three workflows are used

to handle four types of events that can occur during automated operations in the industrial context

of the demo. For each of these types, ten instances of “unexpected” behaviour are triggered

manually, following the typical operational patterns of the industrial automation service. These

four events are:

1) Redeployment of functionalities to existing resources caused by robot malfunction.

2) Scaling of functionalities to new resources caused by increasing load/low battery.

3) Deployment of functionalities to new resources caused by robot malfunction.

Hexa-X Deliverable D6.3

Dissemination level: public Page 92 / 129

4) Redeployment of functionalities to the maximum number of resources caused by

significant load increase.

For each of these types of events, the following time periods were measured:

• Notification time: the time it takes for the monitoring system to check for the status of

the component/node.

• Detection time: the time it takes for the monitoring system to detect that there is an issue

(including timeouts, retries, etc.).

• Reaction time: the time it takes for the corrective actions to be triggered on the respective

components.

• Operations time: the time it takes for the corrective actions to be completed (functionality

reallocation, scaling by commissioning resources, etc.).

• Application time: the time it takes for the service to be restored (mostly due to service

initialization or management operations, in case it became unavailable)

• Downtime: the time that the service was unavailable.

• Workflow time: the time it takes from the unexpected event appearance until the service

is available again.

In Figure 7-1 the averages of the collected time measurements from the 40 injected events are

displayed in detail.

Figure 7-1. Collected time measurements during unexpected events.

The noticeable difference between the type of events is that for events (1) and (3), the robot went

offline due to malfunction, which sets in motion the K8s workflow to identify, wait for a response

and finally evict the unavailable pods from that node to an available one. This uses, by default, a

timeout of 300 seconds to prevent unnecessary eviction of pods due to random short-lived

network unavailability. Also, for these two events (1) and (3), for the first M&O workflow, it is

assumed that the additional required nodes and compute resources are already available in the

cluster due to a lack of automated commissioning. For the Reactive and Predictive orchestration

workflows, the dynamic commissioning of resources from already available resources is handled

by the intelligent orchestration set of functionalities so as to optimize energy efficiency and load

distribution. In Figure 7-2, the average duration of each workflow is shown for each event type.

Hexa-X Deliverable D6.3

Dissemination level: public Page 93 / 129

Figure 7-2. Average workflow time for each event type.

For the first two workflows, which are primarily reactive, the most time-consuming operation is

the notification and detection steps. The monitoring system polls the infrastructure and services

at various intervals, and information from multiple sources needs to be collected usually before

identifying an issue. In contrast, the predictive orchestration workflow requires no notification

step since the future values are predicted beforehand, thus moving on to the identification step

immediately. The other steps require about the same time for action triggering and operations.

For the final step, the application time is intrinsic to the service operations and is constant on the

application’s start-up, in case of a single instance, every time the service is migrated. While there

is not a significant difference in the operations time, the main benefits from the introduction of

the proposed mechanisms become apparent when we examine the service downtime. For the first

two reactive workflows, the service is down for the complete duration of the operations exactly

because these actions are triggered after the disruptive event has occurred. For the predictive

workflow, on the other hand, the service is unavailable only for the time required for the actual

service to initialize, as shown in Figure 7-3, meaning that this time could be close to or equal to

zero, depending on the service.

Figure 7-3. Average service downtime for each event type.

This improvement relies on the successful prediction of these “unexpected” events. To

accomplish that, a kind of periodicity in these events is needed in order to be able to predict the

future state of the infrastructure and services in a sufficient prediction horizon. Based on the

examined services and tasks taking place in this industrial context and their time duration and

relative periodicity, the prediction horizon was set at 8 – 10 minutes with the achieved prediction

accuracy of around 80%. To fulfil the quantified target, i.e., to apply the orchestration actions at

least 10% of the predicted time window before these events are predicted to happen, this would

be at least 48-60 seconds earlier. This time limit is used as a constraint to signal the end of the

Hexa-X Deliverable D6.3

Dissemination level: public Page 94 / 129

time period in which a predicted event is deemed “possible”. While the status of the examined

event is deemed “possible”, but the limit is not yet reached, the accuracy of the predictions is still

verified by the latest measurements. When these new measurements validate the predictions

enough, the predicted value error is minimal, while still in the acceptable time window, the

predicted event is deemed as “sure”, and orchestrations actions are triggered to prevent it. If the

predicted values fail to validate the event, then the predicted event is ignored, the predicted values

are discarded, and a new prediction round begins. In that way, in the best case, the event is

prevented successfully, and in the worst case, the event is considered to be not possible and is

ignored. In the case that event finally occurs, it is subsequently be handled by the reactive

orchestration mechanism as in the first two workflows.

The previously described and validated predictive orchestration approach focuses more on the

predictive maintenance of the hardware components, also known as condition-based maintenance.

Manufacturers utilize predictive maintenance to predict equipment failures based on specific

parameters and factors, which then activates the necessary steps to prevent these failures through

corrective or scheduled maintenance. This research focused on analysing the consumption of

different components such as motors, servos, sensors, etc., and thus the discharge characteristic

of lithium batteries in autonomous mobile robots, which can serve as a model to predict future

states based on the number of services running. As the robots and their services are deployed in a

cloud-native extreme-edge environment where system dynamics are constantly changing, this

leads to unexpected situations. In order to improve the planning and 24/7 operations of these

devices, it is crucial to have a good understanding of the battery consumption and capacity

degradation. To achieve this goal, three different data sets were collected, each with a different

focus on the services running on the robots:

a. All services running on a robot, including image and video processing and object

detection.

b. Some selected services run on a robot, with an emphasis on services with high

computational cost, such as image processing.

c. Only the essential services required for movement and navigation run on a robot.

Figure 7-4 depicts a plot of the battery consumption tests conducted on various services and

robots. The plot displays the relationship between battery consumption and the services running

on the robots. The data points on the graph highlight the variability in battery consumption for

different service combinations. The visual representation of the data allows for easy analysis and

interpretation, providing a clear understanding of the impact of service selection on battery

performance and illustrating the different patterns. This information can be used to inform

decision-making processes around service placement and resource utilization, helping to ensure

smooth and efficient operations in battery-powered systems. The goal of this research was to

create a predictive approach to reallocating critical services to other robots, edge compute devices,

or the cloud, to avoid service disruptions and improve overall operations.

With the training score of 0.04 RMSE and a test score of 0.21 RMSE, the predictive orchestration

model for (a), shown in Figure 7-4, has a low root mean squared error on the training data and a

moderate root mean squared error on the test data. The lower the root mean squared error, the

closer the predicted values are to the actual values, indicating a more accurate model. Trying to

further analyse the data and smooth them with average and median filtering to remove the noise

from the battery levels that have been collected, the models can be trained again. The LSTM

model for battery consumption predictions for (a) has a training score of 0.02 RMSE and a test

score of 0.19 RMSE. This means that the model is able to accurately predict the battery

consumption with a small error margin during training, but its performance is not perfect on

unseen data (test data) but good enough to trigger the orchestration mechanisms when needed,

e.g., before the level of the battery hits a critical point. An RMSE score of 0.19 indicates that, on

average, the model's predictions are off by 0.19 units. It's important to consider this result in the

context of the specific problem, where the accuracy levels are not so important and with more

live data, historical data and real-time training, these results will be even better. Similar results

were observed when analysing additional metrics such as motor stress, navigation error, etc.

Hexa-X Deliverable D6.3

Dissemination level: public Page 95 / 129

Figure 7-4. Battery consumption collected data sets.

Figure 7-5. Battery consumption prediction horizon.

This predictive approach, as demonstrated in Figure 7-5, can save valuable time by proactively

reconfiguring service and network components, avoiding production stops, and minimising

maintenance costs compared to the reactive approach of fixing or replacing faulty components

after they fail. In short, this demonstration concludes that the predictive orchestration approach is

able to fulfil the QT of achieving network reconfiguration times to be performed by >10% of the

prediction. An additional performance improvement caused by the introduced components and

architecture is the reduction of service downtime by more than >10%.

Validation in Scenario 5.2

Regarding Scenario 5.2, the target is interpreted as being able to provide (at least) a 10%

improvement in the required orchestration actions. It should be noted that any comparison, i.e.,

any improvement, should also take into account if the performance obtained by the application

(during this orchestration) does not fall below its minimum requirements for a satisfactory

Hexa-X Deliverable D6.3

Dissemination level: public Page 96 / 129

operation. This is relevant since variations in the network state or load can derive in poor network

performance, and therefore the intelligence of the network is critical to ensure that the URLLC

requirements are always fulfilled. To analyse and put in context the resulting performance of the

orchestration actions, four different methods have been implemented (the first three methods are

benchmarks, while the fourth one is the proposal):

• Pure reactive: the orchestration is triggered only when servers are full.

• Oracle: complete knowledge of the future.

• Threshold-based: orchestration is triggered based on an occupation threshold.

• AI-based prediction: the proposed scheme.

Their performance is analysed as follows: it is assumed a B5G network scenario with a varying

number of users, which dynamically request services to an edge system. The latter is composed

of two MEC hosts (mecHost1 and mecHost2 in Figure 7-6) that can be activated dynamically.

Each MEC host can serve the users' requests, exhibiting a service performance that depends on

the total number of services currently on the host itself. Time is divided into slots with fixed

durations (1s in the following examples).

Figure 7-6. Simulated deployment for the experiment of Scenario 5.2.

The figures below depict the resulting performance of each method. For each plot,

• the red line represents the actual traffic in the system in terms of the number of active

services;

• the green line represents the activation decision taken by the orchestration algorithm, with

values 1 (activate a node), -1 (deactivate a node) and 0 (do nothing);

• the blue and yellow lines represent the number of services allocated respectively to the

hosts mecHost1 and MecHost2 (if active).

The performance is compared in terms of the average delta reconfiguration time (DRT) of an

orchestration solution, which is defined as the time distance in the number of slots between the

instant of the orchestration decision and the optimal reconfiguration instant (as selected by the

oracle). The results are as follows:

• The pure reactive approach has a DRT of 1 slot, although it fails to guarantee performance

to the URLLC application, so it cannot be considered for comparison.

• The threshold-based solution has a DRT of 5.5 slots and is able to guarantee performance,

although it performs significantly more orchestration actions.

• The proposed AI-based Prediction approach has a DRT of 0.25 slots.

Hexa-X Deliverable D6.3

Dissemination level: public Page 97 / 129

Figure 7-7. Behaviour of the pure-reactive

baseline in Scenario 5.2.

Figure 7-8. Behaviour of the Oracle (theoretical

optimum) baseline in Scenario 5.2.

Figure 7-9. Behaviour of the Threshold-based

baseline in Scenario 5.2.

Figure 7-10. Behaviour of the AI-based prediction

in Scenario 5.2.

Based on these results, it can be concluded that the proposed approach reduces by > 90% (0.25/5.5

slots) the delay to perform the optimal orchestration decisions, so the QT can be fulfilled.

7.1.3.2 QT 3b. Improvement in time to onboard/remove resources from other domains

This QT requests to validate the feasibility of improving by (>90%) in time the onboarding of

new resources from other domains and managing the addition/removal of elements from the

network. As for the other QTs, it is considered not possible to provide a general answer to this

target without defining a clear baseline, so a specific test case has been used to demonstrate that

the target can be achievable, at least in a specific scope. In this case, the tests performed have

been in the context of what is addressed in Scenario 5.4 (MLOps), where two different domains

are considered (as requested in the QT statement): the MNO and the SW Vendor domains (see

Section 5.3.4), and where the cloud-native DevOps practices are applied to showcase the

onboarding of an AI/ML model from the SW Vendor domain into the MNO domain, using

automated workflows for that13. So, for this QT, the considered baseline is hence the legacy

approach, i.e., the deployment of a service without using these cloud-native DevOps

methodologies, which are compared with the results obtained by applying the MLOps techniques

in the aforementioned Scenario 5.414. For this baseline, the information provided in a previous

project granted by European Commission (NGPaaS) are used, specifically in [NGP18-D31],

where the MNO participating in that project provided detailed information about their general

service deployment workflow (see Section 2.2 in [NGP18-D31] - Today's Networks Development

Model from a Telco Provider), including their interactions with the SW Vendors. As mentioned

13 Although the QT statement mentions onboarding and removal, the focus is on the onboarding stage here, since it is

considered the most challenging one: in the DevOps approach the onboarding includes also de development phase

(performed at the SW Vendor domain), while the removal is just about to eliminate the service at the MNO scope,

which of course requires much less time than the onboarding of a new service.

14 Please note that in this context the terms DevOps and MLOps are used in an analogous way. This is because, in what

regards this QT, MLOps can broadly be considered just as a particularisation of DevOps, targeting the development

and operation of AI/ML-enabled services. In both cases (MLOps and DevOps) one of the key features is the high

degree of automation in implementing the development and operational workflows, which is what is considered the

key aspect regarding the achievement of this QT.

Hexa-X Deliverable D6.3

Dissemination level: public Page 98 / 129

in that reference, “the process, without applying any DevOps strategy, can take a considerable

amount of time and could last up to 3 years from the initial code development until the live

deployment phase”.

 In the experiments conducted in Scenario 5.4, the total time required to complete the cycle and,

therefore, have a model being served in the production environment depends on two main

workflows, namely the development and validation workflows (see Figure 5-27 in subsection

5.3.4.1). In our lab experiments, the development workflow takes 4 hours approximately.

However, it has to be clarified that this does not include the “ML Model design” since the demo

assumes a pre-designed model. Of course, in a real-life scenario, this process can take a highly

variable amount of time, depending on the specific problem to be solved, the development team

in charge, and other factors.

Regarding the validation workflow, the approach should be similar: in the demo, this is done in

quite an agile way based on automatic test batteries, taking a few minutes for it (the demo is

intended to be showcased in a short span of time). However, in real-life scenarios, testing

procedures can obviously last for much longer times, especially if non-automated tests are also

carried out. In addition, considering the times measured in the demos, it can be seen that the

duration of the whole process could be reduced to just a few hours (4 hours for de

development/training plus a few minutes for the testing) without considering the offline

executions (design and possible other offline testing procedures). Anyway, the result is well below

those three years reported by BT.

The large time difference between both scenarios suggests that the proposed target (gain greater

than 90%) may indeed be achievable, at least in certain specific cases. In fact, the same project

mentioned above (NGPaaS), which also considered the application of DevOps-like techniques in

the telco-grade environment, reported times also in the range of a few seconds or minutes for the

KPIs regarding the service development and deployment workflows, considering services for

different scenarios (5G and IoT) and several network service components (an AMF, an HSS and

an IoT component) [NGP19-D32]. This also reinforces the idea that the target is, in fact,

achievable. However, further research should be done on more specific ways the DevOps

methodologies could be applied in the telco-grade environment since the regular DevOps

approach is typically applied “within” single organizations, promoting the joint work of their

operational and development teams. The telco-grade ecosystem is different in this sense since, in

this case, different independent corporations and stakeholders have to work together to develop

and deploy the network services to be provided by the MNO. In this regard, this way of “working

together” the development and operational teams promoted from the DevOps approach can be

more challenging in the telco-grade environment (as it has been approached in Scenario 5.4),

which probably would require a clearer definition of how the interactions among the different

stakeholders should be performed, mainly when different SW providers must be involved to

develop and deploy complex services.

7.1.3.3 QT 3c: Improvement regarding service continuity

As explained in Section 5.3.3, 6G communication networks can be subject to cyber-attacks. Those

attacks may directly disturb service continuity, and this is typically the case with DoS and DDoS

attacks. But the service can also be willingly shut off by the owner due to other forms of attacks,

such as data leakage or intrusion causing unexpected behaviour. In any case, being able to detect

and remediate the attack as fast as possible minimizes service disruption and improves service

continuity. To optimize the reaction time, a layered security architecture is proposed, with the

lower layer deploying fast but not necessarily optimal mitigation actions with the upper layer

working in parallel to deploy more complex eradication strategies. In this deliverable, the

improvement in service continuity is considered from the security point of view: the objective is

to react as fast as possible to a security event to limit its impact on the service. Indeed, an attack

may cause the service to be unavailable for a given time, either due to the effect of the attack itself

or due to the service owner willingly stopping or reducing the service to avoid potential damages

caused by the attack. This is taken into consideration in Scenario 5.3. As described in Section

Hexa-X Deliverable D6.3

Dissemination level: public Page 99 / 129

5.3.3.3, this fast reaction response need is a primary concern for the proposed solution: while the

central loop focuses on providing a long-lasting solution for the incident through eradication, in

parallel, the local loop is dedicated to providing a temporary solution as fast as possible through

mitigation. In order to measure the effectiveness of this system, we measured the relevant

response times of our system:

• Local Mean Time To Detect (Local-MTTD).

• Global Mean Time To Detect (Global-MTTD).

• Local Mean Time To Respond (Local-MTTR).

• Global Mean Time To Respond (Global-MTTR).

• Extended Mean Time To Respond (Extended-MTTR).

In the context of Demo #5, Local-MTTD (resp. Global-MTTD) is the elapsed time between the

emission of the attack packet by the rogue UE and the production of the corresponding event by

the Local (resp. Global) Monitoring and Analysis on the relevant Kafka topic, which characterizes

the attack and makes the alert public for any relevant consumer.

Figure 7-11. Scenario 5.3 results

As events produced in Kafka are timestamped by default, the measure relies on Kafka's

timestamp. In the specific attack considered in Scenario 5.3, local- and Global-MTTDs are very

close since the global analysis module does not perform additional analysis to further characterize

the attack. Thanks to the efficiency of Kafka, the results show that the difference between local

and global MTTDs is actually less than a millisecond; hence both will simply be referred to as

MTTD in the remainder of this Section. The Local-MTTR is the elapsed time between the

emission of the attack packet by the rogue UE and the activation of a rule to reject log4j packets

in Suricata IPS. This activation is considered effective when Suricata’s log indicates that the rule

set has successfully been reloaded (after the addition of the new rule). Global-MTTR measures

wait for the patch to be active. As the patch is applied by a K8s Ephemeral container, the patch

activation is validated by the log output of the Ephemeral container itself. Since the timestamps

of the different events used to evaluate our metrics are collected in different machines, those

machines need to be strongly synchronized to have precise measures. To do so, the different

machines in OpenStack are synchronized using Network Time Protocol (NTP). The reference

clock is an external one, and its values are retrieved by the UPF. The results obtained are

represented in Figure 7-11Figure 7-11. As we can see, the different metrics are quite close in time.

This was expected, as the eradication action is fairly simple, considering that the pod to be patched

is a demonstration pod. To dive more into the details of our results, we can note that:

• The time elapsed between the attack launch and the report of this attack in Kafka by the

analytic engine, which constitutes the MTTD, is around 62.3s. This time is almost entirely

spent in Suricata.

• It takes approximately 300ms to complete the containment once the attack report is

published (Local-MTTR – MTTD).

Hexa-X Deliverable D6.3

Dissemination level: public Page 100 / 129

• It takes approximately 1.3s to complete the eradication once the attack report is published

(Global-MTTR – MTTD).

7.1.3.4 QT 3d. Improvement of the network energy efficiency using predictive

orchestration

This QT requests to validate the feasibility of increasing the network energy efficiency by (>50%)

applying predictive orchestration techniques. As for the previous QTs, and as explained in 7.1.3,

it is considered not feasible to validate that statement in a general way without specifying a clear

benchmark. For this specific case, the quantitative result may depend on a multiplicity of factors,

such as the technologies in use (e.g., the specific M&O software platforms), the deployed network

services (energy usage can obviously vary from one service to another), the hardware resources

on which the software components are deployed, or the specific predictive algorithms in use. I.e.,

it is obviously not possible to claim that applying “predictive orchestration” (in general) will

“always” entail an improvement of the network energy efficiency in the requested percentage

(>50%) without considering what specific services, specific M&O systems and mechanisms,

hardware, or specific predictive algorithms are being compared. So, in order to address this QT,

it was considered that anyway it could be demonstrated that the requested improvement in energy

efficiency could be achieved considering a set of scenarios that, although it cannot be generalised,

can at least give an idea about whether the target can be achieved. In order to do this, a specific

lab experiment (the one described in the previous Section 6.1) has been performed.

Based on that experiment, it can be stated that by adapting to the forecasted demand, it is actually

possible to reduce the power consumption to approx. 324.769 W, which represents approximately

88% of the original energy consumption, beyond the QT definition requires. However, as

mentioned, this is just a specific lab experiment, difficult to generalize. Probably this 12%

reduction can be harder to reach in other scenarios with multiple factors. Further research should

be done once the 6G network stack is available, as well as the specific 6G M&O platforms.

7.2 Validation of the Hexa-X M&O architecture

This section focuses on evaluating whether the M&O architectural design provided in Deliverable

D6.2 [HEX22-D62] has proved suitable for the demos' implementation. Although the complete

E2E architecture will not be validated (due to the specific scope of each demo), it is considered

that the results obtained here can be a good indication of the possible application of this

architectural design in future 6G networks.

 Demo #4

It has been verified that the various functionalities implemented in this demo can be mapped with

the M&O architectural design of D6.2, as illustrated in Figure 7‑1. The vertical application,

Digital Twin App, is part of the Service Layer (1) as the main Verticals-focused layer. The

components that are part of the intelligent orchestration group belong to both the Service Layer

and the Network Layer (2, 3, 4, 5). These components are tasked with the orchestration, diagnostic

and monitoring aspects of the demo. Finally, the Monitoring framework, along with the

monitoring agents (probes), belong to both the Network and the Infrastructure Layers (4, 6, 7).

For the purposes of this demo, different software components have been developed for the

Service, Network and Infrastructure layers, as described below.

• Service layer. In this layer, the Digital Twin application, developed for this demo, is located.

This service is common across the three scenarios and is used to support the vertical’s

industrial automation service.? The implemented service layer control loops are focused on

validating the service requirements and SLAs and triggering quality assurance mechanisms

when these are not honoured.

• Network layer. It is partially implemented, meaning that there are no components deployed

as part of Radio Access, Core Network, Transport Network and Third-Party Functions as they

were out of the scope for the purposes of this demo. The orchestrator has been extended with

Hexa-X Deliverable D6.3

Dissemination level: public Page 101 / 129

higher-level logic in order to allow the management of extreme-edge resources as part of the

Management Functions. Part of these functions is also the Functions Placement mechanism

that is responsible for deciding the optimal way to place the various functionalities based on

predefined policies like power consumption, nodes in use, etc. The Service Registry and

Service Repository are also part of the Management Functions block in this layer. They are

responsible for the registration, storage and retrieval of the necessary information pertaining

to the various services (requirements, descriptors, etc.). Additionally, the Monitoring

Functions that have been implemented include the use of the MaaS framework that allows

the advanced monitoring of various cloud, edge, and extreme-edge resources. This framework

consists of a central monitoring solution that handles the deployment of probes on the

distributed resources across the different managed domains. Finally, the AI/ML Functions that

have been implemented include the Diagnostic component and the Predictive Orchestration

mechanism. The Diagnostic component is responsible for detecting anomalies in the observed

performance of the system under examination, service or infrastructure, detecting the root

cause of that anomaly with sufficient information and triggering corrective actions. On the

other hand, Predictive Orchestration uses historical data to predict the future state of the

system and trigger proactive orchestration actions in order to minimize service downtime.

• Infrastructure layer. This layer is implemented using the physical and virtual hosts described

in Table 4-1 for the Cloud and Edge domains as well as the robots for the extreme-edge

domain.

Figure 7-12. Mapping of the Demo #4 functionalities to the architecture.

 Demo #5

As described in Section 4, Demo #5 aims at demonstrating a set of pertinent features, targeting

the data-driven device-edge-cloud continuum M&O concept by means of four specific demo

scenarios. Figure 7-12. maps the different functionalities implemented across these four scenarios

into the Hexa-X M&O architectural design provided in [HEX22-D62], so as it can be seen, this

architectural design can actually be used as a framework to support the different functionalities

targeted in the demo. In the following, a detailed per-scenario description of the mapping is

provided.

Scenario 5.1

This scenario incorporates resources across every Infrastructure Layer domain (circles ‘1a’, ‘1b’

and ‘1c’ in Figure 7-13.) because it needs to deal with elements that are allocated within the

Extreme-edge domain (e.g., K3s), the Edge domain (e.g., AI agents and the message queue) and

the Cloud domain (e.g., the service orchestrator). Moreover, at the Network Layer, the

orchestration platform provides capabilities to cope with the scenario NFs LCM (5) and

Monitoring (6). At the Design Layer level (7), the orchestration platform is able to provide Service

Hexa-X Deliverable D6.3

Dissemination level: public Page 102 / 129

definition blueprints based on K8s deployments that aid in the service creation and its LCM (10).

Finally, a Slice (8) is the communication baseline for all the services deployed within this scenario

across all the aforementioned Infrastructure Layer domains. The orchestration platform deployed

within this environment (the Vertical Slicer) implements the required M&O functionalities for

this scenario, which are mainly focused on service deployment.

Figure 7-13. Mapping of Demo #5 functionalities to the Hexa-X M&O architecture

Scenario 5.2

This scenario has similarly mapped elements to the ones described in the previous scenario as it

tries to complement it by adding Predictive Orchestration capabilities. As depicted in Figure

7-13., all Infrastructure Layer Domains are emulated in this scenario (1a, 1b, 1c), but only the

monitoring capability from the Infrastructure Layer (2) has been added to the M&O function in

this scenario. The Management (5) and Monitoring Functions (6) building blocks have also been

deployed as part of the so-called Orchestration Engine at the Network Layer. Furthermore, on a

regular basis, the so-called Intelligent Orchestrator component, which maps to AI/ML Functions

(9), receives input from the Orchestrator Engine component, and within the simulated network,

several AI-based orchestration actions are taken. At the Service Layer, the modelled URLLC

Application (8) is deployed across UE devices and the edge server (see Section 5.3.2.2). To end,

Simu5G allows the simulation/emulation of UPFs, PGWs and gNBs, which interact using a model

of the NR protocol stack. These components are used within this scenario as part of the Radio

Access Functions (4).

Scenario 5.3

Scenario 5.3 is focused on validating the Hexa-X M&O architecture from a security perspective

at each layer. Specifically, it addresses the implementation of the LoTAF [HEX22-D14] at the

Service Layer (3) and the deployment of local (1a) and central security orchestration functions

(1b, 1c) at the Infrastructure Layer. When it comes to the application of AI for security (9), the

Central Security Orchestrator also centralises AI/ML training tasks. The information produced by

the Local and Central Control Loops might be consumed across every layer in the M&O

architecture (3).

Scenario 5.4

Scenario 5.4 studies the feasibility of applying MLOps for a particular use case where an SW

Vendor develops, trains and deploys an AI/ML-based model on the MNO infrastructure. The

resources involving the implementation of the MLOps platform have been deployed both at the

Hexa-X Deliverable D6.3

Dissemination level: public Page 103 / 129

edge domain (1b) and the cloud domain (1c). The main focus in this scenario is, in fact, to

demonstrate the integration of the Design Layer (7) as part of the M&O architectural design, with

the deployment of an AI/ML model using MLOps techniques, i.e., the demo is designed precisely

to demonstrate one of the innovative features of the architecture proposed in D6.2. As can be

seen, the Hexa-X M&O architecture can be used as a reference M&O architecture for B5G/6G

use cases, and it is flexible enough to cope with the different requirements and constraints of each

particular use case. Specifically, in the scenarios comprising Demo#5, several building blocks

comprising this architecture have been validated, and therefore, the utility of this architecture for

future 6G mobile networks has been probed.

7.3 KPIs, KVIs and Core Capabilities

Below are the main KPIs (from those in the previous D6.2 [HEX22-D62]) measured on each

demo and lab experiment. The KPIs are also related to the relevant KVIs and Core Capabilities

defined globally in the Hexa-X project.

 Demo #4

The three scenarios of this demo, while having different objectives, all share the same target KPIs,

KVIs and Core Capabilities. Below is the information for each of these three scenarios’ objectives

in this demo. Afterwards, the KPIs, KVIs and Core Capabilities are described in a concise way.

Scenario 4.1

The main objective of this scenario is to analyse the impact of Scenario 4.1 software components

on a B5G/6G platform. The analysis revolved around the extended programmability provided by

a unified Cloud – Extreme-edge continuum. The focus of this evaluation is on the following:

a) the level of automation that can be achieved utilizing the extended programmability

offered by the various implemented software components;

b) the inclusion of extreme-edge nodes in the orchestration workflows and their performance

during the industrial context workflows.

Scenario 4.2

The main objective of this scenario is to analyse the impact of Scenario 4.2 software components

on a B5G/6G platform. The impact has been studied for its feasibility of utilizing advanced

monitoring and diagnostic as well as Function Placement mechanisms in order to optimize

performance related to the workflow time pertaining to service orchestration actions. These

actions are based on the observed performance and aim to minimize the downtime of said services

due to M&O operations. The focus of this evaluation is on the following points:

a) similar to Scenario 4.1, the level of automation that can be achieved utilizing the extended

programmability offered by the various implemented software components;

b) the performance of the extreme-edge nodes, and robots, when running industrial

automation tasks;

c) the performance of the diagnostic mechanisms to detect anomalies and optimize Function

Placement.

Scenario 4.3

The main objective of this scenario is to analyse the impact of Scenario 4.3 software components

on a B5G/6G platform. The impact has been studied for its feasibility of utilizing predictive

mechanisms in order to optimize performance related to the workflow time pertaining to service

orchestration actions. These actions are based on the predicted performance of the services and

aim to minimize the downtime of said services due to M&O operations. The focus of this

evaluation is on the following main points:

a) as in both of the previous scenarios, the level of automation that can be achieved by

utilizing the extended programmability offered by the various implemented software

components;

b) the performance of the predictive mechanism when predicting the future state of the

service, performance degradations and upcoming maintenance cycles.

Hexa-X Deliverable D6.3

Dissemination level: public Page 104 / 129

The KPIs, KVIs and Core Capabilities for the three scenarios are presented below.

KPIs

Programmability [%]: In Scenario 4.1, the programmability of the compute infrastructure in

the extreme-edge, edge and cloud domains is utilized in coordination with the monitoring

platform of the virtual resources available in each node and for the management of the service

components in the various clusters. Moreover, the interfaces exposed by the orchestration

platform handling the compute resources located on top of the industrial robots enable the

registration of nodes belonging to the related cluster and the continuous monitoring of their

status, reachability and availability. In Scenario 4.2, the utilization of the infrastructure

monitoring and diagnostics mechanisms is exploited in order to drive the optimization of the

Function Placement across the domains. Moreover, the M&O operations are examined in order

to evaluate the performance of the newly introduced intelligent orchestration processes. In

Scenario 4.3, the programmability of the cloud - extreme-edge continuum, and especially the

utilization of the predictive orchestration mechanism, is exploited to optimise the Function

Placement across the domains. Moreover, the performance of M&O operations is examined in

order to evaluate the efficiency of the predictive mechanism. All the M&O mechanisms exploit

the provided programmability of infrastructure and service components, and as such, the level

of programmability can be considered at 100%.

Processing Capacity [Number & Type of processing units]: For all three scenarios, the

industrial automation service is deployed across extreme-edge, edge and cloud nodes,

involving in particular:

• Three robots (equipped with quad-core Intel processors @ 3.6GHz and 8GB RAM),

running Ubuntu v20.04, and organized in an extreme-edge K3s cluster.

• Two cloud/edge nodes based on two general-purpose HP computers (Z2 Mini G4)

used for VM-based and container-based components, respectively.

Creation time [s]: In Scenarios 4.1 and 4.2, the lifecycle management of the industrial

automation service is automated through the orchestrator and does not require human

intervention, thus reducing the orchestration actions workflow time. The instantiation time of

the service ranges between 3 and 60 seconds. Typically, it takes 60 seconds when starting the

service in a new context, meaning a new node that it has not been used on before and does not

have the images available locally. After the service has started on that node at least once and

the images are available, the instantiation time falls to a stable 3 seconds. In either case,

additional 2 seconds are required for the service configuration bringing the total to around 5

seconds. Additionally, in Scenario 4.3, since in this scenario, a proactive orchestration

approach is used, the creation time does not impact the service, in performance or downtime,

because all the required actions are taken while the status of the examined services follows

their requirements.

Automation [degree]: All the steps of the demonstration are fully automated and coordinated

through the orchestrator, with the only exception of the service instantiation request, which is

triggered manually via a REST API. For this use case, the available extreme-edge nodes are

considered already registered on the platform and so are taken into account by the orchestrator

as available resources. At the service level, the industrial automation service is a predefined

set of functionalities, separated between controller tasks and worker tasks, that target different

domains to be deployed on. The selection of the appropriate domain and target infrastructure

for the deployment is handled by the intelligent orchestration set of mechanisms that is

demonstrated in the next scenarios. For Scenario 4.1, the functionalities are allocated

uniformly across all the available resources. The configuration of the service is handled

internally by the service itself, which adjusts its operation based on the available resources. In

scenario 4.2, manual injection of impairments are utilized to emulate the real impairments that

would have happened without manual intervention. These impairments trigger the diagnostic

Hexa-X Deliverable D6.3

Dissemination level: public Page 105 / 129

and Function Placement mechanisms that further demonstrate the high degree of an automated

process that is responsible for rectifying the anomalous condition and restoring the service to

its correct state.

In scenario 4.3, the AI models used to predict the future state of services have been trained

during the normal industrial task cycles and are utilized in order to evaluate the prediction

mechanism. The inference, decision for actions and feedback operations of the predictive

mechanism all operate automatically without human intervention. All the aforementioned

mechanisms and processes bring the automation degree to a “high”.

KVIs

Trustworthiness: It is based on the high level of automation in the management of the

resources in the continuum and in the provisioning and lifecycle management of the end-to-

end service across all three scenarios.

Sustainability: This KVI is targeted by three features:

• First, in Scenario 4.1, the automation of the M&O of the resources removes the

requirement for human intervention while providing the capability for it if need be.

• Second, in scenario 4.2, the utilization of the Function Placement mechanism

optimizes the resource usage across the available domains while targeting specific

policies like minimizing power consumption, resource usage or any other provided

requirement.

• Third, in Scenario 4.3, the utilization of the predictive orchestration mechanism

optimizes the M&O actions required to prevent "predicted" anomalous events based

on the trained observed performance patterns as well as operation and maintenance

cycles.

Core Capabilities

Integrated intelligence: Scenario 4.1 demonstrates the logic integrated into the orchestrator,

which handles the service lifecycle management, including the coordination of the instantiation

and configuration steps and the management of the resources in the continuum, with extreme-

edge resource registration and monitoring of the available resources. Scenario 4.2 demonstrates

the logic integrated into the orchestrator, which is responsible for handling anomalies in the

observed performance and also optimizing the Function Placement of services and their

components based on desired policies. Scenario 4.3 demonstrates the logic integrated into the

orchestrator, which is responsible for predicting the future state of the service performance

along with the operation and maintenance cycles and also optimizing the Function Placement

of services and their components based on these predictions.

Usage of Embedded devices: Scenario 4.1 has been selected to showcase the M&O of

resources running on industrial robots as extreme-edge nodes organized in a K3s cluster.

Scenario 4.2 demonstrates the logic integrated into the orchestrator, which is responsible for

handling anomalies in the observed performance and also optimizing the Function Placement

of services and their components based on desired policies. Finally, Scenario 4.3 has been

specifically designed to demonstrate the possibility of optimizing the operation and

maintenance cycles of the extreme-edge devices (robots) based on the predicted performance

state during said cycles leading to reduced costs, minimized service downtime and optimal

service performance.

Flexibility: The orchestrator demonstrated in Scenario 4.1 is flexible enough to operate over a

variety of extreme-edge, edge and cloud domains, deploying K3s, K8s and OpenStack

platforms. Moreover, the orchestrator can successfully instantiate and configure end-to-end

services based on a mix of container-based and VM-based components. As demonstrated in

Hexa-X Deliverable D6.3

Dissemination level: public Page 106 / 129

Scenario 4.2, the orchestrator can successfully optimize the placement of industrial automated

tasks on the available resources based on the service requirements. Finally, in Scenario 4.3, the

orchestrator can successfully predict the future performance state of the examined services,

along with the operation and maintenance cycles of the infrastructure nodes and utilize these

predictions to perform the necessary M&O actions to ensure optimal performance.

 Demo #5

Below is the information for each of the three scenarios of Demo #5.

Scenario 5.1

As described in Section 5.3.1, the main objective of this demonstration scenario is to validate the

feasibility of dynamically deploying a distributed virtual application, implementing AI/ML

techniques in a 6G-enabled infrastructure continuum that integrates extreme-edge, edge and cloud

nodes organized in different clusters. The focus of the evaluation is on three main features: (i) the

level of automation that can be achieved by exploiting the programmability of the computing

nodes when creating and orchestrating a new service; (ii) the performance of extreme-edge nodes

when running virtual application components; and (iii) the performance of the AI/ML functions

when deployed in a distributed edge/cloud environment. Below, the KPIs, KVIs and Core

Capabilities that are considered relevant in this scenario are described.

KPIs

Programmability [%]: In this scenario, the programmability of the computing infrastructure

in the extreme-edge, edge and cloud domains is exploited for the monitoring of the virtual

resources available in each node and for the dynamic instantiation of the application

components in the various clusters. Moreover, the open interfaces exposed by the K3s platform

handling the small-scale Raspberry Pi computers enable the dynamic discovery of nodes

belonging to the related cluster and the continuous monitoring of their status, reachability and

availability. In this scenario, all the M&O procedures directly exploit the programmability of

infrastructure and service components; as such, the level of programmability can be considered

at 100%.

Processing Capacity [Number & Type of processing units]: The service is deployed across

extreme-edge, edge and cloud nodes, involving in particular:

• Four Raspberry Pi cards (brand Broadcom, model BCM2711, with a 64-bit quad-core

Cortex-A72 -ARM v8- @ 1.5GHz, and with 8GB RAM), running Ubuntu v20.04.5

and organized in an extreme-edge K3s cluster.

• Two cloud/edge nodes based on a general-purpose PowerEdge T550 Dell server and

an Intel NUC small-form computer (NUC8i7HVK), used for VM-based and container-

based components, respectively.

AI/ML models training time [s]: Something relevant to be considered here is that, due to the

application of the Reinforcement Learning paradigm, there is not a clear split between the

learning and the inference stages, i.e., RL models learn at the same time they are interacting

with the environment on which they are integrated (the urban road traffic scenario in this case),

so they can continue learning indefinitely. However, from a practical point of view, the RL

agents are considered to be “acceptably trained” once the road traffic flow is perceived much

better than when the traffic control is performed based on the legacy approach, i.e., based on

fixed time patterns to control the traffic lights. In practice, it has been seen this happens after

about 34.000 simulation steps. On the other hand, though the simulation step duration can be

interactively modified during the simulation (to increase or decrease the simulation speed as

desired), it has been seen that setting about 150 milliseconds as the simulation step, the vehicles

move with speed similar to how they would move in real life. So, considering these 150

milliseconds and the 34.000 simulation steps needed for the training, that gives 85 minutes as

Hexa-X Deliverable D6.3

Dissemination level: public Page 107 / 129

the needed model training time. Of course, this number should not be considered narrowly

since, as explained, the calculated value is based on a subjective assessment of the simulation

result. However, it can give an idea of what the value of this KPI might be in a real-life

implementation.

Creation time [s]: The entire provisioning of the traffic-light control service is entirely

automated through the orchestrator, removing the need for manual intervention and thus

reducing the creation time to less than 1 minute. In detail, the average creation time is in the

order of 20 seconds, reaching a maximum of 45 seconds. Within this time interval, only 5

seconds are required for the instantiation of the containers, while the rest is for starting and

configuring the application software.

Automation [Degree]: All the steps of the demonstration are fully automated and coordinated

through the orchestrator, with the only exception of the service instantiation request, which is

triggered manually via REST API. In particular, at the infrastructure layer, the nodes in the

three domains are automatically discovered, and their availability is continuously monitored.

At the service and network layer, the service request issued by the user is automatically

elaborated on the basis of the service blueprint and translated into a set of components which

are deployed by the orchestrator on the target domains across the extreme-edge, edge, cloud

continuum. The selection of the target clusters and nodes is automated on the basis of the

availability of the resources. The configuration of the application is also automated according

to the service blueprint and the parameters declared by the user in the instantiation request.

KVIs

Trustworthiness: It is based on the high level of automation in the management of the

resources in the continuum and in the provisioning and lifecycle management of the end-to-

end service.

Sustainability: Sustainability is increased in two aspects: the automation of the resource and

service management limits the need for manual intervention, while the adoption of resource

allocation algorithms optimizes the usage of the resources in the various clusters and domains.

Core Capabilities

Integrated intelligence: the scenario demonstrates the logic integrated into the orchestrator,

which handles the service lifecycle management, including the coordination of the

instantiation and configuration steps and the management of the resources in the continuum,

with resource allocation algorithms and automated discovery and monitoring of the available

nodes.

Usage of Embedded Devices: the scenario has been specifically designed to demonstrate the

possibility of deploying and successfully running part of the end-to-end service in four

Raspberry Pi cards (with Ubuntu v20.04.5) organized in a K3s cluster.

Flexibility: the orchestrator demonstrated in this scenario is flexible enough to operate over a

variety of extreme-edge, edge and cloud domains, deploying K3s, K8s and the OpenStack

platform. Moreover, the orchestrator can successfully instantiate and configure end-to-end

services based on a mix of container-based and VM-based components, with the possibility to

define specific characteristics, constraints and configuration parameters in the service

blueprint.

Scenario 5.2

As described in Section 5.3.2, the main objective of this scenario is to demonstrate the feasibility

of a predictive-orchestration approach, which manages resources in the cloud-to-extreme-edge

continuum. The scenario has been implemented using a hybrid simulation/emulation approach,

Hexa-X Deliverable D6.3

Dissemination level: public Page 108 / 129

allowing for the comparison of several baselines against the proposed solution. Below, the

relevant KPIs, KVIs and Core Capabilities are described.

KPIs

Programmability [%]: In this scenario, the programmability of the computing infrastructure

in the extreme-edge, edge and cloud domains is exploited for the dynamic

activation/deactivation of (simulated) edge servers and for the relocation of edge services. All

these operations are performed in an automated manner within the emulated environment. As

such, the level of programmability can be considered at 100%.

Processing Capacity [Number & Type of processing units]: The service is deployed across

extreme-edge, edge and cloud nodes, involving in particular:

• A Qotom MiniPC, with Ubuntu 20.04, CPU Intel i7, 8 GB RAM, 128 GB hard disk.

• A Qotom MiniPC, with Ubuntu 20.04, CPU Intel Celeron, 8 GB RAM, 58 GB hard

disk.

• One Raspberry Pi card (brand Broadcom, model BCM2711, with a 64-bit quad-core

Cortex-A72 -ARM v8- @ 1.5GHz, and with 8GB RAM), running Raspian OS.

• One server node, running the orchestration environment, with Ubuntu 20.04, CPU

Intel i7, 16 GB RAM, 1 TB hard disk.

• One Laptop MacBook Pro, with macOS Big Sur, CPU Intel i5, 8GB RAM, 250 GB

hard disk.

Creation time [s]: Resource creation time is improved through prediction. The

activation/scaling of resources is indeed made proactive, allowing the system to reduce the

effects of activation times.

Automation [Degree]: All the steps in the demonstration are fully automated through the

simulator’s environment and are also coordinated through the orchestrator. The only exception

is the user application, which has to be started manually on one of the nodes.

KVIs

Trustworthiness: It is based on the high level of automation in the management of the

resources in the continuum.

Sustainability: Sustainability is increased through the adoption of predictive resource

orchestration, which optimizes the usage of the resources avoiding the allocation of

unnecessary ones.

Core Capabilities

Integrated intelligence: The scenario demonstrates the AI-based prediction integrated into

the orchestrator, which is able to predict the onset of a load increase and thus proactively

activates resources.

Usage of Embedded Devices: The scenario allows the orchestrator to offload the service to a

Raspberry Pi device.

Flexibility: The orchestrator can execute several alternative algorithms, including the

proposed predictive orchestration. The AI-logic, in turn, can be executed independently from

the orchestration logic, allowing re-training of the AI itself.

Scenario 5.3

Hexa-X Deliverable D6.3

Dissemination level: public Page 109 / 129

As described in Section 5.3.3, the main objective of this scenario is to demonstrate the possibility

of applying automated security management at different layers of the infrastructure to reach an

adequate security level for all services. This includes services running on extreme-edge premises,

which are geographically isolated and that have few resources spared for security processes.

Below, the relevant KPIs, KVIs and Core Capabilities considered for this scenario are presented.

KPIs

Programmability [%]: In this scenario, the security processes are fully programmable. In this

specific case, the core of the programmability is primarily supported by the Decision Engine,

Drools, which allows the administrator to define what action plans should be followed after

the detection of a specific attack. The Execution engine, in parallel, relieves the administrator

from the difficulty of actually implementing the details of the execution of the plan. Since

programmability is at the core of the proposed system, it can be considered to be 100%.

Processing Capacity [Number & Type of processing units]: For the needs of this scenario,

6 VMs were used. The details of the resources are displayed in Table 5-4 but sum up to 30

vCPU and 68 GB of RAM, including six vCPUs and 12 GB of RAM to deploy the data plane,

which is not part of the security solution itself. It should be noted that this scenario relies partly

on open-source components which have minimal resource requirement that allow them to

handle much more traffic than what is needed in the scenario, but which would be useful in a

real-life situation.

Creation time [s]: Considering only the deployment of the module related to the security

system and not the ones related to regular user plane functions, the deployment of the whole

system is automated using the helm tool. Except drools and Kafka, most of the components

can be deployed in parallel, and take less than 10s to be running. Drools must wait for Kafka

to run and takes 40s to be running. Kafka itself takes 80s to be fully operational in our system.

Consequently, the whole security system is up and running within 2 minutes.

Automation [Degree]: The whole system is built around the concept of automated closed

loops: traffic is analysed, attacks are identified, and responses are applied in an automated way.

In parallel, the LoT is automatically adjusted, following the evolution of the automated security

processes. However, given that security is a highly sensitive domain, automation can willingly

be reduced to include human intervention.

MTTR (Mean Time To Respond): as detailed in Section 7.1.3.3, the system displays low

MTTR compared to traditional human intervention. This is a major KVI as it is one of the key

aspects to determine how good the security system ensures service continuity. Here the system

reacts within a minute. Moreover, while most of the time is spent in analysis (MTTD), the

system further improves its reaction time through its two levels reaction: while the first

reaction, the containment, is applied ~1.5s after attack detection, the slower reaction

(eradication) is applied after ~2.5s. Whereas both reactions display very low response time

compared to non-automated security responses, the demonstration displays the feasibility and

interest in decoupling different types of reactions when dealing with an attack to further gain

time. Finally the proactive protection against future attacks (extended eradication) is applied

~9.5s after detection.

KVIs

Trustworthiness: In this scenario, trustworthiness can be evaluated at two levels. On the first

level, the autonomic security system is designed to maintain an adequate security level,

matching at least the security requirements established by the client. To do so, the system has

been designed to react to attacks both in a fast and efficient way by making use of containment

and eradication actions, respectively. On the second level, the actual LoT of the system is

Hexa-X Deliverable D6.3

Dissemination level: public Page 110 / 129

constantly monitored. If the security system cannot maintain the required security level, this

reflects in the LoT, and the service orchestrator can take action, e.g., by requesting other

available function and service networks with higher LoT, which allow serving its clients.

Sustainability: Sustainability is increased through the security improvement brought by the

solution. By limiting the damages caused by cyber-attacks, the whole system becomes more

sustainable.

Core Capabilities

Integrated intelligence: In this scenario, the intelligence resides primarily in the decision

engine, which has to select a proper action to take upon threat identification. However, this

intelligence can logically be extended to the analysis engine in future developments.

Usage of Embedded Devices: While this scenario does not directly deploy services on

embedded devices, it is designed to address such use cases, as it focuses on decoupling fast,

simple security actions and long, resource-consuming ones. The second can naturally be hosted

on a central data centre, while the first one will remain either in or as close as possible to

devices hosting the services.

Flexibility: The security system runs primarily on legacy containers and is deployed via

automated tools. By changing the configuration of those tools, the system can easily be

deployed in different environments.

Scenario 5.4

Below, the KPIs, KVIs and Core Capabilities, which are considered relevant for this scenario, are

presented.

KPIs

Programmability [%]: All the AI/ML functions have been developed with REST APIs that

are used to handle their dynamic configuration and activation under the coordination of the

orchestrator.

Creation time [s]: The average provisioning time for the AI/ML functions is in the order of

20 seconds, including their configuration and activation.

Reliability [%]: The reliability of the service is guaranteed at two levels. The availability of

the AI/ML functions is continuously monitored by the orchestrator, that, in case of failures,

can react to deploy new functions and update the overall service configuration accordingly.

Moreover, the AI/ML models are continuously evaluated (in this particular example,

comparing the predicted with the actual values), and, in case of drift, they are automatically

re-trained on the latest version of the datasets.

AI/ML models training time [s]: Depending on the resources assigned to the VM where the

target model is trained, the training time can require up to 4 hr (for 1000 epochs).

Maintainability [Degree – e.g., high, medium, low]: The high level of maintainability is

guaranteed by the orchestrator's capabilities to easily restore the service as a whole or the single

AI/ML functions. Moreover, the automated MLOps procedures allow immediate re-

configuring of the most suitable version of the trained models in case of any disruption of the

software instances.

Automation [Degree]: The entire MLOps process is automated, starting from the initial

training of the model in the software developer environment and up to the model’s transfer in

the MNO’s staging and production environment, where it is continuously validated against the

Hexa-X Deliverable D6.3

Dissemination level: public Page 111 / 129

real-time data. In case of drift, also the re-training procedure and the update of the model’s

version for the service runtime are handled in an automated manner under the coordination of

the orchestrator.

KVIs

Trustworthiness: It is enhanced by relying on the high level of reliability and maintainability

of the service, as well as its degree of automation.

Sustainability: The MLOps chain is fully automated, thus requiring a minimum level of

manual intervention.

Core Capabilities

Integrated intelligence: The scenario demonstrates the MLOps orchestrator logic, which

integrates the coordination between the deployment of the AI/ML functions in the target

environments (staging and production) and the configuration/activation of the various modules

and trained models. Moreover, based on the feedback received from the continuous evaluation

of the models, the orchestrator is also able to trigger re-training actions whenever a drift is

detected.

Flexibility: The MLOps procedures demonstrated in this scenario are flexible enough to be

adopted for various ML models and functions, with the only constraint of the availability of

the required datasets and the programmability of the custom AI/ML functions.

 Small-scale lab experiments

Experiment 1: Network Energy Efficiency.

This experiment focuses on providing the required levels of reliability and latency for a particular

V2X scenario. It also considers minimizing energy consumption while ensuring the requirements.

For such a case, a recurrent neural network is implemented and compared again to a purely

reactive and Oracle-based approach. Below, the set of KPIs, KVIs and Core Capabilities relevant

to this experiment is presented.

KPIs

Latency [s]: In this experiment, we measure end-to-end latency between vehicles and servers

to ensure that it is below certain levels. For example, for the teleoperated driving service

considered in the experiment, the latency must always be below 100ms. This can be extended

for other vehicular services, such as cooperative driving or hazard warning, which require other

levels of latency.

Reliability [%]: In this experiment, we measure reliability as the percentage of packets that

are below a certain level of end-to-end latency. For the teleoperated driving service considered

in this experiment, it is necessary to ensure a reliability of 99.999%. This means that 99.999%

of the packets satisfy the end-to-end latency of 100ms.

Energy efficiency [W]: In this experiment, we focus on energy efficiency as one of the most

important KPIs to evaluate. We define energy efficiency as the power consumed by the

deployment of resources. Thus, efficient deployment of resources results in a more energy-

aware approach. To evaluate this, we compare an AI/ML approach with a purely reactive and

oracle-based approach.

KVIs

Hexa-X Deliverable D6.3

Dissemination level: public Page 112 / 129

Trustworthiness: It is improved by the high levels of reliability ensured by the vehicular

service. It is also enhanced by the high degree of automation in deploying resources at the

edge.

Sustainability: The use of AI/ML techniques to deploy resources at the edge result in a more

sustainable network due to the high levels of automation.

Integrated intelligence: The experiment demonstrates that AI/ML-based orchestration

mechanisms can be integrated into the network to predict the upcoming traffic load and

proactively scale the corresponding number of resources.

Flexibility: The automatic deployment of resources by AI/ML orchestration algorithms

enhances the flexibility of the network. The orchestrator can also execute many different

algorithms.

Experiment 2: Extreme-edge nodes discovery

This experiment focuses on a particular aspect of the demonstration scenario 5.1, i.e., the dynamic

discovery of extreme-edge nodes. As such, it mainly addresses the aspects related to the

programmability of the platform and its level of automation for resource orchestration. It should

be noted that since this experiment has been performed with emulated nodes, the considerations

about the processing capacity of extreme-edge nodes are not applicable. Below are the KPIs, KVIs

and Core Capabilities that are considered relevant in the scope of this experiment.

KPIs

Programmability [%]: In this scenario, the programmability of K3s-based computing

infrastructure in the extreme-edge domain is exploited to automatically discover the available

nodes, detect new nodes entering the clusters and monitor the status and the reachability of the

existing ones. In this sense, the level of programmability can be considered at 100%.

Automation [Degree]: All the extreme-edge nodes are automatically discovered, and their

behaviour is continuously tracked as input for the resource allocation algorithms.

KVIs

Trustworthiness: This is achieved through the high level of automation in the discovery and

management of extreme-edge nodes.

Sustainability: This is increased through the automation of resource discovery, which limits

the need for manual configurations.

Core Capabilities

Integrated intelligence: The scenario demonstrates the logic integrated into the orchestrator

for the management of the extreme-edge resources for discovering, monitoring and dynamic

allocation purposes.

Experiment 3: Usage of Simu5G

As reflected in Section 6.3, the main objective of this experiment is to analyse the impact of the

Scenario 5.1 software components on a 5G/B5G RAN. This impact has been studied in terms of

the number of resources consumed on the uplink and downlink and, besides, in terms of

performance related to the network delay introduced experienced by each modelled SW

component. Thereupon, below, a list with the KPIs/KVIs and Core Capabilities related to this

Hexa-X Deliverable D6.3

Dissemination level: public Page 113 / 129

scenario are given. Below are the KPIs, KVIs and Core Capabilities that are considered relevant

in the scope of this experiment.

KPIs

Latency [s]: As mentioned, this KPI is used as the reference point in this experiment. The

network delay experienced by each SW component is studied under different circumstances

(i.e., the concentration of UEs) in order to understand the viability of deploying Scenario 5.1

components within a 5G/B5G RAN, considering its inherent network latency.

KVIs

Trustworthiness: It applies to this experiment regarding the availability and performance of

the modelled SW components within a simulated 5G/B5G RAN.

Core Capabilities

Usage of Embedded Devices: The sumoee and the tlctrl SW component instances in this

scenario are modelled to reflect the behaviour of those components when they are deployed on

extreme-edge devices (i.e., Raspberry Pis). Therefore, although from a simulated point of

view, it considers the integration of extreme-edge resources and, moreover, the integration of

the ee-edge-cloud continuum as there are modelled devices on the various compute domains

(e.g., extreme-edge, edge and cloud).

Flexibility: The extracted experiment results help to understand if this deployment is flexible

enough to be added to a 5G/B5G environment. Flexibility can be envisioned in this experiment

as a consequence of disaggregation and softwarisation of the involved SW components.

7.4 Lessons learnt

Implementation of demos has implied to use of multiple technologies, simulators and other tools.

This process included the integration of multiple platforms. During experiments, the monitoring

of some processes and components has been done. As a result of the implementation, the

following experience has been gained:

Generic experience gained

• The usage of Open Source has been demonstrated to be crucial to validate new

technological enablers such us the extreme-edge, distributed AI at the EDGE, data mesh

implementation, and others. The challenge is to make these frameworks carrier-grade, to

make them able to support telco workloads and the upcoming 6G use-cases.

• Experience in designing and developing a real-time monitoring tool for the extraction of

metrics in Demo #4.

Continuum Orchestration related experience

• Learning techniques and tools to implement the unified orchestration across the “extreme-

edge, edge, cloud” continuum, mainly regarding the integration of the extreme-edge

scope in the M&O workflows. This has been explored in both Demos #4 and #5 and also

in the “extreme-edge nodes discovery” lab experiment.

• Learning on requirements and limitations to connect infrastructure in separate networks

and from different providers and domains under a common orchestration plane.

• Learning about designing and developing B5G microservices environment. This has been

performed and validated in Scenario 5.1.

• Learning on integrating a simulated 5G RAN within Scenarios 5.1 and 5.2.

Extreme-edge related experience

Hexa-X Deliverable D6.3

Dissemination level: public Page 114 / 129

• Platform development for arm64 architectures focused on low-power devices (Raspberry

Pi specifically). The development of containers/pods for these devices requires specific

developments based on arm64 architecture instead of amd64, as the typical bare metal

servers.

• Studying the impact of the orchestration and monitoring actions on battery-powered

extreme-edge nodes (experiment 6.2).

• Studied the impact of multithreading-based applications on extreme-edge containerised

network functions. This has been explored in the context of Scenario 5.1.

AI/ML-related experience

• Learning on designing and developing orchestration mechanisms for provisioning,

updating and re-configuring ML functions, combined with ML models' re-training and

distribution, in the context of multi-domain scenarios involving the SW Vendor and the

MNO scopes (addressed in Scenario 5.4). This particular structure has led to challenges

that are not present in a typical MLOps approach, with just a single entity being the main

ones:

o Having some of the components exposed from one entity to the other so that both

can access them (in line with the API Management Exposure concept).

o Applying anonymization techniques to data before it is shared from one entity to

another in order to avoid compromising privacy.

o Identify in which environments it should be possible to make changes to the

software package delivered by the SW Vendor to the MNO (and in which not) in

order to anticipate the agreement between the two entities set out in the Service

Level Agreement.

• Gaining experience in using AI/ML to predict short- and long-term variations in the

deployed service that can effectively support the orchestration of edge resources and

enable proactive approaches instead of reactive ones. It has also been seen that, in this

context, a mixed simulation/emulation approach can provide valuable insights into

evaluating the performance of the system at various scales.

Security related experience

• Learning on designing and integrating the Level of Trust Assessment Function (LoTAF)

in the M&O architecture. This has been explored in the context of Scenario 5.3, where

LoTAF has been presented as a Security Function together with the Security Closed

Control Loops.

• Gained new knowledge in Physical Layer Security, a field in which the consortium had

no prior experience.

• Improvements regarding the comprehension of various mechanisms involved in security,

such as trust, automatization frameworks and cybersecurity frameworks.

• From a practical point of view, developing the security-related scenario in Demo #5 leads

to searching, comparing, testing, deploying and developing tools to implement the

cybersecurity frameworks and secure the user plane. This includes tools for monitoring,

analysing, taking decisions and applying those decisions, intrusion protection systems,

targeting vulnerable applications, using dedicated solutions to connect all those

components, and management and orchestration tools such as OpenStack and K8s.

7.5 Future work

This deliverable includes a description of the implementation of two extensive demos, namely

Demo #4 and Demo #5 and three complementary lab experiments. Many mechanisms of the

Hexa-X M&O architecture, as described in previous subsections, have been evaluated. It doesn’t

mean that the evaluation is complete. In future work, we see the following topics:

a) More work should be performed regarding the specific tools and technologies that could

be used to implement the proposed architecture and the possible standards to align with.

b) Some additional work on the API Management exposure. It includes:

Hexa-X Deliverable D6.3

Dissemination level: public Page 115 / 129

o The alignment between the API Management Exposure concept and some

reference solutions that could be used for implementing this concept, such as the

Common API Framework for 3GPP northbound APIs (CAPIF) [CAP], should be

checked.

o Evaluation of how the API Management Exposure Concept can be used in the

context of the CAMARA project [CAM] to (i) make “service” APIs discoverable

and consumable to targeted customers, including B2B and B2B2C customers,

with optional aggregators (hyperscalers and CPaaS providers’ marketplaces)

mediating in between; and (ii) provide entry-points for operators to constitute

federated environments.

o Possible integration of CAPIF framework for data and API exposure in MLOps

scenarios to facilitate the secure and controlled exchange of data from the

operator to the service provider domains and between staging and operational

environments, as needed to guarantee meaningful datasets for ML training

purposes.

c) All the innovations mentioned in D6.2 have been explored, except this one, i.e., intent-

based networking that needs implementation and validation.

d) Investigating MLOps techniques for the deployment of other well-known ML paradigms

(e.g., RL and FL) beyond the current approach based only on deploying supervised

learning models. Explore also other anonymization and encryption techniques for the

showcased supervised learning model (or other similar models). Also, considering other,

more complex multi-vendor approaches regarding the MLOps approach, towards the

increasing level of automation, targeting full zero-touch automation (ZTA) whenever

possible.

e) More research regarding the extreme-edge nodes discovery and the integration of the

radio.

f) Improving resource orchestration of extreme-edge nodes in end-to-end scenarios, e.g.,

considering the impact of their mobile connectivity on the management interactions

between platform and worker nodes, enhancing the resource allocation logic with

constraints related to per-node characterization, and using ML techniques to predict the

time-variable attributes.

g) Coordinate management actions for data collection/transfer/storage and ML pipeline

automation in distributed and multi-domain environments, taking into account data

characteristics (ownership, sharing policies, privacy, etc.), also associated with MLOps

scenarios.

h) Coordination of automation and closed-loop decisions and actions across multiple

domains, infrastructure layers and time scales.

i) Evaluation of a large-scale orchestration of different types of edge resources, having

diverse resource capacity, performance, operation cost and availability, and providing

services to heterogeneous user applications. To analyse the impact of the prediction

algorithm and forecast (with the corresponding uncertainty) on performance.

j) Using localization information, possibly linked to the node discovery functionality, to

enhance the operations of resources and network functions placement.

k) Extending the reach of the performance diagnosis and functions placement mechanisms,

shown in Scenario 4.2, from the services all the way to the network and the M&O

components as well.

l) Further study on ‘network-of-networks’, coordinating the monitoring and control actions

upon flexible topologies/networks, functions placement, and unified orchestration for the

purpose of being able to provide ad-hoc networks to new orchestratable resources on-

demand.

m) Further research, design and development in the two stages of the Level of Trust

Assessment Function (LoTAF). Scenario 5.3 spotlights some high-level characteristics

of the second LoTAF stage. Nevertheless, LoTAF also encompasses management and

automation actions, such as network service selection based on user’s security and

privacy requirements, intelligent optimization functions or technology-based threat

analysis, which are considered interesting for future work.

Hexa-X Deliverable D6.3

Dissemination level: public Page 116 / 129

8 Conclusion
This report, as the final deliverable of the Hexa-X Work Package 6 (WP6), evaluates service

management and orchestration (M&O) mechanisms for Hexa-X, described in Hexa-X D6.2

[HEX22-D62]. It introduces the implementation of novelties described in D6.2, such as (1)

unified orchestration across the "extreme-edge, edge, core" continuum, (2) unified management

and orchestration across multiple domains owned and administered by different stakeholders, (3)

increasing levels of automation, (4) adoption of data-driven and AI/ML techniques in the M&O

system, (5) adoption of the cloud-native principles in the telco-grade environment.

This deliverable's main part consists of describing two demos (Demo #4, Demo #5) and other

complementary lab experiments. Both demos have addressed Hexa-X Objective 3 (Connecting

intelligence towards 6G). Specifically, Demo #4 was focused on unified management and control

using Cloud – Edge – Extreme-edge continuum orchestration on a Digital Twins service (Scenario

4.1), handling unexpected events using dynamic functions placement (Scenario 4.2), and

improving service downtime and reducing costs using predictive orchestration (Scenario 4.3). On

the other hand, Demo #5 has implemented and evaluated AI/ML-driven operations supported by

continuum orchestration (Scenario 5.1), prediction-based service orchestration and optimization

(Scenario 5.2), reactive security for the edge (Scenario 5.3), and the application of MLOps

techniques to deploy AI/ML service components (Scenario 5.4). Other lab experiments have

aimed to address network energy efficiency, extreme-edge nodes discovery as well as the impact

of the RAN on Scenario 5.1. Both demos have been presented in the document in a uniform

fashion, consisting of (i) Demo overview, (ii) Innovations related to the demo and (iii) Demo

implementation, of which the last one additionally describes individual scenarios related to each

particular demo. All of the scenarios are again presented in a uniform fashion, consisting of (a)

scenario description, (b) software components, (c) functional behaviour and (d) deployment.

In the second main part of this document, the evaluation of proposed service management and

orchestration mechanisms has been performed. The evaluation includes a description of the WP6

contribution to the overall Hexa-X objectives, focusing on Objective 3 and considering the M&O-

related topics linked to that Objective. This includes the main WP6 output towards such Objective

3, the Objective 3 measurable results and the WP6-related quantifiable targets. The evaluation

also includes the validation of the Hexa-X M&O architectural design provided in the previous

Deliverable D6.2 [HEX22-D62], the analysis of the main KPIs, KVIs and Core Capabilities

related to the demos and the lab experiments, and provides the main lesson learnt and some hints

and suggestions for future work. The evaluations show that the assumed objectives have been

achieved.

Hexa-X Deliverable D6.3

Dissemination level: public Page 117 / 129

Annex I. SUMO-related implementation details
Figure AI - 1 shows the SUMO vehicular topology that has been generated for Scenario 5.1. As

can be seen, there is a combination of simple roads (i.e., with one single lane per direction) and

complex roads (i.e., with two lanes per direction).

Figure AI - 1. Scenario 5.1 SUMO layout.

In order to reflect real-life road conditions, each road has been configured with different

maximum speeds and lengths. As reflected in Figure AI - 2, the south horizontal roads and the

west vertical roads have a higher maximum admitted speed and are comprised of two lanes, while

the north horizontal roads and the east vertical roads have been configured with a much lower

maximum speed and as simple roads. The idea behind this design is to simulate two main roads

with higher traffic volumes (e.g., roads coming from a highway exit that enter a city, deviation

roads towards a highway, etc.) and also secondary roads that may pose an alternative route to

reach a destination although they have lower speed and a higher probability of getting a traffic

jam (e.g., city centre roads or secondary roads within the old town of a city). Additionally, the

roads have been given different lengths to allow the vehicles that enter and exit the SUMO

scenario to reach their maximum allowed speeds in zero traffic jam conditions.

Figure AI - 2. Scenario 5.1. SUMO road speeds and length.

On the other hand, SUMO allows its users to add traffic light objects to each existing crossroad

on the designed vehicular topology [LBE+18]. From the SUMO perspective, there is only one

traffic light object controlling the crossroad (see Figure AI - 3); however, this SUMO traffic light

object is able to manage each lane that comes into the crossroad as an independent traffic light

thanks to a tuple of parameters that simulate a per-lane traffic lane granular behaviour for the

Hexa-X Deliverable D6.3

Dissemination level: public Page 118 / 129

traffic light phases15: (i) Duration, indicates the duration, in seconds, of a traffic light phase state;

(ii) State, indicates to the SUMO traffic light object the state on each individual, per-lane and per-

destination, traffic light status (e.g., green, yellow or red) as a simple string. To further clarify this

point, as it is key for the implementation of this scenario, Figure AI - 3 represents the SUMO

traffic light object of the south-west crossroad represented in Figure AI - 1, which details how a

traffic light object is interpreted by SUMO. As it can be seen, for each lane entering the crossroad,

all the possible paths are coloured, reflecting the state of the potential independent traffic light

that serves that path. For instance, the incoming northern lanes have four potential destinations,

i.e., going forward on each lane, turning to left and turning to right; each individual path can be

controlled as if a dedicated traffic light was serving that specific path. The State string that would

reflect the traffic light state in Figure AI - 3 will be “GGGgrrrrGGGgrrrr”16; from the beginning

of the string, the four first characters reflect the state of each individual path, from left to right, of

the northern road. Then the following four characters reflect the state of each path of the eastern

road, and the same pattern applies to the southern and western roads, respectively. The opposite

traffic light state (green on the horizontal lanes and red on the verticals) will be achieved with the

following traffic light state string “rrrrGGGgrrrrGGGg”.

Figure AI - 3. Scenario 5.1 - SUMO TL object view.

The SUMO TraCI API [LBE+18] enables different ways of managing each SUMO TL object

when the simulation is running. The most relevant ones are listed below:

1. State Change: This method sets the TL state to the string passed to the API. After this

method is used to change a TL state, that TL will be set to “online”, and the state will

remain as it is until the next to this method is received or a new program (i.e., a full set

of TL phases – states plus the duration of each state) is loaded to the TL.

2. Phase duration Change: Allows to set the remaining duration of the current TL phase

to the desired value.

3. Full traffic lights program load: Inserts a completely new traffic lights program into

the desired traffic light. This means that each phase is edited in duration and state.

In this scenario, the first method has been selected as it allows the AI/RL Agent functional

component more freedom due to the fact that the state and the duration of a TL can be both

managed with a single command and with high granularity. Besides, as the available GPIO ports

on each Raspberry are limited, which means that the traffic light that can be emulated using

15 In SUMO, a traffic light phase can be defined as the time that a traffic light holds the same light state.

16 SUMO enables even more granular control of the traffic lights state by defining two types of “Green” states: one

(represented with a capital “G”) means that vehicles following that path have the priority, and another one

(represented with “g”), meaning that vehicles may pass the junction if no vehicle is with a higher priority, otherwise

they decelerate for letting it pass.

Hexa-X Deliverable D6.3

Dissemination level: public Page 119 / 129

physical LEDs is also limited, for this scenario, a single traffic light is considered for each

crossroad, independently of the number of lanes and possible paths that this road may have

towards other roads, i.e., in Figure AI - 3’s crossroad there are four traffic lights instead of the 16

that SUMO enables. Moreover, SUMO comes with various default vehicle types, but they are

limited and therefore, to make the simulation more realistic, custom vehicle types were

implemented for this scenario. A vehicle type in SUMO allows the user to define the features that

define the vehicle during the simulation: vehicle length/width, maximum speed,

acceleration/deceleration, shape, colour, consumption model, emission model, driver’s driving

imperfection, etc17. Table AI - 1 shows the features of each custom vehicle type.

Table AI - 1. Scenario 5.1: SUMO vehicle types.

Type Class Length

(m)

Colour Max.

Speed

(m/s)

Accelera-

tion (m/s2)

Decelera-

tion (m/s2)

Sigma
18

Emission

Model19

CarA Car 5.0 Yellow 60 3.0 6.0 0.6 PC_G_EU4

CarB Car 6.5 Blue 50 2.4 5.0 0.5 PC_D_EU4

CarC Car 4.5 Green 40 1.5 4.5 0.3 PC_D_EU1

MbikeA Motor-

cycle

1.8 Red 55 3.0 5.0 0.6 LDV_G_EU4

Emer-

gency A

Emer-

gency

6.0 White 50 2.0 6.5 0.5 HDV

Several vehicle emission models have been implemented with the objective of demonstrating how

much the AI/RL agent functional component is able to optimize their respective consumptions.

Besides, apart from the physical parameters of the vehicle types, different driving behaviours have

been associated with each type of vehicle. For example, CarA vehicle type represents high-end

vehicles, and it has been given a sigma of 0.6, while the low-end vehicle type, CarC, has been

given a sigma of 0.3. Furthermore, SUMO requires vehicular routes to be defined in order to allow

traffic displacements to occur during the simulation execution. Again, for the purpose of

replicating a real-life scenario, all the possible routes from any existing junction to any other

junction have been enabled in this SUMO simulation. Nonetheless, the traffic flows have been

implemented in such a way that, at the start of the simulation, there is a light traffic volume, but

as the simulation continues, more and more traffic starts to appear. This approach tries to reflect

a vehicular situation where a traffic jam occurs when people start ending their workday and begin

returning home. Finally, in order to simulate the field of vision of a camera attached to each road

junction traffic light, a SUMO Lane Area Detector (LAD) object has been added to each lane on

each road at the nearest point to the crossroad (see blue rectangles in Figure AI - 1). These objects

cover a certain area and act as a geofence where different data from the vehicles within that area

can be retrieved. All the LADs implemented for this scenario have a length of m in order to enable

more than five vehicles, on average, to enter the same LAD.

17 See [SUMV22] for a detailed view of the available vehicles’ customizable parameters.

18 Driving imperfection: 0 equals to perfect driving and 1 worst possible driver.

19 [SUME22]

Hexa-X Deliverable D6.3

Dissemination level: public Page 120 / 129

Annex II. RL Agent implementation details
The AI/ML application developed for the demonstration in Scenario 5.1 consists of four

Reinforcement Learning agents which deal with the traffic lights control by changing its state

after some simulation time steps. As introduced in Section 5.3.1.2, the agents implement the Q-

Learning algorithm [Wat89], a model-free algorithm that aims to learn the best actions to be

performed in a defined environment (the urban environment with the traffic lights in the context

of this demo) depending on the rewards it receives to the action it performs. Below are some more

details about how the environment state is defined, how the rewards are computed, and how the

actions are encoded:

A) State: The state each agent receives contains the information of all the vehicles detected by

the Lane Area Detectors (LADs) from the SUMO simulator. As can be seen in Figure 5-3,

they have been defined on the traffic simulation topology, each one retrieving information

about the number of vehicles in the respective LAD area. Specifically, the state for each LAD

is a binary value (0 or 1), indicating if the number of vehicles in the LAD is above or below

a certain threshold to represent traffic jams or smooth traffic situations. Putting together all

these values, a 15-bits string is built-up, representing the whole state of the road traffic nearby

all the traffic lights in the set-up. This 15-bit string is the state information sent to each agent.

B) Action: Action commands are encoded per crossroad, considering that there are two different

kinds: Type A (with four traffic lights – three of them) and Type B (with only three traffic

lights – one of them, see Figure 5-3). Considering this and also discarding certain actions that

are not desirable (e.g., putting all traffic lights on green or red at the same time), the following

sets of actions have been defined per type of crossover20:

C) Reward: Firstly, a base score is computed according to the following formula for each LAD:

Table AII - 1. Actions for crossroad types A (light) and B (dark).

 Traffic Light

North

Traffic Light

East

Traffic Light

West

Traffic Light

South

Action 1 Green Red Red Green

Action 2 Red Green Green Red

Action 3 Green Red Red Red

Action 4 Red Green Red Red

Action 5 Red Red Green Red

Action 6 Red Red Red Green

According to this table, actions on each crossroad are encoded as 3 or 4 bits numbers for

crossroads of type B or A respectively, e.g., Action 2 for a crossroad type A would be encoded

as red-green-green-red (or 0110) while for the crossroad type be it would be red-green-green

(or 011). This would be the output from each RL Agent towards the Traffic Lights Control

Logic module.

D) Reward: Firstly, a base score is computed according to the following formula for each LAD:

𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠_𝑠𝑝𝑒𝑒𝑑 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠_𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) 𝛼

Where vehicles_speed is the mean speed of the vehicles, vehicles_waiting_time is their mean waiting

time, and α is a constant factor intended to prevent the score value from swinging too wide (the

concrete value has been obtained experimentally on the simulation). The waiting time and speed

variables have been used to calculate the score in order to give a higher result if the vehicles speed

20 Note the yellow colour is not indicated here. This is because it is only considered a transition state, which duration

is directly controlled by the Traffic Lights Control Logic module.

Hexa-X Deliverable D6.3

Dissemination level: public Page 121 / 129

in a certain LAD is high, which indicates that the fluidity is good. On the contrary, the score is

lower or even negative if the vehicles are waiting so much time in a certain LAD, which indicates

that the traffic fluidity is bad. To perform the learning process, the AI/ML component works in a

synchronised way. It waits until the state information from all the crossroads is available at its

input. Then, once the data is collected, the AI/ML component process the data to compute the

actions on the different crossroads to the current iteration (i.e., the current state) and the rewards

for the actions that were performed in the previous iteration.

The reinforcement learning algorithm takes the decisions by using a so-called Q-learning table

(where ‘Q’ comes from ‘quality’), where the so-called Q-values are stored for each state-action

pair. This table is structured as follows: the first column (the table key) represents the state, with

the 15-bits word mentioned above. Then, the remaining columns represent the possible actions

for each crossroad, according to those in the previous Table AII - 1. The values stored in the table

for each row (each state) represent how positive was the effect of applying each specific action to

that state. The higher the value, the higher is considered the "quality" of the action. Table AII - 2

shows the layout of this Q-learning table, where columns A1 … A6 represent the possible actions

in Table II - 1. To select the specific action for each crossroad, each agent selects from the table

the action with the highest Q-value (e.g., in the 1st row, for the 1st crossroad, action A6 would be

chosen over A1).

Table AII - 2. Q-table layout.

 Crossroad 1 Crossroad 2 … Crossroad 4

State A1 ... A6 A1 ... A6 … A1 ... A4

001101001101000 7.2101 ... 9.9104 1.1132 ... 1.1211 ... 1.1143 ... 2.1051

111010001100000 0.9112 ... 1.1111 5.1059 ... 9.1052 ... 4.3110 ... 0.0

...

The Q-values are updated according to the following formula:

𝑞𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼)𝑞(𝑠, 𝑎) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎′

𝑞(𝑠′, 𝑎′))

where

− 𝑞𝑛𝑒𝑤(𝑠, 𝑎) the new q value that will be updated on the table for a specific state-action

pair.

− 𝑞(𝑠, 𝑎) the previous q value in the table (if any).

− α, the so-called learning rate. It regulates how the Q-Value calculated in the previous

time step is going to affect over the new computed Q-Value. It is basically used to

avoid overwriting the previous Q-Value. The learning rate can be set between 0 and

1, the more close to one, the faster the agent will adopt the new Q-Value and vice

versa.

− γ, the discount rate. Set the importance of future rewards. A rate of 0 will make the

agent to only consider the current rewards. While a rate close to 1 will take into

consideration the previous ones.

− 𝑅𝑡+1 the reward to the next iteration.

− max
a'

q(s',a'), the optimal Q-Value for the next state-action pair. In practice, the

maximum q-value in the table for the next state.

Additionally, it should be remarked that since it takes some time for the actions to have a

significant effect on the road traffic, it has been done that one iteration for the agents is equivalent

to several simulation time steps. This makes reward values more significant. When the simulation

starts, the table is initially empty, i.e., with no row. New rows are added while the simulation

carries on, and new states are detected in the environment. It is worth mentioning that, although

there are a maximum of 32,768 possible states (215, considering the 15 LADs), during different

Hexa-X Deliverable D6.3

Dissemination level: public Page 122 / 129

demo executions, it has been seen that a quite good improvement in the road traffic quality was

achieved once the table reached approximately 500 entries. In other words, RL Agents learned

that, out of the 32.768 possible states, it was possible to manage the traffic already in an efficient

way considering only about 500 states. Annex III shows the results in that situation, i.e., the

learning process until the RL Agents had learned about those 500 states approximately.

Hexa-X Deliverable D6.3

Dissemination level: public Page 123 / 129

Annex III. Results of the RL-based traffic lights control

service
This annex shows some of the results obtained in the AI/ML-driven traffic lights control service

deployed in Scenario 5.1. Although, as said, the main interest of this scenario is not the AI/ML

part itself, it is considered interesting to show here how the service behaves, even in summary

form. The plots below show in a comparative way some interesting KPIs obtained through the

SUMO simulator using the demo set-up in Figure 5-13. In all cases, the green line represents the

results using the Reinforcement Learning approach to control the traffic lights activation, while

the black line represents the “legacy” approach, i.e., the traffic lights control using the regular

fixed-time pattern that is typically used in real-life cities. It is important to remark that this legacy

behaviour is based on the timers defined by the SUMO simulator itself, i.e., not by the team in

charge of executing the simulation. These timer values are automatically generated by SUMO

considering different aspects (such as the type of crossroads and the number of lanes per road,

among others [SUME22]), and estimating the values these timers could have in a similar real-life

scenario. As can be seen, the following metrics are plotted:

• Total vehicles over time (Figure AIII - 1). It represents the number of vehicles that were

running within the reported simulation time step.

• Halting vehicles over time (Figure AIII - 2). It represents the number of vehicles in the

network with speed below 0.1m/s for a given simulation time step.

• Vehicles mean travel time (Figure AIII - 3). It represents the mean travel time of all

vehicles that have left the simulation within the previous and the reported time.

• Vehicles mean waiting time (Figure AIII - 4). It represents the mean waiting time for all

vehicles, up to the given simulation time step and within the reported time step, in order

to be inserted into the simulation.

• Cumulative emitted hydrocarbons (Figure AIII - 5). It represents the accumulated amount

of hydrocarbons emitted by all the vehicles up to the reported simulation time step.

• Cumulative fuel consumption (Figure AIII - 6). It represents the accumulated amount of

fuel consumed by all the vehicles up to the reported simulation time step.

Cumulative emitted CO2 (

• Figure AIII - 7). It represents the accumulated amount of CO2 emitted by all the vehicles

up to the reported simulation time step.

Figure AIII - 1. Scenario 5.1 - simulation total

vehicles comparative.

Figure AIII - 2. Scenario 5.1 - simulation

halting vehicles comparative.

As it can be seen, for all the metrics, the RL-based approach shows better results than the legacy

approach, being very significant vehicle waiting times (much longer in the legacy approach), and

also, the graphs related to gas emissions and vehicles consumption (lower when using the RL

approach). Note also that, in all cases, the RL-based approach (green line) ends much sooner than

the Legacy approach (almost 5000 steps sooner). This is because, in both cases, the number of

vehicles generated by SUMO is the same, so this basically shows how the RL-based approach

Hexa-X Deliverable D6.3

Dissemination level: public Page 124 / 129

gets all the vehicles in the simulation to complete their journey in a shorter time (the condition

for the simulation to end is that all the vehicles have reached their expected destination).

Thereupon, it can be concluded that the RL-approach greatly optimizes the overall traffic flows.

Figure AIII - 3. Scenario 5.1 - simulation

vehicles mean travel time comparative.

Figure AIII - 4. Scenario 5.1 - simulation

vehicles mean waiting time comparative.

Figure AIII - 5. Scenario 5.1 - simulation

vehicles HC comparative.

Figure AIII - 6. Scenario 5.1 - simulation

vehicles fuel comparative.

Figure AIII - 7. Scenario 5.1 - simulation vehicles CO2 comparative.

Hexa-X Deliverable D6.3

Dissemination level: public Page 125 / 129

References

[5GA21] 5G Americas, “Vehicular connectivity: C-V2X & 5G,” White Paper, September

2021.

[5GR21-D24] 5Growth Deliverable D2.4, “Final implementation of 5G End-to-End Service

Platform”, May 2021, [Online]. Available at: https://5growth.eu/wp-

content/uploads/2019/06/D2.4-Final_implementation_of_5G_End-to-

End_Service_Platform.pdf [Accessed: 1 March 2023].

[AIR] Apache Airflow [Online]. Available at: https://airflow.apache.org/ [Accessed:

28 February 2023].

[ARI] ARIMA, [Online]. Available at:

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

[Accessed: 24 February 2023].

[BBE+11] M. Behrisch, L. Bieker, J. Erdmann and D. Krajzewicz, “SUMO–simulation of

urban mobility: an overview.” Proceedings of SIMUL, The Third International

Conference on Advances in System Simulation, 2011.

[BPV+22] F. Barbarulo, C. Puliafito, A. Virdis, E. Mingozzi, "Enabling Application

Relocation in ETSI MEC: A Container-Migration Approach", International

Workshop on Cloud Technologies and Energy Efficiency in Mobile

Communication Networks (CLEEN) 2022, Virtual Conference, 12–15

September 2022.

[CAP] Common API Framework, [Online]. Available at:

https://www.mpirical.com/glossary/capif-common-api-framework-for-3gpp-

northbound-apis [Accessed: 27 February 2023].

[CAM] Camara Project, [Online]. Available at: https://camaraproject.org [Accessed: 27

February 2023]

[CAR+03] M. Carson and D. Santay, "NIST Net: A Linux-based network emulation tool",

ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 111-126, Jul.

2003.

[CVE-L4J] CVE-2021-44228, [Online]. Available at: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=cve-2021-44228 [Accessed: 27 February 2023].

[COR] Log4jHotPatch, [Online]. Available at: https://github.com/corretto/hotpatch-

for-apache-log4j2 [Accessed: 6 March 2023].

[DBS] DBSCAN, [Online]. Available at: https://en.wikipedia.org/wiki/DBSCAN

[Accessed: 27 February 2023].

[DOC] Docker, [Online]. Available at: https://www.docker.com/ [Accessed: 8 March

2023].

[DPE] Dell Power Edge, [Online]. Available at: https://www.dell.com/es-

es/shop/servidores-dell-poweredge/sc/servers [Accessed: 21 March 2023].

[DRO] Drools, [Online]. Available at: https://drools.org [Accessed: 24 February 2023].

[Ela19] Elasticsearch B.V. 2019. Elasticsearch Beats - Lightweight Data Shippers.

[Online]. Available at: https://www.elastic.co/products/beats/. [Accessed 15

May 2019].

[EAD14] Erich F., Amrit C., Daneva M., “A Mapping Study on Cooperation between

Information System Development and Operations”, In: Jedlitschka A., Kuvaja

P., Kuhrmann M., Männistö T., Münch J., Raatikainen M. (eds) Product-

Focused Software Process Improvement. PROFES 2014. Lecture Notes in

Computer Science, vol 8892. Springer, Cham, 2014.

[FPR] Facebook Prophet, [Online]. Available at: https://facebook.github.io/prophet/

[Accessed: 24 February 2023].

https://5growth.eu/wp-content/uploads/2019/06/D2.4-Final_implementation_of_5G_End-to-End_Service_Platform.pdf
https://5growth.eu/wp-content/uploads/2019/06/D2.4-Final_implementation_of_5G_End-to-End_Service_Platform.pdf
https://5growth.eu/wp-content/uploads/2019/06/D2.4-Final_implementation_of_5G_End-to-End_Service_Platform.pdf
https://airflow.apache.org/
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://www.mpirical.com/glossary/capif-common-api-framework-for-3gpp-northbound-apis
https://www.mpirical.com/glossary/capif-common-api-framework-for-3gpp-northbound-apis
https://camaraproject.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://github.com/corretto/hotpatch-for-apache-log4j2
https://github.com/corretto/hotpatch-for-apache-log4j2
https://en.wikipedia.org/wiki/DBSCAN
https://www.docker.com/
https://drools.org/
https://facebook.github.io/prophet/

Hexa-X Deliverable D6.3

Dissemination level: public Page 126 / 129

[GDH+13]. Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-

Wolf. 2013. Exact analysis of the M/M/k/setup class of Markov chains via

recursive renewal reward. SIGMETRICS Perform. Eval. Rev. 41, 1 (June

2013), 153–166. https://doi.org/10.1145/2494232.2465760

[GDPR] GDPR, [Online]. Available at: https://gdpr-info.eu/ [Accessed: 8 March 2023].

[GIT] GitLab, [Online]. Available at: https://about.gitlab.com/ [Accessed: 24

February 2023].[GRA] Grafana, [Online]. Available at: https://grafana.com/

[Accessed: 8 March 2023].

[HELM] Helm Charts, [Online]. Available at: https://helm.sh/docs/topics/charts/

[Accessed: 24 February 2023]

[HEX21-D12] Hexa-X Deliverable D1.2: Expanded 6G vision, use cases and societal values –

including aspects of sustainability, security and spectrum. April 2021.

[HEX22-D14] Hexa-X Deliverable D1.4: Hexa-X architecture for B5G/6G networks. April

2023.

[HEX23-D43] Hexa-X Deliverable D4.3, “AI-driven communication & computation co-

design: final solutions”, [Ongoing Work].

[HEX21-D61] Hexa-X Deliverable D6.1: Gaps, features and enablers for B5G/6G service

management and orchestration. June 2021.

[HEX22-D62] Hexa-X Deliverable D6.2: Design of service management and orchestration

functionalities. April 2022.

[HEX22-D72] Hexa-X Deliverable D7.2: Special-purpose functionalities: intermediate

solutions. April 2022.

[Hor20] Horizon 2020 Work Programme 2016–2017 [Online]. Available at:

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-

2017/annexes/h2020-wp1617-annex-ga_en.pdf [Accessed: 22 November 2022].

[INE] INET Library Website. [Online]. Available at: https://inet.omnetpp.org

[Accessed: 24 February 2023].

[INF] InfluxDB, [Online]. Available at: https://www.influxdata.com/. [Accessed: 24

February 2023].

[IPE] IPERF, [Online]. Available at: https://iperf.fr/. [Accessed: 27 February 2023].

[ISO2011] ISO. 2011. ISO/IEC TS 25010:2011(en) Systems and software engineering —

Systems and software Quality Requirements and Evaluation (SQuaRE) —

System and software quality models. ISO. International Organization for

Standardization, Geneva, Switzerland.

[ISO2017] ISO. 2017. ISO/IEC TS 25011:2017(en) Information technology — Systems

and software Quality Requirements and Evaluation (SQuaRE) — Service

quality models. ISO. International Organization for Standardization, Geneva,

Switzerland.

[IST] Istio. [Online]. Available at: https://istio.io/ [Accessed: 8 March 2023].

[K3D] K3d, [Online]. Available at: k3d.io/ [Accessed: 8 March 2023].

[K3S] K3s, [Online]. Available at: https://k3s.io/ [Accessed: 27 February 2023].

[KUBa] Kubernetes, [Online]. Available at: https://kubernetes.io/. [Accessed: 27

February 2023].

[KUBb] Kubeflow, [Online]. Available at: https://www.kubeflow.org/. [Accessed: 24

February 2023].

[KUP] Kubeflow Pipelines, [Online]. Available at: https://www.kubeflow.org/docs/

components/pipelines/v2/introduction/. [Accessed: 27 February 2023].

[KAF] Apache kafka [Online]. Available at: https://kafka.apache.org. [Accessed: 24

February 2023].

https://about.gitlab.com/
https://helm.sh/docs/topics/charts/
https://inet.omnetpp.org/
https://iperf.fr/
https://k3s.io/
https://kubernetes.io/
https://www.kubeflow.org/docs/%20components/pipelines/v2/introduction/
https://www.kubeflow.org/docs/%20components/pipelines/v2/introduction/

Hexa-X Deliverable D6.3

Dissemination level: public Page 127 / 129

[L4J] Apache log4j, [Online]. Available at:

https://logging.apache.org/log4j/2.x/security.html [Accessed: 24 February

2023].

[LBE+18] P.A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.P. Flötteröd, R.

Hilbrich, and E. Wießner, “Microscopic traffic simulation using sumo.” 21st

international conference on intelligent transportation systems (ITSC), pp. 2575-

2582, IEEE, 2018.

[Ler17] Andrew Lerner, AIOps Platforms, August 09, 2017 [Online]. Available at:

https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms.

[Accessed: 24 February 2023].

[LST] Long Short-term Memory, [Online]. Available at: https://en.wikipedia.org

 /wiki/Long_short-term_memory [Accessed: 6 March 2023].

[MAH+04] D. Mahrenholz and S. Ivanov, "Real-time network emulation with ns-2", Proc.

8th IEEE Int. Symp. Distrib. Simulation Real-Time Appl., pp. 29-36, Oct. 2004.

[MKV+22] J. Martín-Pérez et al., "Dimensioning V2N Services in 5G Networks Through

Forecast-Based Scaling," in IEEE Access, vol. 10, pp. 9587-9602, 2022, doi:

10.1109/ACCESS.2022.3142346.

[MLR] Multiple Linear Regression, [Online]. Available at:

https://en.wikiversity.org/wiki/Multiple_linear_regression [Accessed: 27

February 2023].

[MIN] MinIO, [Online]. Available at: https://min.io/. [Accessed: 24 February 2023].

[NGP18-D31] NGPaaS Deliverable D3.1, Initial Dev-for-Operations Model Specification,

April 2018, [Online]. Available at: http://ngpaas.eu/wp-

content/uploads/2018/07/NGPaaS_D3.1_Web.pdf

[NGP19-D32] NGPaaS Deliverable D3.2, Final Dev-for-Operations Model Specification,

April 2019.

[NSS+20] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, ‘‘Simu5G— An

OMNeT++ library for end-to-end performance evaluation of 5G networks,’’

IEEE Access, vol. 8, pp. 181176–181191, 2020, doi:

10.1109/ACCESS.2020.3028550.

[OSM] Open Source MANO, [Online]. Available at: https://osm.etsi.org/ . [Accessed:28

February 2023].

[OST] OpenStack, [Online]. Available at: https://www.openstack.org/. [Accessed: 28

February 2023].

[PKH+19] Palmer, G. I., Knight, V. A., Harper, P. R., & Hawa, A. L. (2019). Ciw: An

open-source discrete event simulation library. Journal of Simulation, 13(1), 68-

82.

[PAE] Prometheus Authors. Exporters and Integrations. [Online]. Available at:

https://prometheus.io/docs/instrumenting/exporters/ [Accessed: 24 February

2023].

[QUEC] Quectel RM500Q mode, [Online]. Available at:

https://www.quectel.com/product/5g-rm50xq-series [Accessed: 24 February

2023].

[RAB] RabbitMQ, [Online]. Available at: https://www.rabbitmq.com [Accessed 8

March 2023].

[RCA] Bhattacharya, Krishanu & Rani, N & Gonsalves, Timothy & Murthy, Hema.

 (2005). AN EFFICIENT ALGORITHM FOR ROOT CAUSE ANALYSIS.

[RF18] J. Redmon, A. Farhadi, 2018 “YOLOv3: An Incremental Improvement”.

[ROS] Robot Operating System, [Online]. Available at: https://www.ros.org/

[Accessed: 8 March 2023]

https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms
https://en.wikiversity.org/wiki/Multiple_linear_regression
http://ngpaas.eu/wp-content/uploads/2018/07/NGPaaS_D3.1_Web.pdf
http://ngpaas.eu/wp-content/uploads/2018/07/NGPaaS_D3.1_Web.pdf
https://www.openstack.org/
https://www.quectel.com/product/5g-rm50xq-series
https://scholar.google.com/citations?user=TDk_NfkAAAAJ&hl=pl&oi=sra
https://scholar.google.com/citations?user=jeOFRDsAAAAJ&hl=pl&oi=sra

Hexa-X Deliverable D6.3

Dissemination level: public Page 128 / 129

[SOM] Kohonen, Teuvo (1982). <<Self-Organized Formation of Topologically Correct

Feature Maps>>. Biological Cybernetics 43 (1): 56-69.

[SOM2] Root-cause analysis through machine learning in the cloud, Tim Josefsson,

 [Online]. Available at: https://uu.diva-portal.org/smash/get/diva2:1178780/

FULLTEXT01.pdf [Accessed: 8 March 2023]

[SRO+19] R. C. Staudemeyer, E. R. Morris, Understanding LSTM -- a tutorial into Long

Short-Term Memory Recurrent Neural Networks, September 2019, DOI

10.48550/arXiv.1909.09586 [Online]. Available at:

https://arxiv.org/abs/1909.09586 [Accessed: 8 March 2023].

[STO+20] N. Senavirathne, V. Torra, On the Role of Data Anonymization in Machine

Learning Privacy, IEEE Access, December 2020, DOI

10.1109/TrustCom50675.2020.00093 [Online] available at:

https://ieeexplore.ieee.org/abstract/document/9343198 [Accessed: 8 March

2023].

[SUME22] SUMO Docs, “HBEFA3-based emission models - SUMO Documentation”,

Accessed: Feb. 2023. [Online]. Available at:

https://sumo.dlr.de/docs/Models/Emissions/HBEFA3-based.html [Accessed: 8

March 2023].

[SUMV22] SUMO Docs, “Definition of Vehicles, Vehicle Types, and Routes - SUMO

Documentation”, Accessed: Feb. 2023. [Online]. Available at:

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and

_Routes.html#vehicle_types [Accessed: 8 March 2023].

[SUR] Suricata, [Online]. Available at: https://suricata.io/ [Accessed: 24 February

2023].

[TBF+22] M. Testi, M. Ballabio, E. Frontoni, et al, MLOps: A Taxonomy and a

Methodology, IEEE Access, June 2022, DOI 10.1109/ACCESS.2022.3181730,

[Online]. Available at: https://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=9792270 [Accessed: 8 March 2023].

[TFDV] TensorFlow Data Validation, [Online]. Available at:

https://www.tensorflow.org/tfx/guide/tfdv [Accessed: 28 February 2023].

[TFL] TensorFlow, [Online]. Available at: https://www.tensorflow.org/. [Accessed: 27

February 2023].

[TFMA] TensorFlow Model Analysis, [Online]. Available at:

https://www.tensorflow.org/tfx/guide/tfma [Accessed: 28 February 2023].

[TFS] TensorFlow, “TensorFlow Serving” [Online]. Available at:

https://www.tensorflow.org/tfx/guide/serving [Accessed: 24 February 2023].

[TFX] TensorFlow Extended, [Online]. Available at: https://www.tensorflow.org/tfx.

[Accessed: 24 February 2023].

[TR873] 3GPP TR 36.873 v12.7.0, "Study on 3D channel model for LTE", December

2017.

[TRI] Trivy, [Online]. Available at: https://aquasecurity.github.io/trivy/v0.28.1

[Accessed: 26 April 2023].

[TRL] Technology Readiness Levels, [Online]. Available at:

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexe

s/h2020-wp1415-annex-g-trl_en.pdf [Accessed: 27 February 2023].

[UER] UERANSIM, [Online]. Available at:

https://www.free5gc.org/installations/stage-3-sim-install/ [Accessed: 24

February 2023].

[UNI] Unity, [Online]. Available at:

https://en.wikipedia.org/wiki/Unity_(game_engine) [Accessed: 24 February

2023].

https://arxiv.org/abs/1909.09586
https://sumo.dlr.de/docs/Models/Emissions/HBEFA3-based.html
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#vehicle_types
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#vehicle_types
https://suricata.io/
https://ieeexplore.ieee.org/stamp/%20stamp.jsp?tp=&arnumber=9792270
https://ieeexplore.ieee.org/stamp/%20stamp.jsp?tp=&arnumber=9792270
https://www.tensorflow.org/tfx/guide/tfdv
https://www.tensorflow.org/
https://www.tensorflow.org/tfx/guide/tfma
https://www.tensorflow.org/tfx/guide/serving
https://aquasecurity.github.io/trivy/v0.28.1/
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://www.free5gc.org/installations/stage-3-sim-install/

Hexa-X Deliverable D6.3

Dissemination level: public Page 129 / 129

[UWS] Unity Website, [Online]. Available at: https://unity.com [Accessed: 24

February 2023].

[VBM+21] D. de Vleeschauwer et al., "5Growth Data-Driven AI-Based Scaling," 2021 Joint

European Conference on Networks and Communications & 6G Summit

(EuCNC/6G Summit), Porto, Portugal, 2021, pp. 383-388, doi:

10.1109/EuCNC/6GSummit51104.2021.9482476.

[VIC] log4shell-kubernetes [Online]. Available at:

https://github.com/vicenteherrera/log4shell-kubernetes [Accessed: 8 March

2023].

[VIR+16] A. Virdis, G. Stea, and G. Nardini, ‘‘Simulating LTE/LTE-advanced networks

with SimuLTE,’’ in Advances in Intelligent Systems and Computing, vol. 402.

Cham, Switzerland: Springer, Jan. 2016, pp. 83–105, doi: 10.1007/978-3-319-

26470-7_5.

[VPP] VPP, [Online]. Available at: https://wiki.fd.io/view/VPP [Accessed 24:

February 2023].

[VSS+10] Vasan, A., Sivasubramaniam, A., Shimpi, V., Sivabalan, T., & Subbiah, R.

(2010, January). Worth their watts?-an empirical study of datacenter servers. In

HPCA-16 2010 The Sixteenth International Symposium on High-Performance

Computer Architecture (pp. 1-10). IEEE.

[Wat89] Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis,

University of Cambridge, England.

[YOG] Kolla-ansible Yoga, [Online]. Available at: https://docs.openstack.org/kolla-

ansible/yoga/user/quickstart.html [Accessed: 24 February 2023].

[YSH+19] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural

networks: LSTM cells and network architectures. Neural computation, 31(7),

1235-1270.

[ZEE] Zeek, [Online]. Available at: https://zeek.org [Accessed: 24 February 2023].

https://wiki.fd.io/view/VPP
https://docs.openstack.org/kolla-ansible/yoga/user/quickstart.html
https://docs.openstack.org/kolla-ansible/yoga/user/quickstart.html
https://zeek.org/

